Progress in the Study of Natural Antimicrobial Active Substances in Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Biologically Active Secondary Metabolites Produced by Pseudomonas aeruginosa
2.1. Phenazines Produced by Pseudomonas aeruginosa
2.2. Rhamnolipids Produced by Pseudomonas aeruginosa
2.3. Other Active Substances Produced by Pseudomonas aeruginosa
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kijpornyongpan, T.; Schwartz, A.; Yaguchi, A.; Salvachua, D. Systems biology-guided understanding of white-rot fungi for biotechnological applications: A review. Iscience 2022, 25, 104640. [Google Scholar] [CrossRef]
- Mili, C. Bioprospecting of endophytes associated with solanum species: A mini review. Arch. Microbiol. 2023, 205, 254. [Google Scholar] [CrossRef] [PubMed]
- Conrado, R.; Gomes, T.C.; Roque, G.; De Souza, A.O. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics 2022, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Gakuubi, M.M.; Ching, K.C.; Munusamy, M.; Wibowo, M.; Liang, Z.X.; Kanagasundaram, Y.; Ng, S.B. Enhancing the discovery of bioactive secondary metabolites from fungal endophytes using chemical elicitation and variation of fermentation media. Front. Microbiol. 2022, 13, 898976. [Google Scholar] [CrossRef]
- Baltz, R.H. Natural product drug discovery in the genomic era: Realities, conjectures, misconceptions, and opportunities. J. Ind. Microbiol. Biotechnol. 2019, 46, 281–299. [Google Scholar] [CrossRef]
- Barreiro, C.; Albillos, S.M.; Garcia-Estrada, C. Penicillium chrysogenum: Beyond the penicillin. Adv. Appl. Microbiol. 2024, 127, 143–221. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.R.; Burton, C.E. Eravacycline, a newly approved fluorocycline. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1787–1794. [Google Scholar] [CrossRef]
- Vazquez-Laslop, N.; Mankin, A.S. How macrolide antibiotics work. Trends Biochem. Sci. 2018, 43, 668–684. [Google Scholar] [CrossRef]
- Qin, Y.; Ma, S. Recent advances in the development of macrolide antibiotics as antimicrobial agents. Mini-Rev. Med. Chem. 2020, 20, 601–625. [Google Scholar] [CrossRef]
- Geller-Mcgrath, D.; Mara, P.; Taylor, G.T.; Suter, E.; Edgcomb, V.; Pachiadaki, M. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic cariaco basin. Nat. Commun. 2023, 14, 656. [Google Scholar] [CrossRef]
- Schmidt, E.W. Trading molecules and tracking targets in symbiotic interactions. Nat. Chem. Biol. 2008, 4, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Krug, D.; Bozkurt, N.; Duddela, S.; Jansen, R.; Garcia, R.; Gerth, K.; Steinmetz, H.; Muller, R. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat. Commun. 2018, 9, 803. [Google Scholar] [CrossRef] [PubMed]
- Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef]
- Maatooq, G.T.; Marzouk, A.M.; Gray, A.I.; Rosazza, J.P. Bioactive microbial metabolites from glycyrrhetinic acid. Phytochemistry 2010, 71, 262–270. [Google Scholar] [CrossRef]
- Pattnaik, S.; Imchen, M.; Kumavath, R.; Prasad, R.; Busi, S. Bioactive microbial metabolites in cancer therapeutics: Mining, repurposing, and their molecular targets. Curr. Microbiol. 2022, 79, 300. [Google Scholar] [CrossRef]
- Marinelli, F.; Genilloud, O.; Fedorenko, V.; Ron, E.Z. Specialized bioactive microbial metabolites: From gene to product. Biomed. Res. Int. 2015, 2015, 276964. [Google Scholar] [CrossRef]
- All natural. Nat. Chem. Biol. 2007, 3, 351. [CrossRef]
- Thakur, M.P.; van der Putten, W.H.; Cobben, M.; van Kleunen, M.; Geisen, S. Microbial invasions in terrestrial ecosystems. Nat. Rev. Microbiol. 2019, 17, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.B.; Frota, A.F.; Silva, J.; Alves, C.; Neugebauer, A.Z.; Pinteus, S.; Rodrigues, J.; Cordeiro, E.; de Almeida, R.R.; Pedrosa, R.; et al. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. Int. J. Biol. Macromol. 2018, 112, 1248–1256. [Google Scholar] [CrossRef]
- Tyrrell, C.; Burgess, C.M.; Brennan, F.P.; Walsh, F. Antibiotic resistance in grass and soil. Biochem. Soc. Trans. 2019, 47, 477–486. [Google Scholar] [CrossRef]
- Nweze, J.A.; Mbaoji, F.N.; Huang, G.; Li, Y.; Yang, L.; Zhang, Y.; Huang, S.; Pan, L.; Yang, D. Antibiotics development and the potentials of marine-derived compounds to stem the tide of multidrug-resistant pathogenic bacteria, fungi, and protozoa. Mar. Drugs 2020, 18, 145. [Google Scholar] [CrossRef] [PubMed]
- Cella, E.; Giovanetti, M.; Benedetti, F.; Scarpa, F.; Johnston, C.; Borsetti, A.; Ceccarelli, G.; Azarian, T.; Zella, D.; Ciccozzi, M. Joining forces against antibiotic resistance: The one health solution. Pathogens 2023, 12, 1074. [Google Scholar] [CrossRef] [PubMed]
- Sugrue, I.; Ross, R.P.; Hill, C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat. Rev. Microbiol. 2024, 22, 556–571. [Google Scholar] [CrossRef]
- Bills, G.F.; Gloer, J.B. Biologically active secondary metabolites from the fungi. Microbiol. Spectr. 2016, 4, 1087–1119. [Google Scholar] [CrossRef] [PubMed]
- Pinar, O.; Rodriguez-Couto, S. Biologically active secondary metabolites from white-rot fungi. Front. Chem. 2024, 12, 1363354. [Google Scholar] [CrossRef]
- Sidebottom, A.M.; Carlson, E.E. A reinvigorated era of bacterial secondary metabolite discovery. Curr. Opin. Chem. Biol. 2015, 24, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Schneider, Y.K. Bacterial natural product drug discovery for new antibiotics: Strategies for tackling the problem of antibiotic resistance by efficient bioprospecting. Antibiotics 2021, 10, 842. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Neve, R.L.; Giedraitis, E.; Akbari, M.S.; Cohen, S.; Phelan, V.V. Secondary metabolite profiling of Pseudomonas aeruginosa isolates reveals rare genomic traits. Msystems 2024, 9, e33924. [Google Scholar] [CrossRef]
- Singh, P.; Singh, R.K.; Guo, D.-J.; Sharma, A.; Singh, R.N.; Li, D.-P.; Malviya, M.K.; Song, X.-P.; Lakshmanan, P.; Yang, L.-T.; et al. Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa b18-a plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Front. Microbiol. 2021, 12, 628376. [Google Scholar] [CrossRef]
- Budzikiewicz, H. Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol. Rev. 1993, 10, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Leisinger, T.; Margraff, R. Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev. 1979, 43, 422–442. [Google Scholar] [CrossRef] [PubMed]
- Saikia, R.; Srivastava, A.K.; Singh, K.; Arora, D.K.; Lee, M.W. Effect of iron availability on induction of systemic resistance to Fusarium wilt of chickpea by Pseudomonas spp. Mycobiology 2005, 33, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; He, Y.; Jiang, H.; Peng, H.; Huang, X.; Zhang, X.; Thomashow, L.S.; Xu, Y. Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr. Microbiol. 2007, 54, 302–306. [Google Scholar] [CrossRef]
- Pierson, L.R.; Thomashow, L.S. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30–84. Mol. Plant Microbe Interact. 1992, 5, 330–339. [Google Scholar] [CrossRef]
- Thomashow, L.S.; Weller, D.M.; Bonsall, R.F.; Pierson, L.S. Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 1990, 56, 908–912. [Google Scholar] [CrossRef]
- Wang, B.; Waters, A.L.; Sims, J.W.; Fullmer, A.; Ellison, S.; Hamann, M.T. Complex marine natural products as potential epigenetic and production regulators of antibiotics from a marine Pseudomonas aeruginosa. Microb. Ecol. 2013, 65, 1068–1075. [Google Scholar] [CrossRef]
- Li, S.; Yue, S.J.; Huang, P.; Feng, T.T.; Zhang, H.Y.; Yao, R.L.; Wang, W.; Zhang, X.H.; Hu, H.B. Comparative metabolomics and transcriptomics analyses provide insights into the high-yield mechanism of phenazines biosynthesis in Pseudomonas chlororaphis gp72. J. Appl. Microbiol. 2022, 133, 2790–2801. [Google Scholar] [CrossRef]
- Parsons, J.F.; Greenhagen, B.T.; Shi, K.; Calabrese, K.; Robinson, H.; Ladner, J.E. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 2007, 46, 1821–1828. [Google Scholar] [CrossRef]
- Cui, Y.; Song, K.; Jin, Z.J.; Lee, L.H.; Thawai, C.; He, Y.W. Fructose promotes pyoluteorin biosynthesis via the CbrAB-CrcZ-Hfq/Crc pathway in the biocontrol strain Pseudomonas PA1201. Synth. Syst. Biotechnol. 2023, 8, 618–628. [Google Scholar] [CrossRef]
- Abalos, A.; Vinas, M.; Sabate, J.; Manresa, M.A.; Solanas, A.M. Enhanced biodegradation of casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 2004, 15, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Yin, X.; Ren, C.; Wang, Y.; Xu, F.; Shen, Q. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol. Adv. 2010, 28, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, S.; Hafeez, F.Y.; Mirza, M.S.; Rasul, M.; Arshad, H.; Zubair, M.; Iqbal, M. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 2017, 8, 1895. [Google Scholar] [CrossRef] [PubMed]
- Zeyhle, P.; Bauer, J.S.; Kalinowski, J.; Shin-Ya, K.; Gross, H.; Heide, L. Genome-based discovery of a novel membrane-bound 1,6-dihydroxyphenazine prenyltransferase from a marine actinomycete. PLoS ONE 2014, 9, e99122. [Google Scholar] [CrossRef]
- Mcdonald, M.; Mavrodi, D.V.; Thomashow, L.S.; Floss, H.G. Phenazine biosynthesis in pseudomonas fluorescens: Branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J. Am. Chem. Soc. 2001, 123, 9459–9460. [Google Scholar] [CrossRef]
- Guo, S.; Wang, Y.; Dai, B.; Wang, W.; Hu, H.; Huang, X.; Zhang, X. Phza, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66. Appl. Microbiol. Biotechnol. 2017, 101, 7165–7175. [Google Scholar] [CrossRef]
- Mentel, M.; Ahuja, E.G.; Mavrodi, D.V.; Breinbauer, R.; Thomashow, L.S.; Blankenfeldt, W. Of two make one: The biosynthesis of phenazines. Chembiochem 2009, 10, 2295–2304. [Google Scholar] [CrossRef]
- Dasgupta, D.; Kumar, A.; Mukhopadhyay, B.; Sengupta, T.K. Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells. Appl. Microbiol. Biotechnol. 2015, 99, 8653–8665. [Google Scholar] [CrossRef]
- Shanmugaiah, V.; Mathivanan, N.; Varghese, B. Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J. Appl. Microbiol. 2010, 108, 703–711. [Google Scholar] [CrossRef]
- Ramkissoon, A.; Seepersaud, M.; Maxwell, A.; Jayaraman, J.; Ramsubhag, A. Isolation and antibacterial activity of indole alkaloids from Pseudomonas aeruginosa UWI-1. Molecules 2020, 25, 3744. [Google Scholar] [CrossRef]
- Pratiwi, R.H.; Hidayat, I.; Hanafi, M.; Mangunwardoyo, W. Antibacterial compound produced by Pseudomonas aeruginosa strain UICC B-40, an endophytic bacterium isolated from Neesia altissima. J. Microbiol. 2017, 55, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Haba, E.; Pinazo, A.; Jauregui, O.; Espuny, M.J.; Infante, M.R.; Manresa, A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng. 2003, 81, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.V.; K, P.N.; M, L.A.; Vijayan, K.K. Antibacterial assay guided isolation of a novel hydroxy-substituted pentacyclo ketonic compound from Pseudomonas aeruginosa MBTDCMFRI Ps04. Braz. J. Microbiol. 2021, 52, 335–347. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Hou, W.; Zheng, S.; Zhu, X. Isolation, structural identification of secondary metabolites from Pseudomonas aeruginosa HBD-12 with antibacterial and antitumor activities. Sheng Wu Gong Cheng Xue Bao 2020, 36, 2451–2458. [Google Scholar] [CrossRef]
- Ndlovu, T.; Rautenbach, M.; Vosloo, J.A.; Khan, S.; Khan, W. Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant. Amb Express 2017, 7, 108. [Google Scholar] [CrossRef]
- Khan, M.S.; Gao, J.; Zhang, M.; Xue, J.; Zhang, X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. PLoS ONE 2022, 17, e0269640. [Google Scholar] [CrossRef]
- Xu, L.; Zeng, J.; Jiang, C.; Wang, H.; Li, Y.; Wen, W.; Li, J.; Wang, F.; Ting, W.; Sun, Z.; et al. Isolation and determination of four potential antimicrobial components from Pseudomonas aeruginosa extracts. Int. J. Med. Sci. 2017, 14, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tian, X.; Kuang, S.; Liu, G.; Zhang, C.; Sun, C. Antagonistic activity and mode of action of phenazine-1-carboxylic acid, produced by marine bacterium Pseudomonas aeruginosa PA31x, against Vibrio anguillarum in vitro and in a zebrafish in vivo model. Front. Microbiol. 2017, 8, 289. [Google Scholar] [CrossRef]
- Rawi, N.N.; Ramzi, M.M.; Rahman, N.; Ariffin, F.; Saidin, J.; Bhubalan, K.; Mazlan, N.W.; Zin, N.; Siong, J.; Bakar, K.; et al. Antifouling potential of ethyl acetate extract of marine bacteria Pseudomonas aeruginosa strain RLimb. Life 2023, 13, 802. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, H.; Jin, K.; Sun, S.; Zhang, W.; Zhang, X.; He, Y.W. Isolation, identification and characterization of rice rhizobacterium Pseudomonas aeruginosa PA1201 producing high level of biopesticide “shenqinmycin” and phenazine-1-carboxamide. Wei Sheng Wu Xue Bao 2015, 55, 401–411. [Google Scholar]
- Fatima, S.; Anjum, T. Identification of a potential isr determinant from Pseudomonas aeruginosa PM12 against fusarium wilt in tomato. Front. Plant Sci. 2017, 8, 848. [Google Scholar] [CrossRef] [PubMed]
- Margalit, A.; Sheehan, D.; Carolan, J.C.; Kavanagh, K. Exposure to the Pseudomonas aeruginosa secretome alters the proteome and secondary metabolite production of aspergillus fumigatus. Microbiology 2022, 168, 001164. [Google Scholar] [CrossRef]
- Liu, T.T.; Ye, F.C.; Pang, C.P.; Yong, T.Q.; Tang, W.D.; Xiao, J.; Shang, C.H.; Lu, Z.J. Isolation and identification of bioactive substance 1-hydroxyphenazine from Pseudomonas aeruginosa and its antimicrobial activity. Lett. Appl. Microbiol. 2020, 71, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Illakkiam, D.; Ponraj, P.; Shankar, M.; Muthusubramanian, S.; Rajendhran, J.; Gunasekaran, P. Identification and structure elucidation of a novel antifungal compound produced by Pseudomonas aeruginosa PGPR2 against Macrophomina phaseolina. Appl. Biochem. Biotechnol. 2013, 171, 2176–2185. [Google Scholar] [CrossRef]
- Durairaj, K.; Velmurugan, P.; Park, J.; Chang, W.; Park, Y.; Senthilkumar, P.; Choi, K.; Lee, J.; Oh, B. Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Z.; Wan, Q.; Feng, S.; Xie, X.; Zhang, R.; Zhang, Z. Comparative genomic and metabolomic analyses of two Pseudomonas aeruginosa strains with different antifungal activities. Front. Microbiol. 2020, 11, 1841. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.L.; Gong, T.; Zhu, L.; Miller, J.; Miller, D.S.; Yin, B.; Wood, T.K. Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. NPJ Biofilms Microbomes 2018, 4, 22. [Google Scholar] [CrossRef]
- Amankwah, F.K.D.; Gbedema, S.Y.; Boakye, Y.D.; Bayor, M.T.; Boamah, V.E. Antimicrobial potential of extract from a Pseudomonas aeruginosa isolate. Scientifica 2022, 2022, 4230397. [Google Scholar] [CrossRef]
- Rane, M.R.; Sarode, P.D.; Chaudhari, B.L.; Chincholkar, S.B. Exploring antagonistic metabolites of established biocontrol agent of marine origin. Appl. Biochem. Biotechnol. 2008, 151, 665–675. [Google Scholar] [CrossRef]
- Kumar, R.S.; Ayyadurai, N.; Pandiaraja, P.; Reddy, A.V.; Venkateswarlu, Y.; Prakash, O.; Sakthivel, N. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPA3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 2005, 98, 145–154. [Google Scholar] [CrossRef]
- Minaxi; Saxena, J. Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent. Mycopathologia 2010, 170, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Bano, N.; Musarrat, J. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr. Microbiol. 2003, 46, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Dharni, S. Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J. Microbiol. Biotechnol. 2012, 22, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, V.F.; Oliveira, A.G.; Nishio, E.K.; Perugini, M.R.; Andrade, C.G.; Silveira, W.D.; Duran, N.; Andrade, G.; Kobayashi, R.K.; Nakazato, G. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Moon, S.S.; Hwang, B.K. Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Manag. Sci. 2003, 59, 872–882. [Google Scholar] [CrossRef]
- Tewari, S.; Arora, N.K. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr. Microbiol. 2014, 69, 484–494. [Google Scholar] [CrossRef]
- Chopra, A.; Bobate, S.; Rahi, P.; Banpurkar, A.; Mazumder, P.B.; Satpute, S. Pseudomonas aeruginosa RTE4: A tea rhizobacterium with potential for plant growth promotion and biosurfactant production. Front. Bioeng. Biotechnol. 2020, 8, 861. [Google Scholar] [CrossRef]
- Langenbach, C.; Campe, R.; Beyer, S.F.; Mueller, A.N.; Conrath, U. Fighting asian soybean rust. Front. Plant Sci. 2016, 7, 797. [Google Scholar] [CrossRef]
- Mello, F.E.; Mathioni, S.M.; Fantin, L.H.; Rosa, D.D.; Antunes, R.; Filho, N.; Duvaresch, D.L.; Canteri, M.G. Sensitivity assessment and SDHC-I86F mutation frequency of Phakopsora pachyrhizi populations to benzovindiflupyr and fluxapyroxad fungicides from 2015 to 2019 in brazil. Pest Manag. Sci. 2021, 77, 4331–4339. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Natural roles of biosurfactants. Environ. Microbiol. 2001, 3, 229–236. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xu, Y.Q.; Lin, S.J.; Liu, Z.Z.; Zhong, J.J. Novel antiphytopathogenic compound 2-heptyl-5-hexylfuran-3-carboxylic acid, produced by newly isolated Pseudomonas sp. Strain SJT25. Appl. Environ. Microbiol. 2011, 77, 6253–6257. [Google Scholar] [CrossRef] [PubMed]
- Askitosari, T.D.; Boto, S.T.; Blank, L.M.; Rosenbaum, M.A. Boosting heterologous phenazine production in Pseudomonas putida KT2440 through the exploration of the natural sequence space. Front. Microbiol. 2019, 10, 1990. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.V.; Joseph, N.; Krishna, K.; Sneha, K.G.; Tom, N.; Jangid, K.; Nair, S. A comparative study of coastal and clinical isolates of Pseudomonas aeruginosa. Braz. J. Microbiol. 2015, 46, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Arrioja-Breton, D.; Mani-Lopez, E.; Bach, H.; Lopez-Malo, A. Antimicrobial activity of protein-containing fractions isolated from Lactobacillus plantarum NRRL B-4496 culture. Braz. J. Microbiol. 2020, 51, 1289–1296. [Google Scholar] [CrossRef]
- Isnansetyo, A.; Kamei, Y. Bioactive substances produced by marine isolates of Pseudomonas. J. Ind. Microbiol. Biotechnol. 2009, 36, 1239–1248. [Google Scholar] [CrossRef]
- Xiao, M.; Ruan, C.J.; Chen, S.; Liu, Y. Isolation and identification of a bacterium producing natural blue pigment from Lu Zujun. J. Guangxi Norm. Univ. Nat. Sci. Ed. 2018, 36, 131–138. [Google Scholar]
- Deziel, E.; Lepine, F.; Milot, S.; Villemur, R. Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim. Et Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2000, 1485, 145–152. [Google Scholar] [CrossRef]
- Lang, S.; Wullbrandt, D. Rhamnose lipids—Biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 1999, 51, 22–32. [Google Scholar] [CrossRef]
- Van Delden, C.; Iglewski, B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 1998, 4, 551–560. [Google Scholar] [CrossRef]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, E.; Xu, D.; Lovley, D.R. Burning question: Are there sustainable strategies to prevent microbial metal corrosion? Microb. Biotechnol. 2023, 16, 2026–2035. [Google Scholar] [CrossRef]
- Zhang, W.; Culley, D.E.; Nie, L.; Scholten, J.C. Comparative transcriptome analysis of Desulfovibrio vulgaris grown in planktonic culture and mature biofilm on a steel surface. Appl. Microbiol. Biotechnol. 2007, 76, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.K.; Thakur, P.; Saxena, P.; Rauniyar, S.; Gopalakrishnan, V.; Singh, R.N.; Gadhamshetty, V.; Gnimpieba, E.Z.; Jasthi, B.K.; Sani, R.K. Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion. Front. Microbiol. 2021, 12, 754140. [Google Scholar] [CrossRef]
- A, X.; Yang, Y.; Chen, X.; Tang, C.; Zhang, F.; Dong, C.; Wang, B.; Liu, P.; Dai, L. Complete genome resource of a hypervirulent Xanthomonas oryzae pv. oryzae strain YNCX isolated from yunnan plateau Japonica rice. Plant Dis. 2023, 107, 3623–3626. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A.; Wonni, I.; Sicard, A.; Blondin, L.; Gagnevin, L.; Verniere, C.; Szurek, B.; Hutin, M. Genetic structure and talome analysis highlight a high level of diversity in Burkinabe xanthomonas oryzae pv. oryzae populations. Rice 2023, 16, 33. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hu, R.; Xia, M.; He, X.; Jin, Y. Novel broad-spectrum bacteriophages against Xanthomonas oryzae and their biocontrol potential in rice bacterial diseases. Environ. Microbiol. 2023, 25, 2075–2087. [Google Scholar] [CrossRef]
- Chen, P.; Wang, J.; Liu, Q.; Liu, J.; Mo, Q.; Sun, B.; Mao, X.; Jiang, L.; Zhang, J.; Lv, S.; et al. Transcriptome and metabolome analysis of rice cultivar CBB23 after inoculation by Xanthomonas oryzae pv. oryzae strains AH28 and PXO99A. Plants 2024, 13, 1411. [Google Scholar] [CrossRef]
- Giri, S.S.; Sukumaran, V.; Sen, S.S.; Vinumonia, J.; Banu, B.N.; Jena, P.K. Antagonistic activity of cellular components of potential probiotic bacteria, isolated from the gut of Labeo rohita, against Aeromonas hydrophila. Probiotics Antimicrob. Proteins 2011, 3, 214–222. [Google Scholar] [CrossRef]
- Laisram, N.; Rahman, Z.; Singh, V.P. Antagonistic activity of Pseudomonas fluorescens strain X1 against different fusaria and it's in vivo analysis against Fusarium udum infected pigeon pea. Curr. Microbiol. 2023, 80, 98. [Google Scholar] [CrossRef]
- Kosuru, R.Y.; Roy, A.; Bera, S. Antagonistic roles of gallates and ascorbic acid in pyomelanin biosynthesis of Pseudomonas aeruginosa biofilms. Curr. Microbiol. 2021, 78, 3843–3852. [Google Scholar] [CrossRef]
- Nair, A.V.; Vijayan, K.K.; Chakraborty, K.; Leo, A.M. Diversity and characterization of antagonistic bacteria from tropical estuarine habitats of cochin, india for fish health management. World J. Microbiol. Biotechnol. 2012, 28, 2581–2592. [Google Scholar] [CrossRef] [PubMed]
- Andriushina, V.A.; Druzhinina, A.V.; Iaderets, V.V.; Stytsenko, T.S.; Voishvillo, N.E. Hydroxylation of steroids by Curvalaria lunata mycelium in the presence of methyl-beta-cyclodextrine. Prikl. Biokhimiia Mikrobiol. 2011, 47, 50–57. [Google Scholar]
- Bhatti, H.N.; Khera, R.A. Biological transformations of steroidal compounds: A review. Steroids 2012, 77, 1267–1290. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.Y.; Dong, X. Microbial biotransformation: Recent developments on steroid drugs. Recent Pat. Biotechnol. 2009, 3, 141–153. [Google Scholar] [CrossRef]
- Ji, S.H.; Gururani, M.A.; Chun, S.C. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from korean rice cultivars. Microbiol. Res. 2014, 169, 83–98. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, Z.; Glick, B.R. The presence of a 1-aminocyclopropane-1-carboxylate (acc) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol. Lett. 2009, 296, 131–136. [Google Scholar] [CrossRef]
- Tonnang, H.E.; Salifu, D.; Mudereri, B.T.; Tanui, J.; Espira, A.; Dubois, T.; Abdel-Rahman, E.M. Advances in data-collection tools and analytics for crop pest and disease management. Curr. Opin. Insect Sci. 2022, 54, 100964. [Google Scholar] [CrossRef]
- Rubiales, D.; Khazaei, H. Advances in disease and pest resistance in faba bean. Theor. Appl. Genet. 2022, 135, 3735–3756. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, L.; Chen, N.; Zhang, M.; Jia, J.; Lv, L.; Li, M. Advances in research and utilization of botanical pesticides for agricultural pest management in inner mongolia, china. Chin. Herb. Med. 2024, 16, 248–262. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Kalaba, M.H.; Hashem, A.H.; Sharaf, M.H.; Attia, M.S. Biostimulation of tomato growth and biocontrol of fusarium wilt disease using certain endophytic fungi. Bot. Stud. 2022, 63, 34. [Google Scholar] [CrossRef]
- El, M.C.; Atamian, H.S.; Dagher, R.B.; Abou-Jawdah, Y.; Salus, M.S.; Maxwell, D.P. Marker-assisted selection of tomato genotypes with the I-2 gene for resistance to Fusarium oxysporum f. Sp. Lycopersici race 2. Plant Dis. 2007, 91, 758–762. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Breuer, O.; Schultz, A.; Garratt, L.W.; Turkovic, L.; Rosenow, T.; Murray, C.P.; Karpievitch, Y.V.; Akesson, L.; Dalton, S.; Sly, P.D.; et al. Aspergillus infections and progression of structural lung disease in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2020, 201, 688–696. [Google Scholar] [CrossRef]
- Reece, E.; Segurado, R.; Jackson, A.; Mcclean, S.; Renwick, J.; Greally, P. Co-colonisation with Aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: An irish registry analysis. BMC Pulm. Med. 2017, 17, 70. [Google Scholar] [CrossRef]
- Hector, A.; Kirn, T.; Ralhan, A.; Graepler-Mainka, U.; Berenbrinker, S.; Riethmueller, J.; Hogardt, M.; Wagner, M.; Pfleger, A.; Autenrieth, I.; et al. Microbial colonization and lung function in adolescents with cystic fibrosis. J. Cyst. Fibros. 2016, 15, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cheng, W.; He, X.; Liu, Y. The co-colonization prevalence of Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis: A systematic review and meta-analysis. Microb. Pathog. 2018, 125, 122–128. [Google Scholar] [CrossRef]
- Raffa, N.; Keller, N.P. A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog. 2019, 15, e1007606. [Google Scholar] [CrossRef]
- Schlam, D.; Canton, J.; Carreno, M.; Kopinski, H.; Freeman, S.A.; Grinstein, S.; Fairn, G.D. Gliotoxin suppresses macrophage immune function by subverting phosphatidylinositol 3,4,5-trisphosphate homeostasis. Mbio 2016, 7, e02242-15. [Google Scholar] [CrossRef]
- Fallon, J.P.; Reeves, E.P.; Kavanagh, K. Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J. Med. Microbiol. 2010, 59, 625–633. [Google Scholar] [CrossRef]
- Amin, S.; Thywissen, A.; Heinekamp, T.; Saluz, H.P.; Brakhage, A.A. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Int. J. Med. Microbiol. 2014, 304, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Bignell, E.; Cairns, T.C.; Throckmorton, K.; Nierman, W.C.; Keller, N.P. Secondary metabolite arsenal of an opportunistic pathogenic fungus. Philos. Trans. R. Soc. B-Biol. Sci. 2016, 371, 20160023. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Luo, Y. Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. Front. Microbiol. 2021, 12, 611413. [Google Scholar] [CrossRef]
- Gutierrez-Villagomez, J.M.; Ramírez-Chávez, E.; Molina-Torres, J.; Vázquez-Martínez, J. From natural to synthetic quorum sensing active compounds: Insights to develop specific quorum sensing modulators for microbe-plant interaction. In Quorum Sensing: Microbial Rules of Life; American Chemical Society: Washington, DC, USA, 2020. [Google Scholar]
- Khan, I.H.; Javaid, A. Histopathological changes in root and stem of mungbean exposed to Macrophomina phaseolina and dry biomass of Chenopodium quinoa. Microsc. Res. Tech. 2022, 85, 2596–2606. [Google Scholar] [CrossRef] [PubMed]
- Marquez, N.; Giachero, M.L.; Declerck, S.; Ducasse, D.A. Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Front. Plant Sci. 2021, 12, 634397. [Google Scholar] [CrossRef]
- Reznikov, S.; Chiesa, M.A.; Pardo, E.M.; De Lisi, V.; Bogado, N.; Gonzalez, V.; Ledesma, F.; Morandi, E.N.; Ploper, L.D.; Castagnaro, A.P. Soybean-macrophomina phaseolina-specific interactions and identification of a novel source of resistance. Phytopathology 2019, 109, 63–73. [Google Scholar] [CrossRef]
- Azevedo-Barbosa, H.; Dias, D.F.; Franco, L.L.; Hawkes, J.A.; Carvalho, D.T. From antibacterial to antitumour agents: A brief review on the chemical and medicinal aspects of sulfonamides. Mini-Rev. Med. Chem. 2020, 20, 2052–2066. [Google Scholar] [CrossRef]
- Zentz, F.; Labia, R.; Sirot, D.; Faure, O.; Grillot, R.; Valla, A. Syntheses, in vitro antibacterial and antifungal activities of a series of n-alkyl, 1,4-dithiines. Il Farmacol. 2005, 60, 944–947. [Google Scholar] [CrossRef]
- Indiragandhi, P.; Anandham, R.; Madhaiyan, M.; Poonguzhali, S.; Kim, G.H.; Saravanan, V.S.; Sa, T. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. J. Appl. Microbiol. 2007, 103, 2664–2675. [Google Scholar] [CrossRef]
- Boucias, D.G.; Zhou, Y.; Huang, S.; Keyhani, N.O. Microbiota in insect fungal pathology. Appl. Microbiol. Biotechnol. 2018, 102, 5873–5888. [Google Scholar] [CrossRef]
- Lee, J.Y.; Woo, R.M.; Choi, C.J.; Shin, T.Y.; Gwak, W.S.; Woo, S.D. Beauveria bassiana for the simultaneous control of Aedes albopictus and culex pipiens mosquito adults shows high conidia persistence and productivity. Amb Express 2019, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Geng, T.; Hou, C.; Huang, Y.; Qin, G.; Guo, X. Bombyx mori cecropin a has a high antifungal activity to entomopathogenic fungus Beauveria bassiana. Gene 2016, 583, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Weeks, E.N.I.; Machtinger, E.T.; Gezan, S.A.; Kaufman, P.E.; Geden, C.J. Effects of four commercial fungal formulations on mortality and sporulation in house flies (Musca domestica) and stable flies (Stomoxys calcitrans). Med. Vet. Entomol. 2017, 31, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Butt, T.M.; Coates, C.J.; Dubovskiy, I.M.; Ratcliffe, N.A. Entomopathogenic fungi: New insights into host-pathogen interactions. Adv. Genet. 2016, 94, 307–364. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Kanuka, H.; Badolo, A.; Sagnon, N.; Guelbeogo, W.M.; Koike, M.; Aiuchi, D. Proboscis infection route of Beauveria bassiana triggers early death of anopheles mosquito. Sci. Rep. 2017, 7, 3476. [Google Scholar] [CrossRef]
- Kafle, L.; Wu, W.J.; Kao, S.S.; Shih, C.J. Efficacy of beauveria bassiana against the red imported fire ant, Solenopsis invicta (hymenoptera: Formicidae), in Taiwan. Pest Manag. Sci. 2011, 67, 1434–1438. [Google Scholar] [CrossRef]
Source | Strain Name | Antibiotic Substance | Inhibition of Pathogenic Bacteria | References |
---|---|---|---|---|
Water samples | Pseudomonas aeruginosa HRW.1S3 | Phenazine 1,6-dicarboxylic acid (PDC) | Bacillus subtilis | [48] |
Bacillus thuringiensis KPWP1 | ||||
Bacillus cereus MSMS1 | ||||
E. coli | ||||
Rice inter-roots | Pseudomonas aeruginosa MML2212 | Phenazine1-carboxamide (PCN) | Rhizoctonia solani | [49] |
Xanthomonas oryzae pv. oryzae. | ||||
Laboratory separation | Pseudomonas aeruginosa UWI-1 | Tris(1H-indol-3-yl) methylium, Bis(indol-3-yl) phenylmethane Indolo (2, 1b) quinazoline-6, 12 dione | Bacillus Cereus Listeria Monocytogenes Corynebacterium Diphtheria MR-Staphylococcus Aureus Streptococcus Pyogenes Escherichia Coli Salmonella Enteritidis Neisseria Meningitide Klebsiella Oxytoca Haemophilus Influenza (bis(indol-3-yl) phenylmethane inactive against Gram-negative bacteria) | [50] |
Laboratory separation | Pseudomonas aeruginosa UICC B-40 | (2E,5E)- phenyltetradeca-2,5-dienoate | Staphylococcus aureus ATCC 25923 Bacillus cereus ATCC 10876 | [51] |
Oil-contaminated soil sample | Pseudomonas aeruginosa 47T2 | Mixture of rhamnolipids: Rha-Rha-C8-C10 RhaC10-C8/Rha-C8-C10 Rha-Rha-C8-C12:1 Rha-Rha-C10-C10 Rha-Rha-C10-C12:1 Rha-C10-C10 Rha-Rha-C10-C12/RhaRha-C12-C10 Rha-C10-C12:1/Rha-C12:1-C10 Rha-Rha-C12:1C12 Rha-Rha-C10-C14:1 Rha-C10-C12/Rha-C12-C10 | Serratia marcescens Enterobacter aerogenes Klebsiella pneumoniae Staphylococcus aureus Staphylococcus epidermidis Bacillus subtilis Chaetonium globosum Penicillium funiculosum Gliocadium virens Fusarium solani | [52] |
Rice inter-roots | Pseudomonas aeruginosa BRp3 | Siderophores Rhamnolipids 4-hydroxy-2-alkylquinolines (HAQs) 2,3,4-trihydroxy-2-alkylquinolines 1,2,3,4-tetrahydroxy-2-alkylquinolines | Xanthomonas oryzae pv. Oryzae Fusarium spp. | [43] |
Tropical estuarine habitats | Pseudomonas aeruginosa MBTDCMFRI Ps04 | 4-Hydroxy-11-methylpentacyclo [11.8.0.02,3.011,12.016,17] Henicosa-1,3,5,8(9),17-penten-14-one | Aeromonas Vibrio | [53] |
Soil sample | Pseudomonas aeruginosa HBD-12 | 1-hydroxy-9,10-diazaphenanthrene 3-hydroxy-9,10-dihydrodiazaphenanthrene | Escherichia coli Bacillus thuringiensis Penicillium italicum Penicillium fingerlingi | [54] |
Fruit sample | Pseudomonas aeruginosa LV | Phenazine-1-carboxylic acid (PCA) Phenazine-carboxamide (PCN) Indol-3-one (IND) Organocopper antimicrobial compound | Phakopsora pachyrhizi | [29] |
Wastewater sample | Pseudomonas aeruginosa ST5 | Mixture of rhamnolipid: Rha–C12–C10/Rha–C10–C12 Rha– C10–C10 Rha–C10–C8/Rha–C10–C8 Rha–Rha–C12–C10/RhaRha–C10–C12 Rha–Rha–C10–C10 Rha–Rha–C10–C8/Rha–Rha–C10–C8 | Escherichia coli ATCC 417373 Klebsiella pneumoniae Salmonella enterica Staphylococcus aureus ATCC 25923 Bacillus cereus ATCC 10876 Bacillus cereus Cryptococcus neo-formans CAB1063 Candida albicans 8911 | [55] |
Plant-endophyte bacteria (lily bulb) | Pseudomonas aeruginosa Ld-08 | 3,9-dimethoxypterocarpan Cascaroside B Dehydroabietylamine Epiandrosterone Nocodazole Oxolinic acid Pyochelin Rhodotulic acid 9,12-octadecadienoic acid Dipeptides Tripeptides Ursodiol Venlafaxine | Fusarium oxysporum, Botrytis cinerea Botryosphaeria dothidea Fusarium fujikuroi | [56] |
Laboratory separation | Pseudomonas aeruginosa PA06 | Phenazine-1-carboxylic acid (PCA) | Staphylococcus aureus ATCC 25923 | [57] |
Oceanic sediment | Pseudomonas aeruginosa PA31x | Phenylamine-1-carboxylic acid (PCA) | Vibrio anguillarum C312 Phytophthora nicotianae JM1 | [58] |
Laboratory separation | Phytophthora nicotianae RLimb | Uncharted | Bacillus cereus Streptococcus uberis Pseudomonas sp. Vibrio parahaemolyticus | [59] |
Rice inter-roots | Pseudomonas aeruginosa PA1201 | Shenazinomycin phenazine-1-amide (PCN) | Fusarium oxysporum | [60] |
Laboratory separation | Pseudomonas aeruginosa PM12 | 3-hydroxy-5-methoxy benzene methanol (HMB) Eugenol Tyrosine | Fusarium oxysporum | [61] |
Patient sputum | Pseudomonas aeruginosa | Isocitrate lyase and malate synthetase Catalase and thioredoxin | Aspergillus fumigatus | [62] |
The root of Millettia speciosa | Pseudomonas aeruginosa 2016NX1 | 1-hydroxyphenazine | Salmonella sp. Klebsiella oxytoca Shigella castellani Salmonella typhi Bacillus anthracis Cochliobolus miyabeanus Diaporthe citri Rhizoctonia solani Phytophthora parasitica var. nicotianae Exserohilum turcicum | [63] |
The root surface of a mungbean plant | Pseudomonas aeruginosa PGPR2 | 3,4-dihydroxy-N-methyl-4-(4-oxochroman-2-yl) | Macrophomina phaseolina | [64] |
Mine soil microorganisms | Pseudomonas aeruginosa D4 | Protease, amylase Chitinase biocatalysts | Burkholderia Glumae KACC 10138 Xanthomonas oxyzae pv.Oryzae KACC 10208 Pseudomonas syringae KACC 15105 Pectobacterium carotovorum KACC 17004 Ralstonia solanacearum KACC 10718 | [65] |
The gut of housefly larvae | Pseudomonas aeruginosa Y12 | Phenazine-1,6-dicarboxylic acid (PDC) Pyocyanin (PYO) Demeclocycline-HCl 2-hydroxy-4-methoxyacetophenone-5-sulfate Sulfamethoxypyridazine Orientin-7-O-sulfate Terconazole | Beauveria bassiana | [66] |
Laboratory separation | Pseudomonas aeruginosa PA14 | Four proteins (DVUA0018, DVUA0034, DVUA0066, and DVUA0084) | Desulfovibrio vulgaris | [67] |
The landfill site | Pseudomonas aeruginosa DO5 | E-15-heptadecenal 1-docosene 3-eicosene 1-eicosanol 1-nonadecene 1-hexadecanol Pyrrolizidine (pyr-rolo) 1,2-apyrazine-1,4-dione 1-hexadecene 1-heptaco-sanol | Staphylococcus aureus ATCC25923 Enterococcus faecalis ATCC 29212 Escherichia coli ATCC 25922 Pseudomonas aeruginosa ATCC 4853 Streptococcus pyogenes Klebsiella pneumoniae Proteusmirabilis Vibrio cholera Salmonella typhi Candidaalbicans. | [68] |
Laboratory separation | Pseudomonas aeruginosa ID 4365 | PyocyaninPhenazine-1-carboxylic | Aspergillus niger Colletotrichum falcatum Colletotrichum capsicum Fusarium oxysporum Sclerotium rolfsii. | [69] |
Laboratory separation | Pseudomonas aeruginosa PUPa3 | Phenazine-1-carboxamide (PCN) indole-3-acetic acid (IAA) | Pestalotia theae Sarocladium oryzae Colletotrichum capsica Colletotrichum capsica Colletotrichum gleosporoides | [70] |
The root system of plants | Pseudomonas aeruginosa RM-3 | Siderophore Hydrogen cyanide (HCN) | Macrophomina phaseolina Dreschlera graminae | [71] |
Soil samples | Pseudomonas aeruginosa NJ-15 | Siderophore Hydrogen cyanide (HCN) | Fusarium oxysporum Trichoderma herizum Alternaria alternata Macrophomina phasiolina | [72] |
Soil samples | Pseudomonas aeruginosa SD12 | 1-hydroxyphenazine | Alternaria alternata Bipolaris australiensis Colletotrichum acutatum Fusarium oxysporum Alternaria solani Colletotrichum acutatum | [73] |
Laboratory separation | Pseudomonas aeruginosa | Phenazine-1-carboxamide (PCN) Organohalogen compounds | Methicillin-resistant Staphylococcus aureus | [74] |
Soil samples | Pseudomonas aeruginosa GC-B26 | Phenazine-1-carboxylic | Colletotrichum orbiculare Phytophthora capsica Pythium ultimum | [75] |
The root system of plants | Pseudomonas aeruginosa PF23 | Extracellular polysaccharide (EPS) | Macrophomina phaseolina | [76] |
The root system of plants | Pseudomonas aeruginosa RTE4 | Indole acetic acid Hydrolytic enzymes Solubilize tri-calcium phosphate Biosurfactant | Corticium invisium Fusarium solani Xanthomonas campestris Staphylococcus aureus | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, T.; Wang, A.; Yan, H.; Kong, L.; Guan, L.; He, C.; Ma, Y.; Zhang, H.; Ma, H. Progress in the Study of Natural Antimicrobial Active Substances in Pseudomonas aeruginosa. Molecules 2024, 29, 4400. https://doi.org/10.3390/molecules29184400
Si T, Wang A, Yan H, Kong L, Guan L, He C, Ma Y, Zhang H, Ma H. Progress in the Study of Natural Antimicrobial Active Substances in Pseudomonas aeruginosa. Molecules. 2024; 29(18):4400. https://doi.org/10.3390/molecules29184400
Chicago/Turabian StyleSi, Tianbo, Anqi Wang, Haowen Yan, Lingcong Kong, Lili Guan, Chengguang He, Yiyi Ma, Haipeng Zhang, and Hongxia Ma. 2024. "Progress in the Study of Natural Antimicrobial Active Substances in Pseudomonas aeruginosa" Molecules 29, no. 18: 4400. https://doi.org/10.3390/molecules29184400
APA StyleSi, T., Wang, A., Yan, H., Kong, L., Guan, L., He, C., Ma, Y., Zhang, H., & Ma, H. (2024). Progress in the Study of Natural Antimicrobial Active Substances in Pseudomonas aeruginosa. Molecules, 29(18), 4400. https://doi.org/10.3390/molecules29184400