Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects
Abstract
:1. Introduction
2. Immunomodulatory Activity of Polysaccharides from Cordyceps sinensis
2.1. Immunomodulatory Effects of Intracellular Polysaccharides on Immune Cells
2.2. Immunomodulatory Effects of Intracellular Polysaccharides in Animal Models
2.3. Immunomodulatory Effects of Extracellular Polysaccharides on Immune Cells
2.4. Immunomodulatory Effects of Extracellular Polysaccharides in Animal Models
3. Immunomodulatory Activity of Polysaccharides from Cordyceps militaris
3.1. Immunomodulatory Effects of Intracellular Polysaccharides on Immune Cells
3.2. Immunomodulatory Effects of Intracellular Polysaccharides in Animal Models
3.3. Immunomodulatory Effects of Extracellular Polysaccharides
4. The Immunomodulatory Effects of Cordyceps cicadae Polysaccharides
5. Immunomodulatory Effects of Polysaccharides from Other Cordyceps Species
5.1. The Cordyceps kyushuensis Polysaccharide
5.2. The Cordyceps gunnii Polysaccharide
5.3. The Cordyceps taii Polysaccharide
5.4. The Cordyceps sobolifera Polysaccharide
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, P.; Xia, Y.L.; Zhang, S.W.; Wang, C.S. Genetics of Cordyceps and related fungi. Appl. Microbiol. Biotechnol. 2013, 97, 2797–2804. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, O.J.; Tang, J.; Tola, A.; Auberon, F.; Oluwaniyi, O.; Ouyang, Z. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 2018, 129, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Nxumalo, W.; Elateeq, A.A.; Sun, Y.F. Can Cordyceps cicadae be used as an alternative to Cordyceps militaris and Cordyceps sinensis?—A review. J. Ethnopharmacol. 2020, 257, 112879. [Google Scholar] [CrossRef]
- Shashidhar, M.G.; Giridhar, P.; Sankar, K.U.; Manohar, B. Bioactive principles from Cordyceps sinensis: A potent food supplement—A review. J. Funct. Foods 2013, 5, 1013–1030. [Google Scholar] [CrossRef]
- Jedrejko, K.J.; Lazur, J.; Muszynska, B. Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity. Foods 2021, 10, 2643. [Google Scholar] [CrossRef]
- Yue, K.; Ye, M.; Zhou, Z.J.; Sun, W.; Lin, X. The genus Cordyceps: A chemical and pharmacological review. J. Pharm. Pharmacol. 2013, 65, 474–493. [Google Scholar] [CrossRef]
- Krishna, K.V.; Ulhas, R.S.; Malaviya, A. Bioactive compounds from Cordyceps and their therapeutic potential. Crit. Rev. Biotechnol. 2023, 44, 753–773. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.S.; Leyva-Gomez, G.; Del Prado-Audelo, M.L.; Cortes, H.; Singh, Y.D.; Panda, M.K.; Mishra, A.P.; Nigam, M.; Saklani, S.; et al. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front. Pharmacol. 2021, 11, 602364. [Google Scholar] [CrossRef]
- Yan, J.K.; Wang, W.Q.; Wu, J.Y. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J. Funct. Foods 2014, 6, 33–47. [Google Scholar] [CrossRef]
- Wang, W.L.; Tan, J.Q.; Nima, L.M.; Sang, Y.M.; Cai, X.; Xue, H.K. Polysaccharides from fungi: A review on their extraction, purification, structural features, and biological activities. Food Chem. X 2022, 15, 100414. [Google Scholar] [CrossRef]
- Kuo, M.C.; Chang, C.Y.; Cheng, T.L.; Wu, M.J. Immunomodulatory effect of exo-polysaccharides from submerged cultured Cordyceps sinensis: Enhancement of cytokine synthesis, CD11b expression, and phagocytosis. Appl. Microbiol. Biotechnol. 2007, 75, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Song, Z.Q.; Hou, Y.L. Comparative study on the structure characterization and immune activity of Lactarius vellereus Fr. polysaccharide (LV-1) and Cordyceps militaris (L. ex Fr.) Link. polysaccharide (CM-S). J. Food Meas. Charact. 2022, 16, 901–919. [Google Scholar] [CrossRef]
- Lee, J.S.; Hong, E.K. Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int. Immunopharmacol. 2011, 11, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Du, X.; Guo, Y.; Chang, M.; Deng, B.; Liu, J.; Cao, J. Elucidation of physicochemical properties of polysaccharides extracted from Cordyceps militaris fruiting bodies with different drying treatments and their effects on ulcerative colitis in zebrafish. Front. Nutr. 2022, 9, 980357. [Google Scholar] [CrossRef]
- Sun, Y.X.; Rabbi, M.H.; Ma, S.H.; Wen, Z.X.; Li, X.J.; Mi, R.; Meng, N.; Li, Y.J.; Wang, Q.Z.; Du, X.F.; et al. Effect of dietary Cordyceps polysaccharide supplementation on intestinal microflora and immune response of Apostichopus japonicus. Aquac. Res. 2021, 52, 5198–5212. [Google Scholar] [CrossRef]
- Liu, B.; Ding, D.; Zhao, P.; Zhang, X.G.; Tian, Z.J.; Xia, X.X.; Zhang, Z.H. Evaluation of Immune Function of Mycelium Fermentation of Hirsutella sinensisin In Vitro and In Vivo. Nanosci. Nanotechnol. Lett. 2020, 12, 1337–1343. [Google Scholar] [CrossRef]
- Deng, B.; Wang, Z.P.; Tao, W.J.; Li, W.F.; Wang, C.; Wang, M.Q.; Ye, S.S.; Du, Y.J.; Wu, X.X.; Wu, D. Effects of polysaccharides from mycelia of Cordyceps sinensis on growth performance, immunity and antioxidant indicators of the white shrimp Litopenaeus vannamei. Aquac. Nutr. 2015, 21, 173–179. [Google Scholar] [CrossRef]
- Kang, S.; Nie, L.X.; Zheng, Y.G.; Zuo, T.T.; Wang, Y.; Shi, J.; Ma, S.C. Micro-morphological identification study on Cordyceps sinensis (Berk.) Sacc. and its adulterants based on stereo microscope and desktop scanning electron microscope. Microsc. Res. Tech. 2021, 84, 1936–1946. [Google Scholar] [CrossRef]
- Yuan, Q.H.; Xie, F.; Tan, J.; Yuan, Y.; Mei, H.; Zheng, Y.; Sheng, R. Extraction, structure and pharmacological effects of the polysaccharides from Cordyceps sinensis: A review. J. Funct. Foods 2022, 89, 104909. [Google Scholar] [CrossRef]
- Yan, J.K.; Wang, W.Q.; Li, L.; Wu, J.Y. Physiochemical properties and antitumor activities of two α-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohydr. Polym. 2011, 85, 753–758. [Google Scholar] [CrossRef]
- Shashidhar, G.M.; Giridhar, P.; Manohar, B. Functional polysaccharides from medicinal mushroom Cordyceps sinensis as a potent food supplement: Extraction, characterization and therapeutic potentials—A systematic review. RSC Adv. 2015, 5, 16050–16066. [Google Scholar] [CrossRef]
- Tan, L.; Liu, S.; Li, X.; He, J.; He, L.; Li, Y.; Yang, C.; Li, Y.; Hua, Y.; Guo, J. The Large Molecular Weight Polysaccharide from Wild Cordyceps and Its Antitumor Activity on H22 Tumor-Bearing Mice. Molecules 2023, 28, 3351. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; He, N.; Yu, S.; Pang, H.; Zhang, Z.; Wang, J.; Hao, J.; Li, S. Polysaccharides from Paecilomyces hepiali Prevent Acute Colitis in Association with Modulating Gut Microbiota and Treg/Th17 Immune Balance in Mice. Molecules 2023, 28, 4984. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Tang, Q.; Zhou, S.; Liu, Y.; Zhang, Z.; Gao, X.; Wang, S.; Wang, Z. Isolation and purification of a polysaccharide from the caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes) fruit bodies and its immunomodulation of RAW 264.7 macrophages. Int. J. Med. Mushrooms 2014, 16, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Q.Z.; Li, L.D.; Zhou, X.W. Immunostimulatory effects of the intracellular polysaccharides isolated from liquid culture of Ophiocordyceps sinensis (Ascomycetes) on RAW264.7 cells via the MAPK and PI3K/Akt signaling pathways. J. Ethnopharmacol. 2021, 275, 114130. [Google Scholar] [CrossRef]
- Wu, D.T.; Meng, L.Z.; Wang, L.Y.; Lv, G.P.; Cheong, K.L.; Hu, D.J.; Guan, J.; Zhao, J.; Li, S.P. Chain conformation and immunomodulatory activity of a hyperbranched polysaccharide from Cordyceps sinensis. Carbohydr. Polym. 2014, 110, 405–414. [Google Scholar] [CrossRef]
- Cheong, K.L.; Meng, L.Z.; Chen, X.Q.; Wang, L.Y.; Wu, D.T.; Zhao, J.; Li, S.P. Structural elucidation, chain conformation and immuno-modulatory activity of glucogalactomannan from cultured Cordyceps sinensis fungus UM01. J. Funct. Foods 2016, 25, 174–185. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Y.; Zhang, Z.; Ding, Y.; Dai, X.; Li, Y. Effect of polysaccharide from cultured Cordyceps sinensis on immune function and anti-oxidation activity of mice exposed to 60Co. Int. Immunopharmacol. 2011, 11, 2251–2257. [Google Scholar] [CrossRef]
- Wang, Z.M.; Peng, X.A.; Lee, K.L.D.; Tang, J.C.O.; Cheung, P.C.K.; Wu, J.Y. Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem. 2011, 125, 637–643. [Google Scholar] [CrossRef]
- Sheng, L.; Chen, J.; Li, J.; Zhang, W. An exopolysaccharide from cultivated Cordyceps sinensis and its effects on cytokine expressions of immunocytes. Appl. Biochem. Biotechnol. 2011, 163, 669–678. [Google Scholar] [CrossRef]
- Hu, T.; Jiang, C.; Huang, Q.; Sun, F. A comb-like branched β-D-glucan produced by a Cordyceps sinensis fungus and its protective effect against cyclophosphamide-induced immunosuppression in mice. Carbohydr. Polym. 2016, 142, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Rong, L.; Li, G.; Zhang, Y.; Xiao, Y.; Qiao, Y.; Yang, M.; Wei, L.; Bi, H.; Gao, T. Structure and immunomodulatory activity of a water-soluble α-glucan from Hirsutella sinensis mycelia. Int. J. Biol. Macromol. 2021, 189, 857–868. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ji, P.; Cheng, J.; Wang, Y.; Qian, H.; Li, W.; Gong, X.; Wang, Z. Structural characterization and immunostimulatory activity of a novel protein-bound polysaccharide produced by Hirsutella sinensis Liu, Guo, Yu & Zeng. Food Chem. 2013, 141, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Nie, S.P.; Cui, S.W.; Wang, Z.J.; Phillips, A.O.; Phillips, G.O.; Li, Y.J.; Xie, M.Y. Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis. Food Hydrocoll. 2017, 67, 139–147. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, H.; Qin, F.; Pan, Y.; Sun, C. Effect of various extracts and a polysaccharide from the edible mycelia of Cordyceps sinensis on cellular and humoral immune response against ovalbumin in mice. Phytother. Res. PTR 2006, 20, 646–652. [Google Scholar] [CrossRef]
- Cheung, J.K.; Li, J.; Cheung, A.W.; Zhu, Y.; Zheng, K.Y.; Bi, C.W.; Duan, R.; Choi, R.C.; Lau, D.T.; Dong, T.T.; et al. Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: Signaling cascade and induction of cytokines. J. Ethnopharmacol. 2009, 124, 61–68. [Google Scholar] [CrossRef]
- Lee, J.S.; Kwon, D.S.; Lee, K.R.; Park, J.M.; Ha, S.J.; Hong, E.K. Mechanism of macrophage activation induced by polysaccharide from Cordyceps militaris culture broth. Carbohydr. Polym. 2015, 120, 29–37. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Guo, Z.; Li, Q.; Zhang, L.; Zhao, L.; Zhou, X. Immunomodulatory Effect of Cordyceps militaris Polysaccharide on RAW 264.7 Macrophages by Regulating MAPK Signaling Pathways. Molecules 2024, 29, 3408. [Google Scholar] [CrossRef]
- Ohta, Y.; Lee, J.B.; Hayashi, K.; Fujita, A.; Park, D.K.; Hayashi, T. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J. Agric. Food Chem. 2007, 55, 10194–10199. [Google Scholar] [CrossRef]
- Song, L.; Yang, J.; Kong, W.; Liu, Y.; Liu, S.; Su, L. Cordyceps militaris polysaccharide alleviates ovalbumin-induced allergic asthma through the Nrf2/HO-1 and NF-κB signaling pathways and regulates the gut microbiota. Int. J. Biol. Macromol. 2023, 238, 124333. [Google Scholar] [CrossRef]
- Luo, X.; Duan, Y.; Yang, W.; Zhang, H.; Li, C.; Zhang, J. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydr. Polym. 2017, 157, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kwon, J.S.; Won, D.P.; Lee, J.H.; Lee, K.E.; Lee, S.Y.; Hong, E.K. Study of macrophage activation and structural characteristics of purified polysaccharide from the fruiting body of Cordyceps militaris. J. Microbiol. Biotechnol. 2010, 20, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Jing, Y.; Zhou, Q.; Hu, X.; Zhu, J.; Guo, Z.; Song, L.; Yu, R. Structural elucidation and immunostimulatory activity of a new polysaccharide from Cordyceps militaris. Food Funct. 2018, 9, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yu, X.; Li, T.; Zhu, Z. Structure and hypoglycemic activity of a novel exopolysaccharide of Cordyceps militaris. Int. J. Biol. Macromol. 2021, 166, 496–508. [Google Scholar] [CrossRef]
- He, B.L.; Zheng, Q.W.; Guo, L.Q.; Huang, J.Y.; Yun, F.; Huang, S.S.; Lin, J.F. Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris. Int. J. Biol. Macromol. 2020, 145, 11–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, Y.; Cui, Y.S.; Liu, H.M.; Dong, C.X.; Sun, Y.X. Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley. Carbohydr. Polym. 2020, 235, 115969. [Google Scholar] [CrossRef]
- Yu, Y.; Wen, Q.; Song, A.; Liu, Y.; Wang, F.; Jiang, B. Isolation and immune activity of a new acidic Cordyceps militaris exopolysaccharide. Int. J. Biol. Macromol. 2022, 194, 706–714. [Google Scholar] [CrossRef]
- Yu, R.; Song, L.; Zhao, Y.; Bin, W.; Wang, L.; Zhang, H.; Wu, Y.; Ye, W.; Yao, X. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia 2004, 75, 465–472. [Google Scholar] [CrossRef]
- Wu, F.; Yan, H.; Ma, X.; Jia, J.; Zhang, G.; Guo, X.; Gui, Z. Comparison of the structural characterization and biological activity of acidic polysaccharides from Cordyceps militaris cultured with different media. World J. Microbiol. Biotechnol. 2012, 28, 2029–2038. [Google Scholar] [CrossRef]
- Smiderle, F.R.; Baggio, C.H.; Borato, D.G.; Santana-Filho, A.P.; Sassaki, G.L.; Iacomini, M.; Van Griensven, L.J. Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1→3)-β-D-glucan. PLoS ONE 2014, 9, e110266. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, C.; Wang, X.; Rui, X.; Zhang, Q.; Chen, X.; Dong, M.; Li, W. Structural characterization and immunomodulatory activity of intracellular polysaccharide from the mycelium of Paecilomyces cicadae TJJ1213. Food Res. Int. 2021, 147, 110515. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.X.; Huang, W.J.; Chen, S.; Huang, C.H.; Li, C.L.; Guo, Z.Y.; Yang, J.N.; Zhu, J.H.; Song, L.Y.; Yu, R.M. Cordyceps militaris polysaccharide converts immunosuppressive macrophages into M1-like phenotype and activates T lymphocytes by inhibiting the PD-L1/PD-1 axis between TAMs and T lymphocytes. Int. J. Biol. Macromol. 2020, 150, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yan, X.; Song, Z.; Li, W.; Zhao, W.; Ma, H.; Du, J.; Li, S.; Zhang, D. Two heteropolysaccharides from Isaria cicadae Miquel differ in composition and potentially immunomodulatory activity. Int. J. Biol. Macromol. 2018, 117, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.Q.; Zhu, Y.L.; Jiang, X.; Wang, F.X.; Zhou, Z.Y.; Wang, J.B.; Liu, C.; Wei, Y.; Ouyang, Z. Immunomodulation of RAW264.7 cells by CP80-1, a polysaccharide of Cordyceps cicadae, via Dectin-1/Syk/NF-κB signaling pathway. Food Agric. Immunol. 2023, 34, 2231172. [Google Scholar] [CrossRef]
- Su, J.; Sun, J.; Jian, T.; Zhang, G.; Ling, J. Immunomodulatory and Antioxidant Effects of Polysaccharides from the Parasitic Fungus Cordyceps kyushuensis. BioMed Res. Int. 2020, 2020, 8257847. [Google Scholar] [CrossRef]
- Xiao, J.H.; Xiao, D.M.; Chen, D.X.; Xiao, Y.; Liang, Z.Q.; Zhong, J.J. Polysaccharides from the Medicinal Mushroom Cordyceps taii Show Antioxidant and Immunoenhancing Activities in a D-Galactose-Induced Aging Mouse Model. Evid.-Based Complement. Altern. Med. Ecam 2012, 2012, 273435. [Google Scholar] [CrossRef]
- Xiao, D.M.; Yu, S.; Xiao, J.H. Antioxidant activities of alkali-soluble polysaccharides from medicinal mushroom Cordyceps taii and its chemical characteristics. Biomed. Res.-India 2016, 27, 199–206. [Google Scholar]
- Yin, M.; Zhang, Y.; Li, H. Advances in Research on Immunoregulation of Macrophages by Plant Polysaccharides. Front. Immunol. 2019, 10, 145. [Google Scholar] [CrossRef]
- Chen, W.; Yuan, F.; Wang, K.; Song, D.; Zhang, W. Modulatory effects of the acid polysaccharide fraction from one of anamorph of Cordyceps sinensis on Ana-1 cells. J. Ethnopharmacol. 2012, 142, 739–745. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, W.; Shen, W.; Wang, K. Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophages in vitro. Cell. Immunol. 2010, 262, 69–74. [Google Scholar] [CrossRef]
- Meng, L.Z.; Lin, B.Q.; Wang, B.; Feng, K.; Hu, D.J.; Wang, L.Y.; Cheong, K.L.; Zhao, J.; Li, S.P. Mycelia extracts of fungal strains isolated from Cordyceps sinensis differently enhance the function of RAW 264.7 macrophages. J. Ethnopharmacol. 2013, 148, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.Z.; Feng, K.; Wang, L.Y.; Cheong, K.L.; Nie, H.; Zhao, J.; Li, S.P. Activation of mouse macrophages and dendritic cells induced by polysaccharides from a novel Cordyceps sinensis fungus UM01. J. Funct. Foods 2014, 9, 242–253. [Google Scholar] [CrossRef]
- Li, L.F.; But, G.W.; Zhang, Q.W.; Liu, M.; Chen, M.M.; Wen, X.; Wu, H.Y.; Cheng, H.Y.; Puno, P.T.; Zhang, J.X.; et al. A specific and bioactive polysaccharide marker for Cordyceps. Carbohydr. Polym. 2021, 269, 118343. [Google Scholar] [CrossRef]
- Hao, T.; Li, J.J.; Du, Z.Y.; Duan, C.M.; Wang, Y.M.; Wang, C.Y.; Song, J.P.; Wang, L.J.; Li, Y.H.; Wang, Y. Cordyceps sinensis enhances lymphocyte proliferation and CD markers expression in simulated microgravity environment. J. Exp. Hematol. 2012, 20, 1212–1215. [Google Scholar]
- Takeuchi, A.; Kato, K.; Akashi, K.; Eto, M. Cyclophosphamide-induced tolerance in kidney transplantation avoids long-term immunosuppressive therapy. Int. J. Urol. 2018, 25, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.T.; Nie, S.P.; Huang, X.J.; Wang, S.; Hu, J.L.; Xie, J.H.; Nie, Q.X.; Xie, M.Y. Protective properties of combined fungal polysaccharides from Cordyceps sinensis and Ganoderma atrum on colon immune dysfunction. Int. J. Biol. Macromol. 2018, 114, 1049–1055. [Google Scholar] [CrossRef]
- Chen, S.P.; Wang, J.Q.; Fang, Q.Y.; Dong, N.; Nie, S.P. Polysaccharide from natural Cordyceps sinensis ameliorated intestinal injury and enhanced antioxidant activity in immunosuppressed mice. Food Hydrocoll. 2019, 89, 661–667. [Google Scholar] [CrossRef]
- Ying, M.; Yu, Q.; Zheng, B.; Wang, H.; Wang, J.; Chen, S.; Nie, S.; Xie, M. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydr. Polym. 2020, 235, 115957. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Fang, Q.; Dong, N.; Fang, Q.; Cui, S.W.; Nie, S. A polysaccharide from natural Cordyceps sinensis regulates the intestinal immunity and gut microbiota in mice with cyclophosphamide-induced intestinal injury. Food Funct. 2021, 12, 6271–6282. [Google Scholar] [CrossRef]
- Yang, J.; Nian, Y.; Duan, Y.; Xin, Y.; Zhu, L.; Liu, G.; Li, X. Protection against X-Ray Irradiation Injury by Chinese Caterpillar Medicinal Mushroom Ophiocordyceps sinensis (Ascomycetes) Polysaccharides in Mice. Int. J. Med. Mushrooms 2020, 22, 815–827. [Google Scholar] [CrossRef]
- Yang, S.L.; Yang, X.; Zhang, H. Extracellular polysaccharide biosynthesis in Cordyceps. Crit. Rev. Microbiol. 2020, 46, 359–380. [Google Scholar] [CrossRef] [PubMed]
- Hivroz, C.; Chemin, K.; Tourret, M.; Bohineust, A. Crosstalk between T Lymphocytes and Dendritic Cells. Crit. Rev. Immunol. 2012, 32, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Lin, J.Y.; Yuan, F.J.; Zhang, W.Y. Ex vivo stimulation of murine dendritic cells by an exopolysaccharide from one of the anamorph of Cordyceps sinensis. Cell Biochem. Funct. 2011, 29, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; He, Z.; Wang, C.; Yuan, F.; Dong, P.; Zhang, W. Regulation of the exopolysaccharide from an anamorph of Cordyceps sinensis on dendritic cell sarcoma (DCS) cell line. Eur. J. Nutr. 2013, 52, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Zhang, W.M.; Zhang, Y.J.; Liu, X.Z. The medicinal fungus Cordyceps militaris: Research and development. Mycol. Prog. 2012, 11, 599–614. [Google Scholar] [CrossRef]
- Lee, C.T.; Huang, K.S.; Shaw, J.F.; Chen, J.R.; Kuo, W.S.; Shen, G.X.; Grumezescu, A.M.; Holban, A.M.; Wang, Y.T.; Wang, J.S.; et al. Trends in the Immunomodulatory Effects of Cordyceps militaris: Total Extracts, Polysaccharides and Cordycepin. Front. Pharmacol. 2020, 11, 575704. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wen, C.T.; Duan, Y.Q.; Zhang, H.H.; Ma, H.L. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol. 2019, 132, 906–914. [Google Scholar] [CrossRef]
- Chanput, W.; Mes, J.J.; Wichers, H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014, 23, 37–45. [Google Scholar] [CrossRef]
- Lin, R.K.; Choong, C.Y.; Hsu, W.H.; Tai, C.J.; Tai, C.J. Polysaccharides obtained from mycelia of Cordyceps militaris attenuated doxorubicin-induced cytotoxic effects in chemotherapy. Afr. Health Sci. 2019, 19, 2156–2163. [Google Scholar] [CrossRef]
- Park, D.K.; Hayashi, T.; Park, H.J. Arabinogalactan-type polysaccharides (APS) from Cordyceps militaris grown on germinated soybeans (GSC) induces innate immune activity of THP-1 monocytes through promoting their macrophage differentiation and macrophage activity. Food Sci. Biotechnol. 2012, 21, 1501–1506. [Google Scholar] [CrossRef]
- Zhu, S.J.; Pan, J.; Zhao, B.; Liang, J.; Ze-Yu, W.; Yang, J.J. Comparisons on enhancing the immunity of fresh and dry Cordyceps militaris in vivo and in vitro. J. Ethnopharmacol. 2013, 149, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.J.; Pan, J.; Yang, J.J.; Zhou, A. Immune activation and toxicity evaluation of fresh Cordyceps militaris extracts by high-pressure processing. Food Agric. Immunol. 2015, 26, 645–658. [Google Scholar] [CrossRef]
- Wang, M.; Meng, X.Y.; Yang, R.L.; Qin, T.; Wang, X.Y.; Zhang, K.Y.; Fei, C.Z.; Li, Y.; Hu, Y.; Xue, F.Q. Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohydr. Polym. 2012, 89, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Meng, X.; Yang, R.; Qin, T.; Li, Y.; Zhang, L.; Fei, C.; Zhen, W.; Zhang, K.; Wang, X.; et al. Cordyceps militaris polysaccharides can improve the immune efficacy of Newcastle disease vaccine in chicken. Int. J. Biol. Macromol. 2013, 59, 178–183. [Google Scholar] [CrossRef]
- Zhong, M.; Wang, L.H.; Ma, H.; Guo, Z.F.; Wang, C.C.; Liu, S.X. Effect of selenium-protein polysaccharide extracted from Se-rich Cordyceps militaris on tumor-bearing mice. China J. Chin. Mater. Medica 2008, 33, 2120–2123. [Google Scholar]
- Zheng, Y.; Li, L.; Cai, T. Cordyceps polysaccharide ameliorates airway inflammation in an ovalbumin-induced mouse model of asthma via TGF-β1/Smad signaling pathway. Respir. Physiol. Neurobiol. 2020, 276, 103412. [Google Scholar] [CrossRef]
- Xie, X.C.; Guo, H.; Liu, J.; Wang, J.B.; Li, H.H.; Deng, Z.Y. Edible and Medicinal Progress of Cryptotympana atrata (Fabricius) in China. Nutrients 2023, 15, 4266. [Google Scholar] [CrossRef]
- Cheng, J.W.; Wang, Y.B.; He, L.; Qian, H.; Fu, L.Z.; Li, H.B. Optimization of fermentation process for the production of intracellular polysaccharide from Paecilomyces cicadae and the immuno-stimulating activity of intracellular polysaccharide. World J. Microbiol. Biotechnol. 2012, 28, 3293–3299. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.J.; Lee, H.K.; Ryu, H.S.; Kim, J.S.; Yoon, M.J.; Kang, J.S.; Hong, J.T.; Kim, Y.; Han, S.B. Activation of macrophages by polysaccharide isolated from Paecilomyces cicadae through toll-like receptor 4. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 3190–3197. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, G.Y.; Li, C.Y.; Ling, J.Y. Cordycepin and pentostatin biosynthesis gene identified through transcriptome and proteomics analysis of Cordyceps kyushuensis Kob. Microbiol. Res. 2019, 218, 12–21. [Google Scholar] [CrossRef]
- Chan, W.H.; Ling, K.H.; Chiu, S.W.; Shaw, P.C.; But, P.P.H. Molecular Analyses of Cordyceps gunnii in China. J. Food Drug Anal. 2011, 19, 18–25. [Google Scholar] [CrossRef]
- Meng, M.; Wang, H.; Li, Z.; Guo, M.; Hou, L. Protective effects of polysaccharides from Cordyceps gunnii mycelia against cyclophosphamide-induced immunosuppression to TLR4/TRAF6/NF-κB signalling in BALB/c mice. Food Funct. 2019, 10, 3262–3271. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Chen, J.; Si, C.L.; Liu, N.; Lian, H.Y.; Ding, L.N.; Liu, Y.; Zhang, Y.M. Immunomodulatory effect of polysaccharides from submerged cultured Cordyceps gunnii. Pharm. Biol. 2012, 50, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.M.; Zhang, X.J.; Liang, G.Y.; Yang, Y.F.; Zhong, J.J.; Xiao, J.H. Antitumor and antimetastatic activities of chloroform extract of medicinal mushroom Cordyceps taii in mouse models. BMC Complement. Altern. Med. 2015, 15, 216. [Google Scholar] [CrossRef]
- Liu, R.M.; Dai, R.; Luo, Y.; Xiao, J.H. Glucose-lowering and hypolipidemic activities of polysaccharides from Cordyceps taii in streptozotocin-induced diabetic mice. BMC Complement. Altern. Med. 2019, 19, 230. [Google Scholar] [CrossRef]
- Liu, H.G.; Li, T.; Zhao, Y.L.; Zhang, J.; Wang, Y.Z. Determination of some metabolites of Cordyceps sobolifera. Afr. J. Microbiol. Res. 2011, 5, 5518–5522. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, H. Optimization of the fermentation process of Cordyceps sobolifera Se-CEPS and its anti-tumor activity in vivo. J. Biol. Eng. 2016, 10, 8. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.Y.; Ryu, H.S.; Shin, B.R.; Kang, J.S.; Kim, H.M.; Kim, Y.O.; Hong, J.T.; Kim, Y.; Han, S.B. Phenotypic and functional maturation of dendritic cells induced by polysaccharide isolated from Paecilomyces cicadae. J. Med. Food 2011, 14, 847–856. [Google Scholar] [CrossRef]
Source | Name | M.W. (kDa) | Monosaccharide Composition | Structural Characteristics | Ref. |
---|---|---|---|---|---|
Cordyceps sinensis | CCP | 433.788 | Glc | Composed of non-reducing terminal D-glcp, (1→4)-linked D-g glcp, and (1→4,6)-linked D-glcp residues | [22] |
PHP | 58.14 | Man (2.49%), Glc (57.1%), Gal (1.43%), and GalA (0.321%) | ND | [23] | |
CM-S | 134.631 | Gal, Glc, and Xyl with a molar ratio of 3:2:1 | Main chain is (1→6)-α-d-gal, which is connected at the C2 site with (1,4→6)-α-d-glc at the C1 site | [12] | |
CP2-S | 1.328 | Mainly composed of Glc | ND | [24] | |
OSP | 27.972 | Xyl, Man, Glc, and Gal with a molar ratio of 2.9:6.6:166:2.6 | ND | [25] | |
Cordysinan | 22.37 | Man, Gal, and Glc with a molar ratio of 4.4:3.8:1.0 | Backbone composed of 1,2-Manp residues | [26] | |
UM01-S4 | 22.569 | Man, Glc, Gal, and GalA with a molar ratio of 9.6:4.0:4.4:1.0 | Backbone composed of α-(1→2)-Manp and with side chains consisting of β-(1→4)-Glcp, β-(1→2)-Galf, terminal α-GalpA and α-Manp | [27] | |
CP-PS | 12 | Man, Rha, Ara, Xyl, Glc, and Gal with a molar ratio of 38.37:2.51:2.21:5.22:27.44:24.25 | ND | [28] | |
Cs-HK1 | 36 | Glc and GalA with a molar ratio of 8:1 | Linear backbone of (1→3)-linked α-D-Glcp | [29] | |
EPS | 104 | Glc and Gal with a molar ratio of 23:1:2.6 | ND | [30] | |
EPS | ND | Glc and Man with a molar ratio of 99:1 | Linear backbone of (1→3)-β-D-Glcp residues | [31] | |
HSWP-2a | 870.70 | Glc | α-(1→4)-D-glucan | [32] | |
HS002-II | 44 | Man, Rib, Rha, GlcA, GalA, Glc, Gal, Xyl, and Ara with a molar ratio of 6.47:2.27:1.25:0.69:0.42:65.89:16.17:2.13:4.26 | Long backbone of (1→3)-linked α-d-Ribf units (1→4)-linked α-d-Xylp units and (1→4)-linked β-d-Glcp units | [33] | |
NCSP-50 | 976 | Glc | Backbone of (1→4)-linked-α-D-Glcp with a single α-D-Glcp branch substituted at C-6 | [34] | |
PS | 83 | Glc, Man, Ara, and Gal with a molar ratio of 8:90:1:1 | ND | [35] | |
UST 2000 | 82 | Glc, Man, and Gal with a molar ratio of 2.4:2:1 | ND | [36] | |
AEPS-1 | 36 | Glc | Linear backbone of (1→3)-linked α-D-Glcp residues with two branches, α-D-Glcp and α-D-Glcp | [29] | |
Cordyceps militaris | CM-S | 134.631 | Gal, Glc, and Xyl with a molar ratio of 3:2:1 | Main chain is (1→6)-α-d-Gal, which is connected at the C2 site with (1,4→6)-α-d-Glc at the C1 site | [12] |
PLCM | 36 | Glc | a 1,6-branched-Glc | [37] | |
HCMP | 6180 | Ara, Gal, Glc, Man, and Xyl, with a molar ratio of 2.00:8.01:72.54:15.98:1.02 | ND | [38] | |
APS | 576 | Gal (58.3%), Ara (27.8%), Xyl (7.5%), and Rha (6.4%) | Composed of Araf-(1→, →5)-Araf-(1→, →4)-Galp-(1→ and →4)-GalAp-(1→ residues | [39] | |
CMP | 15.94 | Glc, Man, Gal, Xyl, Ara, and GlcA with a molar ratio of 81.25:21.96:13.88:3.92:3.58:1.00 | ND | [40] | |
CMP-W1 | 366 | Man, Glc, and Gal with a molar ratio of 2.84:1:1.29 | Main chain composed of 1→3,1→2,3,1→2,4,1→3,4,1→3,6, or 1→2,3,4 glycosidic bond | [41] | |
CMP-S1 | 460 | Man, Glc, and Gal with a molar ratio of 2.05:1:1.09 | Lots of residues are 1→,1→6,1→2,1→2,6,1→4, and 1→4,6 linked | [41] | |
CMP Fr II | 126 | Glc, Gal, and Man with a molar ratio of 56.4:26.4:17.2 | Composed of the (1→4) or (1→2)-linked Glcp or Galp residue with a (1→2) or (1→6)-linked Manp, Glcp, or Galp residue as a side chain | [42] | |
CMPB90-1 | 5.8 | Gal, Glc, and Man with a molar ratio of 3.04:1.00:1.45 | Backbone of (1→6)-linked α-d-Glcp and (1→3)-linked α-d-Glcp residues | [43] | |
EPS-III | 1.56 | Man, Glc, and Gal with a molar ratio of 1.68:1:1.83 | Backbone of →4)-α-D-Galp-(1→ | [44] | |
CMP-III | 49.76 | Glc, Man, and Gal with a molar ratio of 8.09:1.00:0.25 | Main linkage types consist of 1→4)-α-D-Glc, 1→4,6)-α-D-Man, 1→)-α-D-Man and 1 → 2,6)-α-D-Gal | [45] | |
SDQCP-1 | 19.3 | Man, Glc, and Gal with a molar ratio of 13.3:1.0:9.7 | Backbone composed of (1→2)-α-D-Manp and (1→ 4)-β-D-Glcp residues | [46] | |
AESP-II | 61.52 | Man, GlcA, Rha, GalA, Glc, Gal, and Ara with a molar ratio of 1.07:5.38:1:3.14:15:6.09: and 4.04 | ND | [47] | |
CPS-1 | 23 | Rha, Xyl, Man, Glc, and Gla in with a molar ratio of 1:6.43:25.6:16.0:13.8 | (1→2) linkage Man, (1→4) linkage Xyl, and (1→2) or (1→3) linkage Rha | [48] | |
CM-jd-CPS2 | ND | Man, Glc, and Gla with a molar ratio of 1.52:8.53:1.00 | Composed of α-glycosidic linkage | [49] | |
CM-jd(Y)-CPS | ND | Man, Glc, and Gla with a molar ratio of 3.11:1.00:2.12 | Composed of β-glycosidic linkage | [49] | |
SD-PK5 | ND | Glc | A linear β-(1→3)-D-glucan | [50] | |
Cordyceps cicadae | IPS1 | 2400 | Man, Glc, and Gla with a molar ratio of 1.35:6.93:1.0 | Backbone of →4)-α-D-Glcp (1→ and →3,4)-α-D-Manp (1 → residues | [51] |
IPS2 | 679 | Man, Glc, and Gla with a molar ratio of 2.04:1.0:1.87 | Consists of →4)-α-D-Glcp-(1→, →3,4)-α-D-Manp-(1→ and →2,6)-α-D-Manp-(1→ residues | [51] | |
JCH-1 | 30.9 | Man, Glc, and Gla with a molar ratio of 1.70:1.37:1.00 | Composed of α-type glycosidic linkage | [52] | |
JCH-2 | 555.3 | Man, Glc, and Gla with a molar ratio of 5.41:1.04:1.00 | ND | [52] | |
CP80-1 | 25.461 | Glc, Xyl, and Rha with a molar ratio of 19.04:8.73:1.00 | Composed of α- and β-glycosidic linkages | [53] | |
Cordyceps kyushuensis | CKPS-1 | 7153 | Fuc, Man, Glc, and Gal with a molar ratio of 1:0.92:1.09:0.72 | Composed of α- and β-glycosidic linkages | [54] |
CKPS-2 | 5945 | Fuc, Man, and Gal with a molar ratio of 1:0.63:0.61 | Composed of α- and β-glycosidic linkages | [54] | |
CKPS-3 | 5643 | Fuc, Man, and Gal with a molar ratio of 1:1.65:1.4 | Composed of α- and β-glycosidic linkages | [54] | |
CKPS-4 | 5642 | Fuc, Man, and Gal with a molar ratio of 1:2.06:1.97 | Composed of α- and β-glycosidic linkages | [54] | |
Cordyceps taii | PCT-1 | ND | Glc, Man, and Gal with a molar ratio of 5.06:4.21:1.00 | Composed of α- and β-glycosidic linkages | [55] |
PCT | ND | Glc, Gal, and Man with a molar ratio of 1.14:1.00:1.66 | Composed of series α-(1, 4) glucosidic bond | [56] |
Species Name | Polysaccharide Name/Fraction | Details of Pharmacological Activity | Cell Line/Model | Dosage | Ref. |
---|---|---|---|---|---|
Cordyceps sinensis | Fraction | Activates NF-κB pathway; induces M1 phenotype; and upregulates TNF-α, IL-12, and iNOS expression while downregulating IL-10 | Ana-1 cells | 25–100 μg/mL | [58] |
Fraction | Activates NF-κB pathway and stimulates the release of NO and cytokines IL-1α, IL-1β, IL-10, and TNF-α | RAW264.7 cells | 30–300 μg/mL | [59,60] | |
Fraction | Enhances macrophage activity, induces differentiation into dendritic cells, and promotes their maturation | RAW 264.7 cells | 0.1–15 μg/mL | [61] | |
Fraction | Promotes proliferation and enhances the expression of CD4 and CD8 | Simulated microgravity-induced murine splenic lymphocytes | 25–50 μg/mL | [63] | |
Fraction | Increases histone H3 acetylation, induces Foxp3 expression in regulatory T cells, and decreases IL-17 and IL-21 expression | Colons of mice induced with cyclophosphamide | 200 mg/kg | [65] | |
Fraction | Regulates the polarization of Th1/Th2 cells and increases IL-2, IL-12 p40, IFN-γ, TNF-α, IL-4, IL-10, GATA-3, and secretory IgA levels | Cyclophosphamide-induced mice | 25–100 mg/kg | [66] | |
Fraction | Stimulates IL-12, IFN-γ, IL-4, IL-13, IL-6, IL-17, IL-10, TGF-β3, TNF-α, IL-2, IL-21, T-bet, GATA-3, RORγt, and Foxp3 production | Cyclophosphamide-induced mice | 25–100 mg/kg | [67] | |
Fraction | Enhances lymphocyte proliferation and macrophage phagocytosis activity, reduces IL-4 and IL-17 expression, and increases IL-5 expression | Mice exposed to 60Co | 50–200 mg/kg | [28] | |
Fraction | Accelerates the recovery of white blood cells, increases the organ index of the thymus and spleen | X-ray irradiation-injured mice | 100–400 mg/kg | [69] | |
Fraction | Elevates thymus index, spleen index, and the number of CD4+ and CD8+ T lymphocytes and macrophages | H22 tumor-bearing mice | 100–400 mg/kg | [22] | |
PS | Enhances the serum levels of IgG, IgG1, and IgG2b | OVA-immunized mice | 100–400 μg/mouse | [35] | |
AEPS-1 | Induces the production of TNF-α, IL-6, and IL-1β | RAW264.7 cells | 25–250 μg/mL | [29] | |
OSP | Activates MAPK and PI3K/Akt pathways and induces the production of TNF-α, IL-6, and IL-1β | RAW264.7 cells | 6.25–50 μg/mL | [25] | |
HS002-II | Activates NF-κB pathways and induces the production of NO, TNF-α, IL-6, and IL-1β | RAW264.7 cells | 0.2785–4.4 μM | [33] | |
EPS | Increases IL-12, TNF-α, and iNOS expression and upregulates capacity for antigen uptake and activation of T lymphocyte proliferation | Mouse dendritic cells | 25–100 μg/mL | [72,73] | |
EPS | Increases thymus and spleen indices and stimulates the release of TNF-α and INF-γ | Cyclophosphamide-induced mice | 20 mg/kg | [31] | |
UST 2000 | Activates ERK signaling pathway and promotes proliferation and IL-2, IL-6, and IL-8 secretion | Human T lymphocytes | 6.25–100 μg/mL | [36] | |
PHP | Reduces the number of Th17 cells and increases the number of Treg cells | Dextran sulfate sodium-induced mice | 400 mg/kg | [23] | |
NCSP-50 | Induces proliferation and augment the production of NO, IL-1β and TNF-α | RAW 264.7 cells | 25–200 μg/mL | [34] | |
NCSP-50 | Increases the number of CD4+ T cells; modulates TLR expression; and increases IL-17, IL-21, and TGF-β3 levels | Cyclophosphamide-induced mice | 25–100 mg/kg | [68] | |
CCP | Activates TLR4/MyD88/p38 pathway and induces NO, IL-6, and TNF-α production | RAW 264.7 cells | 1–400 μg/mL | [62] | |
HSWP-2a | Activates p38, JNK, and NF-κB pathways and augments phagocytic activity and the production of NO, IL-1β, IL-6, and TNF-α | RAW264.7 cells | 25–200 μg/mL | [32] | |
UM01-S4 | Activates MAPK and NF-κB pathways; boosts proliferation and phagocytic activity; and stimulates NO, IL-1β, IL-6, IL-12, and TNF-α expression | RAW 264.7 cells | 0.1–3 μg/mL | [27] | |
Cordysinan | Induces the release of IL-1β, IL-6, IL-10, TNF-α, MCP-1, MIP-1α, IP-10, and KC | RAW 264.7 cells | 10–100 μg/mL | [26] | |
Cordyceps militaris | CP2-S | Stimulates NO production, phagocytosis, respiratory burst activity, and the secretion of IL-1β and IL-2 | RAW264.7 cells | 50–500 μg/mL | [24] |
Fraction | Promotes proliferation and enhances the expression of IL-1β, TNF-α, IFN-γ, and IL-6 | THP-1 and EL-4 T cells induced by aflatoxin | 50−250 µg/mL | [78] | |
Fraction | Increases spleen and thymus indices and spleen lymphocyte activity and macrophage function | Cyclophosphamide-induced mice | 17.5–70 mg/kg | [82] | |
Fraction | Stimulates lymphocyte proliferation, boosts serum antibody titers, and elevates serum IFN-γ and IL-4 levels | Chickens vaccinated with the Newcastle disease vaccine | 2–8 mg/mL | [83] | |
Fraction | Suppresses the secretion of eotaxin, IL-4, IL-5, IL-13, IFN-γ, and IgE | Ovalbumin-induced asthma mice | 25–100 mg/kg | [40,85] | |
Fraction | Stimulates proliferation and enhances NO production | RAW264.7 cells | 12.5–100 μg/mL | [88] | |
Fraction | Activates MAPK and NF-κB signaling and increases the production of NO, IL-1β, TNF-α, and IL-6 | Mouse primary macrophages | 10–100 μg/mL | [89] | |
Fraction | Increases MHC-I, MHC-II, CD80, and CD86 expression and induces allogeneic T-cell activation | Mouse dendritic cells | 10–100 mg/mL | [98] | |
Polysaccharide-rich extract | Boosts splenic lymphocyte activity; strengthens macrophage function; and induces IL-2, IL-4, and IFN-γ expression | Cyclophosphamide-induced mice | 50–200 mg/kg | [80,81] | |
Selenium-rich proteoglycan extract | Increases lymphocyte transformation rate, enhances macrophage clearance, and elevates spleen coefficient | Ascites tumor-bearing mice | 100–200 mg/kg | [85] | |
CMP-Fr-II | Increases NO, TNF-α, and IL-1β expression | RAW264.7 cells | 1000 µg/mL | [42] | |
CMP-III | Activates MAPK and NF-κB pathways and induces NO, TNF-α, and IL-6 production | RAW264.7 cells | 50–500 μg/mL | [45] | |
SDQCP-1 | Induces M1 polarization and stimulates NO, TNF-α, IL-6, and IL-10 release | RAW264.7 cells | 50−250 µg/mL | [46] | |
SD-PK5 | Stimulates IL-1β, TNF-α, and COX-2 expression | THP-1 cells | 10−250 µg/mL | [50] | |
APS | Promotes differentiation into macrophages and increases phagocytic activity and TNF-α, IL12 p40, IL-8, TLR-2, and TLR-4 expression | THP-1 cells | 1–100 μg/mL | [79] | |
APS | Elevates TNF-α and IFN-γ expression and diminishes virus titers in bronchoalveolar lavage fluid and lungs | Mice infected with influenza A virus | 2–8 mg/ml | [39] | |
CMPB90-1 | Stimulates proliferation and enhances the secretion of IL-2 | Mouse spleen lymphocytes | 250–500 μg/mL | [43] | |
CMPB90-1 | Shifts tumor-promoting M2 phenotype macrophages to a tumor-killing M1 phenotype | Lewis lung carcinoma tumor-bearing mice | 50–200 mg/kg | [51] | |
PLCM | Activates MAPK and NF-κB pathways; enhances phagocytic activity; and increases NO, IL-6, and TNF-α expression | RAW264.7 cells | 10–200 μg/mL | [37] | |
EPS-III | Safeguards the immune organs of from damage induced by high glucose, leading to an enhancement in spleen index | Streptozotocin-induced diabetic mice | 225 mg/kg | [44] | |
AESP-II | Enhances T and B cell proliferation and raises IL-2, IL-4, IFN-γ, IgG, IgM, and IgA levels | Cyclophosphamide-induced mice | 25–100 mg/kg | [47] | |
JCH-1 and JCH-2 | Elevate phagocytosis and induce NO, IL-6, TNF-α, and IL-1β expression | RAW264.7 cells | 5–25 μg/mL | [52] | |
IPS1 and IPS2 | Elevate phagocytosis and induce NO, IL-6, TNF-α, and IL-1β expression | RAW264.7 cells | 50–400 μg/mL | [51] | |
CP80-1 | Elevates phagocytosis and induces NO, IL-6, TNF-α, and IL-1β expression | RAW264.7 cells | 25–100 μg/mL | [53] | |
Cordyceps gunnii | Fraction | Elevates the spleen and thymus index, boosts natural killer cell toxicity and lymphocyte proliferation activity, and expedites the recovery of peripheral blood cells | Cyclophosphamide-induced mice | 125–500 mg/kg | [92] |
Fraction | Elevates thymus and spleen indices, enhances macrophage phagocytosis capacity, and stimulates splenocyte proliferation | H22 tumor-bearing mice | 50–200 mg/kg | [93] | |
Cordyceps taii | PCT-1 | Enhances proliferation and increases IgG expression | Mouse T and B lymphocytes | 100–400 mg/kg | [55] |
CTP | Increases thymus index | Streptozotocin-induced diabetic rats | 400 mg/kg | [95] | |
Cordyceps sobolifera | Fraction | Enhances immune organ index, increases IL-2 and TNF-α levels, and elevates ratio of CD8+/CD4+ T cells | Colon cancer tumor-bearing mice | 50–200 mg/kg | [97] |
Cordyceps kyushuensis | CKPS-1, CKPS-2, CKPS-3, and CKPS-4 | Induce proliferation, enhance phagocytic capacity, and elevate the levels of IL-2 and TNF-α in serum | Mouse splenocytes and peritoneal macrophages | 62.5–500 μg/mL | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Liu, X.; Zheng, K.; Wang, Y.; Li, M.; Zhang, Y.; Cui, Y.; Deng, S.; Liu, S.; Zhang, G.; et al. Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects. Molecules 2024, 29, 5107. https://doi.org/10.3390/molecules29215107
Chen L, Liu X, Zheng K, Wang Y, Li M, Zhang Y, Cui Y, Deng S, Liu S, Zhang G, et al. Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects. Molecules. 2024; 29(21):5107. https://doi.org/10.3390/molecules29215107
Chicago/Turabian StyleChen, Liping, Xiao Liu, Kaiyue Zheng, Yang Wang, Minglong Li, Yuyu Zhang, Yuan Cui, Sichun Deng, Shiqi Liu, Gaoju Zhang, and et al. 2024. "Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects" Molecules 29, no. 21: 5107. https://doi.org/10.3390/molecules29215107
APA StyleChen, L., Liu, X., Zheng, K., Wang, Y., Li, M., Zhang, Y., Cui, Y., Deng, S., Liu, S., Zhang, G., Li, L., & He, Y. (2024). Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects. Molecules, 29(21), 5107. https://doi.org/10.3390/molecules29215107