The Effect of Osmotic Dehydration Conditions on the Potassium Content in Beetroot (Beta vulgaris L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Potassium Content in Dehydrated Beetroot Flesh (First Stage)
2.2. Potassium Content in Dehydrated Beetroot Flesh (Second Stage)
2.3. Antioxidant Activity and Proximate Composition of Dehydrated Beetroot
2.4. Texture Profile Analysis (TPA)
3. Materials and Methods
3.1. Sample Collection
3.2. Chemicals and Reagents
3.3. Osmotic Dehydration Procedure
3.4. Determination of Potassium Content
3.5. Extract Preparation for Antioxidant Activity Analysis
3.6. Antioxidant Activity Analysis
3.7. Food Composition Analysis
3.8. Texture Profile Analysis (TPA)
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asghari, A.; Zongo, P.A.; Osse, E.F.; Aghajanzadeh, S.; Raghavan, V.; Khalloufi, S. Review of osmotic dehydration: Promising technologies for enhancing products’ attributes, opportunities, and challenges for the food industries. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13346. [Google Scholar] [CrossRef] [PubMed]
- Mari, A.; Parisouli, D.N.; Krokida, M. Exploring osmotic dehydration for food preservation: Methods, modelling, and modern applications. Foods 2024, 13, 2783. [Google Scholar] [CrossRef] [PubMed]
- Pezo, L.; Lončar, B.; Filipović, V.; Šovljanski, O.; Travičić, V.; Filipović, J.; Pezo, M.; Jovanović, A.; Aćimović, M. Osmotic dehydration model for sweet potato varieties in sugar beet molasses using the Peleg model and fitting absorption data using the Guggenheim-Anderson-de Boer model. Foods 2024, 13, 1658. [Google Scholar] [CrossRef]
- Haneef, N.; Hanif, N.; Hanif, T.; Raghavan, V.; Garièpy, Y.; Wang, J. Food fortification potential of osmotic dehydration and the impact of osmo-combined techniques on bioactive component saturation in fruits and vegetables. Braz. J. Food Technol. 2024, 27, e2023028. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Domian, E.; Masiarz, E.; Ciurzyńska, A.; Galus, S.; Małkiewicz, A.; Lenart, A.; Kowalska, J. Physical and sensory properties of Japanese quince chips obtained by osmotic dehydration in fruit juice concentrates and hybrid drying. Molecules 2020, 25, 5504. [Google Scholar] [CrossRef] [PubMed]
- Giannakourou, M.C.; Lazou, A.E.; Dermesonlouoglou, E.K. Optimization of osmotic dehydration of tomatoes in solutions of non-conventional sweeteners by response surface methodology and desirability approach. Foods 2020, 9, 1393. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Suliburska, J.; Rybarczyk, M.; Gramza-Michałowska, A. The effect of osmotic dehydration conditions on the calcium content in plant matrices. Food Chem. 2021, 343, 128519. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A.; Kulczyński, B.; Suliburska, J. Bread and How to Make Bread. PL242313, 10 November 2022. [Google Scholar]
- Gramza-Michałowska, A.; Kulczyński, B.; Suliburska, J.; Rybarczyk, M. Vegetable Paste and How to Make Vegetable Pastes. PL242612, 5 January 2023. [Google Scholar]
- Gramza-Michałowska, A.; Kulczyński, B.; Suliburska, J.; Rybarczyk, M. Vegetable Soup and How to Make Vegetable Soups. PL242613, 5 January 2023. [Google Scholar]
- Wawrzyniak, N.; Gramza-Michałowska, A.; Kurzawa, P.; Kołodziejski, P.; Suliburska, J. Calcium carbonate-enriched pumpkin affects calcium status in ovariectomized rats. J. Food Sci. Technol. 2023, 60, 1402–1413. [Google Scholar] [CrossRef]
- Wawrzyniak, N.; Gramza-Michałowska, A.; Pruszyńska-Oszmałek, E.; Sassek, M.; Suliburska, J. Effects of calcium lactate-enriched pumpkin on calcium status in ovariectomized rats. Foods 2022, 11, 2084. [Google Scholar] [CrossRef]
- Wawrzyniak, N.; Suliburska, J.; Kulczyński, B.; Kołodziejski, P.; Kurzawa, P.; Gramza-Michałowska, A. Calcium-enriched pumpkin affects serum leptin levels and fat content in a rat model of postmenopausal osteoporosis. Nutrients 2021, 13, 2334. [Google Scholar] [CrossRef]
- Cichowska, J.; Figiel, A.; Stasiak-Różańska, L.; Witrowa-Rajchert, D. Modeling of osmotic dehydration of apples in sugar alcohols and dihydroxyacetone (DHA) solutions. Foods 2019, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.; Pulissery, S.K.; Sankalpa, K.B.; Lal, A.M.N.; Warrier, A.S.; Mahanti, N.K.; Kothakota, A. Optimization and modeling of vacuum impregnation of pineapple rings and comparison with osmotic dehydration. J. Food Sci. 2024, 89, 494–512. [Google Scholar] [CrossRef] [PubMed]
- Özkan-Karabacak, A.; Özcan-Sinir, G.; Çopur, A.E.; Bayizit, M. Effect of osmotic dehydration pretreatment on the drying characteristics and quality properties of semi-dried (intermediate) kumquat (Citrus japonica) slices by vacuum dryer. Foods 2022, 11, 2139. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Bi, J.; Lyu, J.; Wu, X.; Xie, J. Effect of osmotic dehydration with different osmosis agents on water status, texture properties, sugars, and total carotenoid of dehydrated yellow peach slices. J. Food Sci. 2023, 88, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Macedo, L.L.; Corrêa, J.L.G.; Araújo, C.D.S.; Oliveira, D.D.S.; Teixeira, L.J.Q. Use of coconut sugar as an alternative agent in osmotic dehydration of strawberries. J. Food Sci. 2023, 88, 3786–3806. [Google Scholar] [CrossRef]
- Chandra, A.; Kumar, S.; Tarafdar, A.; Nema, P.K. Ultrasonic and osmotic pretreatments followed by convective and vacuum drying of papaya slices. J. Sci. Food Agric. 2021, 101, 2264–2272. [Google Scholar] [CrossRef]
- Kroehnke, J.; Szadzińska, J.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G.; Mierzwa, D. Osmotic dehydration and convective drying of kiwifruit (Actinidia deliciosa)—The influence of ultrasound on process kinetics and product quality. Ultrason. Sonochem. 2021, 71, 105377. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Somkane, S.; Nakagawa, K.; Mahayothee, B. Osmotic dehydration, drying kinetics, and quality attributes of osmotic hot air-dried mango as affected by initial frozen storage. Foods 2022, 11, 489. [Google Scholar] [CrossRef]
- da Silva Júnior, A.F.; da Silva, W.P.; de Farias Aires, J.E.; Aires, K.L.C.A.F.; de Castro, D.S. Osmotic dehydration kinetics of banana slices considering variable diffusivities and shrinkage. Int. J. Food Prop. 2016, 20, 1313–1325. [Google Scholar] [CrossRef]
- Paraskevopoulou, E.; Andreou, V.; Dermesonlouoglou, E.K.; Taoukis, P.S. Combined effect of pulsed electric field and osmotic dehydration pretreatments on mass transfer and quality of air-dried pumpkin. J. Food Sci. 2022, 87, 4839–4853. [Google Scholar] [CrossRef]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of pre-treatment and drying methods on the quality of dried carrot properties as snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef] [PubMed]
- Grzelak-Błaszczyk, K.; Czarnecki, A.; Klewicki, R. The effect of osmotic dehydration on the polyphenols content in onion. Acta Sci. Pol. Technol. Aliment. 2020, 19, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Delgado, T.; Pereira, J.A.; Ramalhosa, E.; Casal, S. Osmotic dehydration effects on major and minor components of chestnut (Castanea sativa Mill.) slices. J. Food Sci. Technol. 2017, 54, 2694–2703. [Google Scholar] [CrossRef] [PubMed]
- Chardonnet, C.O.; Sams, C.E.; Conway, W.S.; Mount, J.R.; Draughon, F.A. Osmotic dehydration of apple slices using a sucrose/CaCl2 combination to control spoilage caused by Botrytis cinerea, Colletotrichum acutatum, and Penicillium expansum. J. Food Prot. 2001, 64, 1425–1429. [Google Scholar] [CrossRef]
- Emser, K.; Barbosa, J.; Teixeira, P.; Bernardo de Morais, A.M.M. Survival of Lactobacillus plantarum during the osmotic dehydration and storage of probiotic cut apple. J. Funct. Foods 2017, 38, 519–528. [Google Scholar] [CrossRef]
- Della Rocca, P. Pears fortified with minerals. Novel Technol. Nutr. Food Sci. 2021, 6. [Google Scholar] [CrossRef]
- Staniszewska, I.; Nowak, K.W.; Zielińska, D.; Konopka, I.; Zielinska, M. Pulsed vacuum osmotic dehydration (PVOD) of fermented beetroot: Modeling and optimization by response surface methodology (RSM). Food Bioprocess Technol. 2024, 17, 977–990. [Google Scholar] [CrossRef]
- Memis, H.; Bekar, F.; Guler, C.; Kamiloğlu, A.; Kutlu, N. Optimization of ultrasonic-assisted osmotic dehydration as a pretreatment for microwave drying of beetroot (Beta vulgaris). Food Sci. Technol. Int. 2024, 30, 439–449. [Google Scholar] [CrossRef]
- Manivannan, P.; Rajasimman, M. Optimization of process parameters for the osmotic dehydration of beetroot in sugar solution. J. Food Process Eng. 2011, 34, 804–825. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Agricultural Research Service, Beltsville Human Nutrition Research Center. Food Data Central. Available online: https://fdc.nal.usda.gov (accessed on 28 October 2024).
- Skalický, M.; Kubes, J.; Shokoofeh, H.; Tahjib-Ul-Arif, M.; Váchová, P.; Hejnák, V. Betacyanins and betaxanthins in cultivated varieties of Beta vulgaris L. compared to weed beets. Molecules 2020, 25, 5395. [Google Scholar] [CrossRef]
- Bahrami, L.S.; Arabi, S.M.; Feizy, Z.; Rezvani, R. The effect of beetroot inorganic nitrate supplementation on cardiovascular risk factors: A systematic review and meta-regression of randomized controlled trials. Nitric Oxide 2021, 115, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Sobhy, E.S.; Abdo, E.; Shaltout, O.; Abdalla, A.; Zeitoun, A. Nutritional evaluation of beetroots (Beta vulgaris L.) and its potential application in a functional beverage. Plants 2020, 9, 1752. [Google Scholar] [CrossRef] [PubMed]
- Strohm, D.; Ellinger, S.; Leschik-Bonnet, E.; Maretzke, F.; Heseker, H.; German Nutrition Society (DGE). Revised reference values for potassium intake. Ann. Nutr. Metab. 2017, 71, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Reddin, C.; Ferguson, J.; Murphy, R.; Clarke, A.; Judge, C.; Griffith, V.; Alvarez, A.; Smyth, A.; Mente, A.; Yusuf, S.; et al. Global mean potassium intake: A systematic review and Bayesian meta-analysis. Eur. J. Nutr. 2023, 62, 2027–2037. [Google Scholar] [CrossRef]
- Farah, R.; Nassar, M.; Aboraya, B.; Nseir, W. Low serum potassium levels are associated with the risk of atrial fibrillation. Acta Cardiol. 2021, 76, 887–890. [Google Scholar] [CrossRef]
- D’Elia, L.; Masulli, M.; Cappuccio, F.P.; Zarrella, A.F.; Strazzullo, P.; Galletti, F. Dietary potassium intake and risk of diabetes: A systematic review and meta-analysis of prospective studies. Nutrients 2022, 14, 4785. [Google Scholar] [CrossRef]
- Yachantha, C.; Hossain, R.Z.; Yamakawa, K.; Sugaya, K.; Tosukhowong, P.; Ogawa, Y.; Saito, S. Effect of potassium depletion on urinary stone risk factors in Wistar rats. Urol. Res. 2009, 37, 311–316. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, M.; Li, X.; Zhao, J.; Shi, J.; Ding, L.; Jiang, H.; Li, Z.; Zhang, W.; Ma, T.; et al. Potassium levels and the risk of all-cause and cardiovascular mortality among patients with cardiovascular diseases: A meta-analysis of cohort studies. Nutr. J. 2024, 23, 8. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. “PubChem Compound Summary for CID 4873, Potassium Chloride” PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Potassium-Chloride (accessed on 14 November 2024).
- Weaver, C.M.; Stone, M.S.; Lobene, A.J.; Cladis, D.P.; Hodges, J.K. What is the evidence base for a potassium requirement? Nutr. Today 2018, 53, 184–195. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Khalifa, S.A. Effect of freeze-drying on camel’s milk nutritional properties. Int. Food Res. J. 2015, 22, 1438–1445. [Google Scholar]
- Silva, K.S.; Fernandes, M.A.; Mauro, M.A. Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. J. Food Eng. 2014, 134, 37–44. [Google Scholar] [CrossRef]
- Germer, S.P.M.; Ferrari, C.C.; Lancha, J.P.; Berbari, S.A.G.; Carmello-Guerreiro, S.M.; Ruffi, C.R.G. Influence of Processing Additives on the Quality and Stability of Dried Papaya Obtained by Osmotic Dehydration and Conventional Air Drying. Dry. Technol. 2014, 32, 1956–1969. [Google Scholar] [CrossRef]
- Rodríguez-Ramírez, J.; Barragán-Iglesias, J.; Ramírez-Palma, A.J.; Méndez-Lagunas, L.L. Effect of calcium and osmotic pretreatments on mass transfer and texture parameters during processing of chilacayote (Cucurbita ficifolia Bouché). J. Food Process. Preserv. 2023, 2023, 3873662. [Google Scholar] [CrossRef]
- Pereira, L.M.; Carmello-Guerreiro, S.M.; Bolini, H.M.A.; Cunha, R.L.; Hubinger, M.D. Effect of calcium salts on the texture, structure and sensory acceptance of osmotically dehydrated guavas. J. Sci. Food Agric. 2007, 87, 1149–1156. [Google Scholar] [CrossRef]
- Mauro, M.A.; Dellarosa, N.; Tylewicz, U.; Tappi, S.; Laghi, L.; Rocculi, P.; Rosa, M.D. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions. Food Chem. 2016, 195, 19–28. [Google Scholar] [CrossRef]
- Zhao, Y.; Park, S.; Leonard, S.W.; Traber, M.G. Vitamin E and mineral fortification in fresh-cut apples (Fuji) using vacuum impregnation. Nutr. Food Sci. 2005, 35, 393–402. [Google Scholar] [CrossRef]
- Nagai, L.Y.; Santos, A.B.; Faria, F.A.; Boscolo, M.; Mauro, M.A. Osmotic dehydration of mango with ascorbic acid impregnation: Influence of process variables. J. Food Process. Preserv. 2014, 38, 384–393. [Google Scholar] [CrossRef]
- Vijay, S.; Vikraman, S.; Rose Mary, P.; Chauhan, A.S.; Kapoor, M. Osmotic infusion of Lactiplantibacillus plantarum and Lacticaseibacillus casei in cut pineapple matrix: Optimization, survival under gastrointestinal stress, and storage stability studies. J. Food Process. Preserv. 2020, 45, e15132. [Google Scholar] [CrossRef]
- Sawicki, T.; Wiczkowski, W. The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem. 2018, 259, 292–303. [Google Scholar] [CrossRef]
- Udomkun, P.; Nagle, M.; Mahayothee, B.; Nohr, D.; Koza, A.; Müller, J. Influence of air drying properties on non-enzymatic browning, major bio-active compounds and antioxidant capacity of osmotically pretreated papaya. LWT—Food Sci. Technol. 2015, 60, 914–922. [Google Scholar] [CrossRef]
- Rahman, N.; Xin, T.B.; Kamilah, H.; Ariffin, F. Effects of osmotic dehydration treatment on volatile compound (Myristicin) content and antioxidants property of nutmeg (Myristica fragrans) pericarp. J. Food Sci. Technol. 2018, 55, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Wiktor, A.; Chadzynska, M.; Rybak, K.; Dadan, M.; Witrowa-Rajchert, D.; Nowacka, M. The influence of polyols on the process kinetics and bioactive substance content in osmotic dehydrated organic strawberries. Molecules 2022, 27, 1376. [Google Scholar] [CrossRef] [PubMed]
- Devic, E.; Guyot, S.; Daudin, J.-D.; Bonazzi, C. Effect of temperature and cultivar on polyphenol retention and mass transfer during osmotic dehydration of apples. J. Agric. Food Chem. 2010, 58, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Osae, R.; Zhou, C.; Xu, B.; Tchabo, W.; Tahir, H.E.; Mustapha, A.T.; Ma, H. Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. J. Food Biochem. 2019, 43, e12832. [Google Scholar] [CrossRef] [PubMed]
- Azeez, L.; Oyedeji, A.O.; Adebisi, S.A.; Adejumo, A.L.; Tijani, K.O. Chemical components retention and modelling of antioxidant activity using neural networks in oven dried tomato slices with and without osmotic dehydration pre-treatment. J. Food Meas. Charact. 2017, 11, 2247–2258. [Google Scholar] [CrossRef]
- Islam, M.Z.; Das, S.; Monalisa, K.; Sayem, A.S.M. Influence of Osmotic Dehydration on Mass Transfer Kinetics and Quality Retention of Ripe Papaya (Carica papaya L) during Drying. AgriEngineering 2019, 1, 220–234. [Google Scholar] [CrossRef]
- Nićetin, M.; Pezo, L.; Pergal, M.; Lončar, B.; Filipović, V.; Knežević, V.; Demir, H.; Filipović, J.; Manojlović, D. Celery root phenols content, antioxidant capacities and their correlations after osmotic dehydration in molasses. Foods 2022, 11, 1945. [Google Scholar] [CrossRef]
- Lech, K.; Michalska, A.; Wojdyło, A.; Nowicka, P.; Figiel, A. The influence of the osmotic dehydration process on physicochemical properties of osmotic solution. Molecules 2017, 22, 2246. [Google Scholar] [CrossRef]
- Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the Addition of Vitamins and Minerals and of Certain Other Substances to Foods. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006R1925 (accessed on 25 October 2024).
- Oudenhove, L.; Wölnerhanssen, B.K.; Meyer-Gerspach, A.C. Oral erythritol reduces energy intake during a subsequent ad libitum test meal: A randomized, controlled, crossover trial in healthy humans. Nutrients 2022, 14, 3918. [Google Scholar] [CrossRef]
- Li, L.; Li, P.; Xu, L. Assessing the effects of inulin-type fructan intake on body weight, blood glucose, and lipid profile: A systematic review and meta-analysis of randomized controlled trials. Food Sci. Nutr. 2021, 9, 4598–4616. [Google Scholar] [CrossRef]
- Nagy, D.U.; Sándor-Bajusz, K.A.; Bódy, B.; Decsi, T.; Van Harsselaar, J.; Theis, S.; Lohner, S. Effect of chicory-derived inulin-type fructans on abundance of Bifidobacterium and on bowel function: A systematic review with meta-analyses. Crit. Rev. Food Sci. Nutr. 2023, 63, 12018–12035. [Google Scholar] [CrossRef] [PubMed]
- Ziaei, R.; Shahshahan, Z.; Ghasemi-Tehrani, H.; Heidari, Z.; Ghiasvand, R. Effects of inulin-type fructans with different degrees of polymerization on inflammation, oxidative stress and endothelial dysfunction in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clin. Endocrinol. 2022, 97, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Na, H.S.; Kim, S.M.; Wallet, S.; Cha, S.; Chung, J. Xylitol, an anticaries agent, exhibits potent inhibition of inflammatory responses in human THP-1-derived macrophages infected with Porphyromonas gingivalis. J. Periodontol. 2014, 85, e212–e223. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.A.; Madsen, K.A.; Cotterman, C.; Lustig, R.H. Added sugar intake and metabolic syndrome in US adolescents: Cross-sectional analysis of the National Health and Nutrition Examination Survey 2005–2012. Public Health Nutr. 2016, 19, 2424–2434. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, H.; Liu, Z.; Yang, J.; Liu, Y. Association between dietary sugar intake and depression in US adults: A cross-sectional study using data from the National Health and Nutrition Examination Survey 2011–2018. BMC Psychiatry 2024, 24, 110. [Google Scholar] [CrossRef]
- Lula, E.C.; Ribeiro, C.C.; Hugo, F.N.; Alves, C.M.; Silva, A.A. Added sugars and periodontal disease in young adults: An analysis of NHANES III data. Am. J. Clin. Nutr. 2014, 100, 1182–1187. [Google Scholar] [CrossRef]
- Becerril-Alarcón, Y.; Campos-Gómez, S.; Valdez-Andrade, J.J.; Campos-Gómez, K.A.; Reyes-Barretero, D.Y.; Benítez-Arciniega, A.D.; Valdés-Ramos, R.; Soto-Piña, A.E. Inulin supplementation reduces systolic blood pressure in women with breast cancer undergoing neoadjuvant chemotherapy. Cardiovasc. Ther. 2019, 2019, 5707150. [Google Scholar] [CrossRef]
- Golzarand, M.; Bahadoran, Z.; Mirmiran, P.; Azizi, F. Inulin intake and the incidence of cardiometabolic diseases: A prospective cohort study. Food Funct. 2022, 13, 10516–10524. [Google Scholar] [CrossRef]
- Talukdar, J.R.; Cooper, M.; Lyutvyn, L.; Zeraatkar, D.; Ali, R.; Berbrier, R.; Janes, S.; Ha, V.; Darling, P.B.; Xue, M.; et al. The effects of inulin-type fructans on cardiovascular disease risk factors: Systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2024, 119, 496–510. [Google Scholar] [CrossRef]
- Flint, N.; Hamburg, N.M.; Holbrook, M.; Dorsey, P.G.; LeLeiko, R.M.; Berger, A.; de Cock, P.; Bosscher, D.; Vita, J.A. Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: A pilot study. Acta Diabetol. 2014, 51, 513–516. [Google Scholar] [CrossRef]
- Cichowska, J.; Żubernik, J.; Czyżewski, J.; Kowalska, H.; Witrowa-Rajchert, D. Efficiency of osmotic dehydration of apples in polyols solutions. Molecules 2018, 23, 446. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.S.; Yadav, R.B.; Jatain, M. Optimization of osmotic dehydration conditions of peach slices in sucrose solution using response surface methodology. J. Food Sci. Technol. 2012, 49, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Suliburska, J.; Krejpcio, Z. Evaluation of the content and bioaccessibility of iron, zinc, calcium, and magnesium from groats, rice, leguminous grains, and nuts. J. Food Sci. Technol. 2014, 51, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Gramza-Michałowska, A.; Królczyk, J.B. Optimization of extraction conditions for the antioxidant potential of different pumpkin varieties (Cucurbita maxima). Sustainability 2020, 12, 1305. [Google Scholar] [CrossRef]
- Kulczyński, B.; Sidor, A.; Gramza-Michałowska, A. Antioxidant potential of phytochemicals in pumpkin varieties belonging to Cucurbita moschata and Cucurbita pepo species. CyTA J. Food 2020, 18, 472–484. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Szymanowska, D.; Szczepaniak, O.M.; Gramza-Michałowska, A.; Kmiecik, D.; Kulczyński, B.; Szulc, P.; Górnaś, P. Composition of polyphenols of asparagus spears (Asparagus officinalis) and their antioxidant potential. Ciênc. Rural 2019, 49, e20180863. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis: Official Method for Protein; Method No. 920.87; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- PN-EN ISO 3947; Starches, Native or Modified—Determination of Total Fat Content. ISO: Geneva, Switzerland, 2001.
- Dziedzic, K.; Górecka, D.; Kucharska, M.; Przybylska, B. Influence of technological process during buckwheat groats production on dietary fibre content and sorption of bile acids. Food Res. Int. 2012, 47, 279–283. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Bartczak, O.; Lewandowicz, J.; Kubiak, P.; Baranowska, H.M. Gluten-Free Bread with Cricket Powder-Mechanical Properties and Molecular Water Dynamics in Dough and Ready Product. Foods 2019, 8, 240. [Google Scholar] [CrossRef] [PubMed]
Osmotically Active Substance | Potassium Gluconate | Potassium Citrate | Potassium Chloride |
---|---|---|---|
Water | 744.32 ± 17.42 aA | 921.38 ± 75.02 aB | 1459.48 ± 39.1 aC |
IS25 | 1301.28 ± 20.95 bA | 3040.56 ± 84.1 bcB | 4058.56 ± 24.6 bC |
IS50 | 1913.75 ± 41.81 cA | 4515.05 ± 184.52 dB | 5059.92 ± 118.41 cC |
XS25 | 1584.18 ± 38.21 dA | 3123.46 ± 17.7 bB | 4691.13 ± 77.92 dC |
XS50 | 1731.22 ± 33.75 cdA | 3771.35 ± 80.53 fB | 5007.3 ± 116.63 cC |
ES25 | 1738.93 ± 71.18 cdA | 2819.39 ± 112.4 cB | 4679.74 ± 200.39 dC |
ES50 | 1934.5 ± 16.1 cA | 3155.13 ± 50.26 bB | 5165.99 ± 80.29 cC |
SS25 | 1537.4 ± 57.88 bdA | 2433.94 ± 80.72 eB | 4226.12 ± 75.8 beC |
SS50 | 1697.42 ± 50.09 cdA | 2900.45 ± 147.48 bcB | 4344.15 ± 67.23 eC |
Combinations of Factors | F | df | p | η2 |
---|---|---|---|---|
Chemical form of potassium | 6563.76 | 2.54 | 0.000 | 1.00 |
Osmotically active substance | 746.54 | 8.54 | 0.000 | 0.99 |
Chemical form of potassium × Osmotically active substance | 92.29 | 16.54 | 0.000 | 0.96 |
Osmotically Active Substance | Potassium Gluconate | Potassium Citrate | Potassium Chloride |
---|---|---|---|
Water | 10,951.72 ± 256.36 aA | 14,963.17 ± 1218.32 aB | 16,046.25 ± 510.19 aC |
IS25 | 2797.75 ± 45.03 bA | 11,517.43 ± 318.57 bB | 14,123.8 ± 85.62 bC |
IS50 | 5109.7 ± 111.63 cA | 7962.92 ± 325.43 cB | 10,825.12 ± 508.02 cC |
XS25 | 2566.37 ± 61.9 bA | 10,282.29 ± 58.26 dB | 14,279.79 ± 237.19 bC |
XS50 | 5314.83 ± 103.62 cA | 6105.81 ± 130.38 eB | 9934.72 ± 478.93 dC |
ES25 | 5848.98 ± 239.4 cA | 10,553.65 ± 420.76 bdB | 16,497.02 ± 834.88 aC |
ES50 | 3365.64 ± 28.01 bA | 7185.3 ± 114.45 cB | 11,019.06 ± 171.25 cC |
SS25 | 5880.58 ± 221.41 cA | 9502.44 ± 315.13 dB | 14,250.48 ± 255.6 bC |
SS50 | 3140.95 ± 92.69 bA | 4774.29 ± 242.76 fB | 11,753.89 ± 181.9 cC |
Time/Temperature | IS50 | ES50 | |||
---|---|---|---|---|---|
Potassium Chloride 2.5% | Potassium Chloride 5.0% | Potassium Chloride 2.5% | Potassium Chloride 5.0% | ||
60 min | 30 °C | 2681.04 ± 37.6 aAxX | 4131.54 ± 63.62 aBxX | 2477.18 ± 68.22 bAxX | 3443.82 ± 65.22 bBxX |
50 °C | 3228.91 ± 55.56 aAxY | 4296.49 ± 87.46 aBxY | 2794.83 ± 66.56 bAxY | 3431.39 ± 95.41 bBxX | |
120 min | 30 °C | 4107.25 ± 85.88 aAyX | 4952.74 ± 62.06 aByX | 3509.18 ± 58.73 bAyX | 5243.34 ± 76.11 bByX |
50 °C | 4101.51 ± 86.04 aAyX | 5086.54 ± 85.22 aByY | 4315.92 ± 49.87 bAyY | 5144.11 ± 63.87 aByX | |
180 min | 30 °C | 4556.32 ± 50.16 aAzX | 5137.50 ± 127.20 aBzX | 3913.62 ± 58.06 bAzX | 5779.03 ± 60.55 bBzX |
50 °C | 4293.05 ± 21.07 aAzY | 5457.28 ± 117.25 aBzY | 4028.16 ± 77.87 bAzX | 5353.55 ± 92.24 aBzY |
Combinations of Factors | F | df | p | η2 |
---|---|---|---|---|
Osmotically active substance | 149.94 | 1.48 | 0.000 | 0.76 |
Potassium concentration | 4025.16 | 1.48 | 0.000 | 0.99 |
Process time | 2764.96 | 2.48 | 0.000 | 0.99 |
Process temperature | 56.90 | 1.48 | 0.000 | 0.54 |
Osmotically active substance × Potassium concentration | 35.45 | 1.48 | 0.000 | 0.43 |
Osmotically active substance × Process time | 89.80 | 2.48 | 0.000 | 0.79 |
Osmotically active substance × Process temperature | 0.85 | 1.48 | 0.361 | 0.02 |
Potassium concentration × Process time | 11.49 | 2.48 | 0.000 | 0.32 |
Potassium concentration × Process temperature | 45.91 | 1.48 | 0.000 | 0.49 |
Process time × Process temperature | 31.60 | 2.48 | 0.000 | 0.57 |
Osmotically active substance × Potassium concentration × Process time | 97.81 | 2.48 | 0.000 | 0.80 |
Osmotically active substance × Potassium concentration × Process temperature | 99.59 | 1.48 | 0.000 | 0.68 |
Osmotically active substance × Process time × Process temperature | 20.83 | 2.48 | 0.000 | 0.47 |
Potassium concentration × Process time × Process temperature | 13.68 | 2.48 | 0.000 | 0.36 |
Osmotically active substance × Potassium concentration × Process time × Process time × Process temperature | 28.87 | 2.48 | 0.000 | 0.55 |
Time and Temperature | IS50 | ES50 | |||
---|---|---|---|---|---|
Potassium Chloride 2.5% | Potassium Chloride 5.0% | Potassium Chloride 2.5% | Potassium Chloride 5.0% | ||
60 min | 30 °C | 5522.87 ± 77.45 aAxX | 8180.45 ± 125.97 aBxX | 4310.3 ± 118.71 bAxX | 6577.7 ± 124.56 bBxX |
50 °C | 6167.22 ± 106.12 aAxY | 8678.91 ± 176.66 aBxY | 3884.81 ± 92.52 bAxY | 7411.8 ± 206.08 bBxY | |
120 min | 30 °C | 8255.57 ± 172.62 aAyX | 9806.42 ± 122.88 aByX | 5684.87 ± 95.14 bAyX | 8284.48 ± 120.25 bByX |
50 °C | 7546.78 ± 158.32 aAyY | 10,742.22 ± 169.58 aByY | 8329.72 ± 96.25 bAyY | 11,008.4 ± 136.68 bByY | |
180 min | 30 °C | 6561.11 ± 72.23 aAzX | 9093.38 ± 225.15 aBzX | 7944.65 ± 117.87 bAzX | 12,078.18 ± 126.54 bBzX |
50 °C | 5280.45 ± 25.92 aAzY | 11,950.84 ± 230.99 aBzY | 5478.3 ± 105.9 aAzY | 10,546.49 ± 181.72 aBzY |
Time and Temperature | IS50 | ES50 | |||
---|---|---|---|---|---|
Potassium Chloride 2.5% | Potassium Chloride 5.0% | Potassium Chloride 2.5% | Potassium Chloride 5.0% | ||
60 min | 30 °C | 40.93 ± 0.57 aAxX | 31.54 ± 0.49 aBxX | 37.82 ± 1.04 bAxX | 26.29 ± 0.5 bBxX |
50 °C | 49.3 ± 0.85 aAxY | 32.8 ± 0.67 aBxX | 42.67 ± 1.02 bAxY | 26.19 ± 0.73 bBxX | |
120 min | 30 °C | 62.71 ± 1.31 aAyX | 37.81 ± 0.47 aByX | 53.58 ± 0.9 bAyX | 40.03 ± 0.58 bByX |
50 °C | 62.62 ± 1.31 aAyX | 38.83 ± 0.65 aByX | 65.89 ± 0.76 bAyY | 39.27 ± 0.49 aByX | |
180 min | 30 °C | 69.56 ± 0.77 aAzX | 39.22 ± 0.97 aBzX | 59.75 ± 0.89 bAzX | 44.11 ± 0.46 bBzX |
50 °C | 65.54 ± 0.32 aAzY | 41.66 ± 0.9 aBzY | 61.5 ± 1.19 bAzY | 40.87 ± 0.7 aByY |
Protein Content (g/100 g) | Fat Content (g/100 g) | Dietary Fiber Content (g/100 g) | DPPH (mg Trolox/100 g) | ABTS (mg Trolox/100 g) | ORAC (mg Trolox/100 g) | |
---|---|---|---|---|---|---|
1A | 1.24 ± 0.15 a | 0.12 ± 0.01 a | 1.76 ± 0.16 a | 108.35 ± 2.3 a | 36.85 ± 0.69 a | 242 ± 2.91 a |
2A | 8.73 ± 0.29 b | 0.73 ± 0.05 b | 7.56 ± 0.16 c | 248.58 ± 5.27 b | 88.5 ± 1.65 b | 686.95 ± 8.23 b |
1B | 1.32 ± 0.18 a | 0.12 ± 0.03 a | 1.74 ± 0.08 a | 75.65 ± 1.76 c | 26.54 ± 1.02 c | 174.99 ± 1.77 c |
2B | 8.56 ± 0.45 b | 0.7 ± 0.06 b | 7.92 ± 0.1 c | 196.68 ± 4.56 d | 71.38 ± 2.74 d | 428.37 ± 4.33 d |
1C | 1.32 ± 0.18 a | 0.19 ± 0.06 a | 1.62 ± 0.08 a | 109.77 ± 1.14 a | 27.17 ± 0.72 c | 176.04 ± 2.63 c |
2C | 8.42 ± 0.08 b | 0.73 ± 0.08 b | 7.8 ± 0.14 c | 249.98 ± 2.59 b | 75.06 ± 20 d | 519.34 ± 7.75 e |
1D | 1.1 ± 0.06 a | 0.09 ± 0.02 a | 1.69 ± 0.05 a | 81.35 ± 1.69 c | 21.42 ± 0.62 e | 176.54 ± 3.24 c |
2D | 8.24 ± 0.22 b | 0.61 ± 0.08 b | 7.58 ± 0.06 c | 219.7 ± 4.57 e | 61.45 ± 1.79 f | 417.67 ± 7.67 d |
1E | 1.72 ± 0.3 a | 0.27 ± 0.02 a | 2.37 ± 0.1 b | 242.07 ± 2.54 b | 63.24 ± 1.4 f | 1651.99 ± 17.40 f |
2F | 10.83 ± 0.94 c | 1.2 ± 0.06 c | 15.3 ± 0.41 d | 741.59 ± 7.77 f | 174.51 ± 3.87 g | 1883.48 ± 105.33 g |
Hardness [N] | Adhesiveness [N*s] | Springiness [%] | Cohesiveness | Gumminess | Chewiness | Resilience | |
---|---|---|---|---|---|---|---|
S1 | 112.42 ± 5.62 a | −0.18 ± 0.01 a | 0.44 ± 0.01 a | 0.27 ± 0.02 a | 3459.34 ± 169.13 a | 1673.2 ± 41.14 a | 0.19 ± 0.03 a |
S2 | 275.72 ± 4.06 b | −0.07 ± 0.08 a | 0.57 ± 0.07 a | 0.48 ± 0.03 b | 16003.19 ± 362.28 b | 10731.83 ± 743.09 b | 0.33 ± 0.02 b |
S3 | 104.87 ± 9.22 a | −0.06 ± 0.07 a | 0.46 ± 0.03 a | 0.3 ± 0.02 a | 3584.4 ± 634.89 a | 1857.56 ± 422.4 a | 0.21 ± 0.03 a |
S4 | 82.71 ± 3.72 c | −0.21 ± 0.05 a | 0.61 ± 0.16 a | 0.58 ± 0.15 b | 4502.26 ± 691.99 a | 2572.09 ± 715.81 e | 0.42 ± 0.13 c |
S5 | 109.96 ± 2.04 a | −0.15 ± 0.1 a | 0.49 ± 0.07 a | 0.34 ± 0.05 a | 3673.5 ± 241.41 a | 1772.29 ± 232.53 a | 0.25 ± 0.04 a |
S6 | 83.38 ± 4.76 c | −0.06 ± 0.05 a | 0.44 ± 0.06 a | 0.29 ± 0.04 a | 2808.86 ± 195.62 a | 1413.94 ± 73.65 ac | 0.19 ± 0.03 a |
S7 | 28.64 ± 1.79 d | −0.15 ± 0.04 a | 0.68 ± 0.03 b | 0.64 ± 0.07 b | 1740.31 ± 199.34 c | 1106.17 ± 93.23 cd | 0.37 ± 0.09 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulczyński, B.; Suliburska, J.; Gramza-Michałowska, A.; Sidor, A.; Kowalczewski, P.Ł.; Brzozowska, A. The Effect of Osmotic Dehydration Conditions on the Potassium Content in Beetroot (Beta vulgaris L.). Molecules 2024, 29, 5509. https://doi.org/10.3390/molecules29235509
Kulczyński B, Suliburska J, Gramza-Michałowska A, Sidor A, Kowalczewski PŁ, Brzozowska A. The Effect of Osmotic Dehydration Conditions on the Potassium Content in Beetroot (Beta vulgaris L.). Molecules. 2024; 29(23):5509. https://doi.org/10.3390/molecules29235509
Chicago/Turabian StyleKulczyński, Bartosz, Joanna Suliburska, Anna Gramza-Michałowska, Andrzej Sidor, Przemysław Łukasz Kowalczewski, and Anna Brzozowska. 2024. "The Effect of Osmotic Dehydration Conditions on the Potassium Content in Beetroot (Beta vulgaris L.)" Molecules 29, no. 23: 5509. https://doi.org/10.3390/molecules29235509
APA StyleKulczyński, B., Suliburska, J., Gramza-Michałowska, A., Sidor, A., Kowalczewski, P. Ł., & Brzozowska, A. (2024). The Effect of Osmotic Dehydration Conditions on the Potassium Content in Beetroot (Beta vulgaris L.). Molecules, 29(23), 5509. https://doi.org/10.3390/molecules29235509