New Antioxidant Caffeate Esters of Fatty Alcohols Identified in Robinia pseudoacacia
Abstract
:1. Introduction
2. Results and Discussion
2.1. RP-HPTLC–DPPH• Assay Screening and Assignment by RP-HPTLC–HESI-HRMS
2.2. Fractionation by Solid-Phase Extraction and Isolation by RP-HPLC–DAD
2.3. Results of NMR and ATR-FTIR Spectra Recording
- Oleyl caffeate (R2): IR (ATR) νmax 2924, 2854, 1712, 1593, 1509, 1460, 1370, 1263, 1167, 1121, 1091, 1050, 1018 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 16.0 Hz, 1H, H-7′), 7.04 (d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.3, 2.1 Hz, 1H, H-5′), 6.78 (d, J = 8.1 Hz, 1H, H-4′), 6.25 (d, J = 15.9 Hz, 1H, H-8′), 5.34 (m, 2H, H-9, H-10), 4.17 (t, J = 6.6 Hz, 2H, H-1), 2.03 (m, 4H, H-8, H-11), 1.69 (p, J = 7.0 Hz, 2H, H-2), 1.41 (m, 2H, H-3), 1.29 (br s, 20H, H-4–H-7, H-12–H-17), 0.91 (m, 3H, H-18); 13C NMR (CD3OD, 151 MHz) δ (2D HSQC, HMBC) 169.5 (C, C-9′), 149.7 (C, C-3′), 146.9 (C, C-2′), 146.8 (CH, C-7′), 130.8 (CH, C-9), 130.8 (CH, C-10), 127.8 (C, C-6′), 122.9 (CH, C-5′), 116.6 (CH, C-4′), 115.3 (CH, C-8′), 115.1 (CH, C-1′), 65.6 (CH2, C-1), 33.2 (CH2, C-16), 30.9–30.2 (CH2, C-4–C-7, C-12–C-15), 29.8 (CH2, C-2), 28.0 (CH2, C-8, C-11), 27.1 (CH2, C-3), 23.4 (CH2, C-17), 14.4 (CH3, C-18)
- Octadecyl caffeate (R3): IR (ATR) νmax 3222, 2918, 2851, 1710, 1593, 1520, 1466, 1382, 1269, 1165, 1119, 1077, 1049 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 15.9 Hz, 1H, H-7′), 7.04 (d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.1, 2.1 Hz, 1H, H-5′), 6.78 (d, J = 8.2 Hz, 1H, H-4′), 6.25 (d, J = 15.9 Hz, 1H, H-8′), 4.17 (t, J = 6.6 Hz, 2H, H-1), 1.70 (p, J = 6.8 Hz, 2H, H-2), 1.41 (m, 2H, H-3), 1.29 (br s, 28H, H-4–H-17), 0.90 (t, J = 7.0 Hz, 3H, H-18); 13C NMR (CD3OD, 151 MHz) δ 169.4 (C, C-9′), 149.6 (C, C-3′), 146.8 (C, C-2′), 146.8 (CH, C-7′), 127.7 (C, C-6′), 122.9 (CH, C-5′), 116.5 (CH, C-4′), 115.2 (CH, C-8′), 115.1 (CH, C-1′), 65.6 (CH2, C-1), 33.1 (CH2, C-16), 30.8–30.6 (CH2, C-6–C-15), 30.5 (CH2, C-4), 30.3 (CH2, C-5), 29.8 (CH2, C-2), 27.1 (CH2, C-3), 23.7 (CH2, C-17), 14.4 (CH3, C-18)
- Gadoleyl caffeate (R4): IR (ATR) νmax 2925, 2854, 1713, 1683, 1648, 1592, 1540, 1459, 1347, 1266, 1165, 1122, 1050, 1013 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 16.0 Hz, 1H, H-7′), 7.04 (d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.1, 2.0 Hz, 1H, H-5′), 6.78 (d, J = 8.1 Hz, 1H, H-4′), 6.25 (d, J = 15.9 Hz, 1H, H-8′), 5.34 (m, 2H, H-9, H-10), 4.17 (t, J = 6.6 Hz, 2H, H-1), 2.03 (m, 4H, H-8, H-11), 1.69 (p, J = 7.1 Hz, 2H, H-2), 1.41 (m, 2H, H-3), 1.29 (br s, 24H, H-4–H-7, H-12–H-19), 0.91 (m, 3H, H-20); 13C NMR (CD3OD, 151 MHz) δ (2D HSQC, HMBC) 169.5 (C, C-9′), 149.6 (C, C-3′), 146.9 (C, C-2′), 146.8 (CH, C-7′), 130.8 (CH, C-9), 130.8 (CH, C-10), 127.8 (C, C-6′), 123.0 (CH, C-5′), 116.6 (CH, C-4′), 115.3 (CH, C-8′), 115.1 (CH, C-1′), 65.6 (CH2, C-1), 33.1 (CH2, C-18), 30.9–30.2 (CH2, C-4–C-7, C-12–C-17), 29.8 (CH2, C-2), 28.0 (CH2, C-8, C-11), 27.1 (CH2, C-3), 23.4 (CH2, C-19), 14.4 (CH3, C-20)
- Eicosanyl caffeate (R5): IR (ATR) νmax 3327, 2918, 2851, 1713, 1599, 1523, 1468, 1380, 1265, 1165, 1118, 1089, 1048 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 15.9 Hz, 1H, H-7′), 7.04 (d, J = 2.0 Hz, 1H, H-1′), 6.94 (dd, J = 8.3, 2.1 Hz, 1H, H-5′), 6.78 (d, J = 8.2 Hz, 1H, H-4′), 6.25 (d, J = 15.9 Hz, 1H, H-8′), 4.17 (t, J = 6.6 Hz, 2H, H-1), 1.70 (p, J = 6.9 Hz, 2H, H-2), 1.41 (m, 2H, H-3), 1.29 (br s, 32H, H-4–H-19), 0.90 (t, J = 7.0 Hz, 3H, H-20); 13C NMR (CD3OD, 151 MHz) δ (2D HSQC, HMBC) 169.5 (C, C-9′), 149.7 (C, C-3′), 146.9 (C, C-2′), 146.8 (CH, C-7′), 127.8 (C, C-6′), 122.9 (CH, C-5′), 116.5 (CH, C-4′), 115.2 (CH, C-8′), 115.1 (CH, C-1′), 65.6 (CH2, C-1), 33.1 (CH2, C-18), 30.8–30.0 (CH2, C-4–C-17), 29.8 (CH2, C-2), 27.1 (CH2, C-3), 23.7 (CH2, C-19), 14.4 (CH3, C-20)
- (Z)-9-docosenyl caffeate (R6): 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 16.0 Hz, 1H, H-7′), 7.04 (d, J = 2.0 Hz, 1H, H-1′), 6.94 (dd, J = 8.0, 1.7 Hz, 1H, H-5′), 6.78 (d, J = 8.1 Hz, 1H, H-4′), 6.25 (d, J = 15.9 Hz, 1H, H-8′), 5.34 (m, 2H, H-9, H-10), 4.17 (t, J = 6.5 Hz, 2H, H-1), 2.03 (m, 4H, H-8, H-11), 1.70 (m, 2H, H-2), 1.41 (m, 2H, H-3), 1.29 (br s, 28H, H-4–H-7, H-12–H-21), 0.90 (t, J = 6.7 Hz, 3H, H-22)
- Docosyl caffeate (R7): IR (ATR) νmax 2917, 2850, 1716, 1583, 1512, 1467, 1433, 1373, 1259, 1168, 1120, 1056 cm–1; 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 15.9 Hz, 1H, H-7′), 7.04 (d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.2, 2.1 Hz, 1H, H-5′), 6.78 (d, J = 8.2 Hz, 1H, H-4′), 6.25 (d, J = 15.8 Hz, 1H, H-8′), 4.17 (t, J = 6.6 Hz, 2H, H-1), 1.70 (p, J = 6.8 Hz, 2H, H-2), 1.40 (m, 2H, H-3), 1.29 (br s, 36H, H-4–H-21), 0.90 (t, J = 7.1 Hz, 3H, H-22); 13C NMR (CD3OD, 151 MHz) δ (2D HSQC, HMBC) 169.5 (C, C-9′), 149.7 (C, C-3′), 146.8 (C, C-2′), 146.6 (CH, C-7′), 127.8 (C, C-6′), 122.9 (CH, C-5′), 116.6 (CH, C-4′), 115.3 (CH, C-8′), 115.1 (CH, C-1′), 65.6 (CH2, C-1), 33.2 (CH2, C-20), 30.9–30.0 (CH2, C-4–C-19), 29.9 (CH2, C-2), 27.1 (CH2, C-3), 23.7 (CH2, C-21), 14.4 (CH3, C-22)
- Tetracosyl caffeate (R8): 1H NMR (CD3OD, 600 MHz) δ 7.53 (d, J = 15.8 Hz, 1H, H-7′), 7.04 (d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.0, 1.8 Hz, 1H, H-5′), 6.78 (d, J = 8.1 Hz, 1H, H-4′), 6.25 (d, J = 15.9 Hz, 1H, H-8′), 4.17 (t, J = 6.7 Hz, 2H, H-1), 1.70 (p, J = 6.9 Hz, 2H, H-2), 1.40 (m, 2H, H-3), 1.29 (br s, 40H, H-4–H-23), 0.90 (t, J = 6.8 Hz, 3H, H-24)
- Hexacosanyl caffeate (R9): 1H NMR (CD3OD, 600 MHz) for O-caffeoyl moiety δ 7.53 (d, J = 15.7 Hz, 1H, H-7′), 7.04 (d, J = 2.1 Hz, 1H, H-1′), 6.94 (dd, J = 8.0, 1.8 Hz, 1H, H-5′), 6.78 (d, J = 8.2 Hz, 1H, H-4′), 6.25 (d, J = 15.8 Hz, 1H, H-8′)
2.4. Structure Elucidation of the Isolated Compounds
2.5. GC–MS for Assignment of the Double Bond Position
2.6. Equivalency Calculation of the Antioxidant Activity of the Isolates by DPPH• Microplate Assay
2.7. Progress Achieved in Comparison to Literature
3. Materials and Methods
3.1. Materials
3.2. Sample Origin and Preparation
3.3. High-Performance Thin-Layer Chromatography, Derivatization, and DPPH• Assay
3.4. HPTLC–HESI-HRMS
3.5. Fractionation by Solid-Phase Extraction
3.6. Compound Isolation by HPLC–DAD–ESI-MS
3.7. NMR Spectroscopy
3.8. ATR-FTIR Spectroscopy
3.9. GC–MS
3.10. DPPH• Microplate Assay of Isolated Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puchałka, R.; Dyderski, M.K.; Vítková, M.; Sádlo, J.; Klisz, M.; Netsvetov, M.; Prokopuk, Y.; Matisons, R.; Mionskowski, M.; Wojda, T.; et al. Black Locust (Robinia pseudoacacia L.) Range Contraction and Expansion in Europe under Changing Climate. Glob. Chang. Biol. 2021, 27, 1587–1600. [Google Scholar] [CrossRef] [PubMed]
- Csiszár, Á.; Winkler, D.; Bartha, D.; Zagyvai, G. Diverse Interactions: Root-Nodule Formation and Herb-Layer Composition in Black Locust (Robinia pseudoacacia) Stands. Plants 2023, 12, 3253. [Google Scholar] [CrossRef]
- Botta-Dukat, Z.; Balogh, L.; Feher, A. The Most Important Invasive Plants in Hungary; Institute of Ecology and Botany; Hungarian Academy of Sciences: Budapest, Hungary, 2008. [Google Scholar]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black Locust (Robinia pseudoacacia) Beloved and Despised: A Story of an Invasive Tree in Central Europe. For. Ecol. Manage. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Motti, R.; Paura, B.; Cozzolino, A.; de Falco, B. Edible Flowers Used in Some Countries of the Mediterranean Basin: An Ethnobotanical Overview. Plants 2022, 11, 3272. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Zhao, X.; Yang, Y.; Li, B.; Zhu, F.; Zhu, R. Immune Enhancement of Taishan Robinia pseudoacacia Polysaccharide on Recombinant Proteus Mirabilis OmpA in Chickens. Int. Immunopharmacol. 2014, 22, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.; Kim, E.; Oh, K.; Kim, H.-J.; Dhakal, R.; Kim, Y.; Baek, K.-H. Bactericidal Effect of Extracts and Metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis Causing Dental Plaque and Periodontal Inflammatory Diseases. Molecules 2015, 20, 6128–6139. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, E. Quantitative and Qualitative Identification of Bioactive Compounds in Edible Flowers of Black and Bristly Locust and Their Antioxidant Activity. Biomolecules 2020, 10, 1603. [Google Scholar] [CrossRef]
- Uzelac, M.; Sladonja, B.; Šola, I.; Dudaš, S.; Bilić, J.; Famuyide, I.M.; McGaw, L.J.; Eloff, J.N.; Mikulic-Petkovsek, M.; Poljuha, D. Invasive Alien Species as a Potential Source of Phytopharmaceuticals: Phenolic Composition and Antimicrobial and Cytotoxic Activity of Robinia pseudoacacia L. Leaf and Flower Extracts. Plants 2023, 12, 2715. [Google Scholar] [CrossRef]
- Obistioiu, D.; Cocan, I.; Tîrziu, E.; Herman, V.; Negrea, M.; Cucerzan, A.; Neacsu, A.-G.; Cozma, A.L.; Nichita, I.; Hulea, A.; et al. Phytochemical Profile and Microbiological Activity of Some Plants Belonging to the Fabaceae Family. Antibiotics 2021, 10, 662. [Google Scholar] [CrossRef]
- Truchado, P.; Ferreres, F.; Bortolotti, L.; Sabatini, A.G.; Tomás-Barberán, F.A. Nectar Flavonol Rhamnosides Are Floral Markers of Acacia (Robinia pseudacacia) Honey. J. Agric. Food Chem. 2008, 56, 8815–8824. [Google Scholar] [CrossRef]
- Tian, F.; Chang, C.-J.; Grutzner, J.B.; Nichols, D.E.; McLaughlin, J.L. Robinlin: A Novel Bioactive Homo-Monoterpene from Robinia pseudoacacia L. (Fabaceae). Bioorg. Med. Chem. Lett. 2001, 11, 2603–2606. [Google Scholar] [CrossRef] [PubMed]
- Amorim, C.; Silvério, S.C.; Prather, K.L.J.; Rodrigues, L.R. From Lignocellulosic Residues to Market: Production and Commercial Potential of Xylooligosaccharides. Biotechnol. Adv. 2019, 37, 107397. [Google Scholar] [CrossRef] [PubMed]
- Kamperidou, V.; Terzopoulou, P.; Barboutis, I. Marginal Lands Providing Tree-crop Biomass as Feedstock for Solid Biofuels. Biofuels Bioprod. Biorefining 2021, 15, 1395–1405. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Gullón, B.; Lobato-Rodríguez, Á.; Garrote, G.; del Río, P.G. Microwave-Assisted Extraction of Hemicellulosic Oligosaccharides and Phenolics from Robinia pseudoacacia Wood. Carbohydr. Polym. 2023, 301, 120364. [Google Scholar] [CrossRef]
- Sergent, T.; Kohnen, S.; Jourez, B.; Beauve, C.; Schneider, Y.-J.; Vincke, C. Characterization of Black Locust (Robinia pseudoacacia L.) Heartwood Extractives: Identification of Resveratrol and Piceatannol. Wood Sci. Technol. 2014, 48, 1005–1017. [Google Scholar] [CrossRef]
- Vek, V.; Poljanšek, I.; Oven, P. Efficiency of Three Conventional Methods for Extraction of Dihydrorobinetin and Robinetin from Wood of Black Locust. Eur. J. Wood Wood Prod. 2019, 77, 891–901. [Google Scholar] [CrossRef]
- Magel, E.; Jay-Allemand, C.; Ziegler, H. Formation of Heartwood Substances in the Stemwood of Robinia pseudoacacia L. II. Distribution of Nonstructural Carbohydrates and Wood Extractives across the Trunk. Trees 1994, 8, 165–171. [Google Scholar] [CrossRef]
- Putman, L.J.; Laks, P.E.; Pruner, M.S. Chemical Constituents of Black Locust Bark and Their Biocidal Activity. Holzforschung 1989, 43, 219–224. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Saeed-ur-Rahman; Bilal, M.; Huang, D. Role of Flavonoids in Plant Interactions with the Environment and against Human Pathogens—A Review. J. Integr. Agric. 2019, 18, 211–230. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, X.; Zhao, Y.; Wang, L.; Wang, Y. Adaptive Response of Flavonoids in Robinia pseudoacacia L. Affected by the Contamination of Cadmium and Elevated CO2 to Arbuscular Mycorrhizal Symbiosis. Ecotoxicol. Environ. Saf. 2023, 263, 115379. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Krüger, S.; Urmann, O.; Morlock, G.E. Development of a Planar Chromatographic Method for Quantitation of Anthocyanes in Pomace, Feed, Juice and Wine. J. Chromatogr. A 2013, 1289, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Krüger, S.; Hüsken, L.; Fornasari, R.; Scainelli, I.; Morlock, G.E. Effect-Directed Fingerprints of 77 Botanical Extracts via a Generic High-Performance Thin-Layer Chromatography Method Combined with Assays and Mass Spectrometry. J. Chromatogr. A 2017, 1529, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Inarejos-Garcia, A.M.; Heil, J.; Martorell, P.; Álvarez, B.; Llopis, S.; Helbig, I.; Liu, J.; Quebbeman, B.; Nemeth, T.; Holmgren, D.; et al. Effect-Directed, Chemical and Taxonomic Profiling of Peppermint Proprietary Varieties and Corresponding Leaf Extracts. Antioxidants 2023, 12, 476. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Ott, P.G.; Häbe, T.T.; Darcsi, A.; Böszörményi, A.; Alberti, Á.; Krüzselyi, D.; Csontos, P.; Béni, S.; Morlock, G.E. Effect-Directed Discovery of Bioactive Compounds Followed by Highly Targeted Characterization, Isolation and Identification, Exemplarily Shown for Solidago virgaurea. Anal. Chem. 2016, 88, 8202–8209. [Google Scholar] [CrossRef] [PubMed]
- Uwai, K.; Osanai, Y.; Imaizumi, T.; Kanno, S.; Takeshita, M.; Ishikawa, M. Inhibitory Effect of the Alkyl Side Chain of Caffeic Acid Analogues on Lipopolysaccharide-Induced Nitric Oxide Production in RAW264.7 Macrophages. Bioorg. Med. Chem. 2008, 16, 7795–7803. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Bang Tam, H.T.; Chen, W.-S.; Kong, D.-Y.; Li, H.-T.; Wang, Y.-H.; Fouraste, I. Two New Caffeoyl Conjugation from Erigeron breviscapus. J. Asian Nat. Prod. Res. 2000, 2, 283–288. [Google Scholar] [CrossRef]
- Marealle, A.I.; Innocent, E.; Andrae-Marobela, K.; Qwarse, M.; Machumi, F.; Nondo, R.S.O.; Heydenreich, M.; Moshi, M.J. Safety Evaluation and Bioassay-Guided Isolation of Antimycobacterial Compounds from Morella salicifolia Root Ethanolic Extract. J. Ethnopharmacol. 2022, 296, 115501. [Google Scholar] [CrossRef]
- Pan, H.; Lundgren, L.N.; Andersson, R. Triterpene Caffeates from Bark of Betula pubescens. Phytochemistry 1994, 37, 795–799. [Google Scholar] [CrossRef]
- Menezes, J.C.J.M.D.S.; Edraki, N.; Kamat, S.P.; Khoshneviszadeh, M.; Kayani, Z.; Mirzaei, H.H.; Miri, R.; Erfani, N.; Nejati, M.; Cavaleiro, J.A.S.; et al. Long Chain Alkyl Esters of Hydroxycinnamic Acids as Promising Anticancer Agents: Selective Induction of Apoptosis in Cancer Cells. J. Agric. Food Chem. 2017, 65, 7228–7239. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Deepak, M.; Setty, M.; D’Souza, P.; Agarwal, A.; Sangli, G.K. Bioactive Caffeic Acid Esters from Glycyrrhiza glabra. Nat. Prod. Res. 2009, 23, 1657–1663. [Google Scholar] [CrossRef] [PubMed]
- Velazquez Cruz, M.; Salinas-Arellano, E.; Castro Dionicio, I.; Jeyaraj, J.G.; Mirtallo Ezzone, N.P.; Carcache de Blanco, E.J. Bioactive Compounds Isolated from the Bark of Aesculus glabra Willd. Phytochem. Lett. 2024, 61, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Tabakam, G.T.; Kodama, T.; Donfack, A.R.N.; Nguekeu, Y.M.M.; Nomin-Erdene, B.; Htoo, Z.P.; Do, K.M.; Ngouela, S.A.; Tene, M.; Morita, H.; et al. A New Caffeic Acid Ester and a New Ceramide from the Roots of Eriosema glomeratum. Phytochem. Lett. 2021, 45, 82–87. [Google Scholar] [CrossRef]
- Menezes, J.C.J.M.D.S.; Kamat, S.P.; Cavaleiro, J.A.S.; Gaspar, A.; Garrido, J.; Borges, F. Synthesis and Antioxidant Activity of Long Chain Alkyl Hydroxycinnamates. Eur. J. Med. Chem. 2011, 46, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasam, B.; Vanisree, M.; Zhang, Y.; Dewitt, D.L.; Nair, M.G. Impact of Alkyl Esters of Caffeic and Ferulic Acids on Tumor Cell Proliferation, Cyclooxygenase Enzyme, and Lipid Peroxidation. J. Agric. Food Chem. 2006, 54, 5375–5381. [Google Scholar] [CrossRef]
- Saha, M.M.; Mallik, U.K.; Mallik, A.K. A Chromenoflavanone and Two Caffeic Esters from Pongamia glabra. Phytochemistry 1991, 30, 3834–3836. [Google Scholar] [CrossRef]
- Hamburger, M.; Riese, U.; Graf, H.; Melzig, M.F.; Ciesielski, S.; Baumann, D.; Dittmann, K.; Wegner, C. Constituents in Evening Primrose Oil with Radical Scavenging, Cyclooxygenase, and Neutrophil Elastase Inhibitory Activities. J. Agric. Food Chem. 2002, 50, 5533–5538. [Google Scholar] [CrossRef]
- Qi, S.-Z.; Liu, T.; Wang, M.; Zhang, X.-X.; Yang, Y.-R.; Jing, W.-H.; Long, L.-P.; Song, K.-R.; Jin, Y.; Gao, H.-Y. New Phenylpropanoid-Conjugated Pentacyclic Triterpenoids from the Whole Plants of Leptopus lolonum with Their Antiproliferative Activities on Cancer Cells. Bioorg. Chem. 2021, 107, 104628. [Google Scholar] [CrossRef]
- Liao, C.-R.; Kuo, Y.-H.; Ho, Y.-L.; Wang, C.-Y.; Yang, C.; Lin, C.-W.; Chang, Y.-S. Studies on Cytotoxic Constituents from the Leaves of Elaeagnus oldhamii Maxim. in Non-Small Cell Lung Cancer A549 Cells. Molecules 2014, 19, 9515–9534. [Google Scholar] [CrossRef]
- Eom, H.J.; Kang, H.R.; Choi, S.U.; Kim, K.H. Cytotoxic Triterpenoids from the Barks of Betula platyphylla var. japonica. Chem. Biodivers. 2017, 14, e1600400. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Larsen, L.; Burgess, E.J.; Jensen, D.J.; Cooney, J.M.; Evers, D.; Zhang, J.; Perry, N.B.; Laing, W.A. Unusual Immuno-Modulatory Triterpene-Caffeates in the Skins of Russeted Varieties of Apples and Pears. J. Agric. Food Chem. 2013, 61, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Zarev, Y. Isolation and Characterization of 3- O-Caffeoyloleanolic Acid from Robinia pseudoacacia Stem Bark. Pharmacia 2023, 70, 1209–1212. [Google Scholar] [CrossRef]
- Al Ibrahim, M.; Akissi, Z.L.E.; Desmarets, L.; Lefèvre, G.; Samaillie, J.; Raczkiewicz, I.; Sahpaz, S.; Dubuisson, J.; Belouzard, S.; Rivière, C.; et al. Discovery of Anti-Coronavirus Cinnamoyl Triterpenoids Isolated from Hippophae rhamnoides during a Screening of Halophytes from the North Sea and Channel Coasts in Northern France. Int. J. Mol. Sci. 2023, 24, 16617. [Google Scholar] [CrossRef] [PubMed]
- Tanachatchairatana, T.; Bremner, J.B.; Chokchaisiri, R.; Suksamrarn, A. Antimycobacterial Activity of Cinnamate-Based Esters of the Triterpenes Betulinic, Oleanolic and Ursolic Acids. Chem. Pharm. Bull. 2008, 56, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-G.; Li, H.-R.; Wang, L.-Y.; Li, Y.-H.; Lu, S.-G.; Wen, X.-F.; Wang, J.; Daikonya, A.; Kitanaka, S. Triterpenoids from Hippophae rhamnoides L. and Their Nitric Oxide Production-Inhibitory and DPPH Radical-Scavenging Activities. Chem. Pharm. Bull. 2007, 55, 15–18. [Google Scholar] [CrossRef]
- Chen, P.-C.; Dlamini, B.S.; Chen, C.-R.; Shih, W.-L.; Lee, C.-H.; Chang, C.-I. Inhibitory Potential of Chemical Constituents from Paeonia suffruticosa Against α-Glucosidase and α-Amylase. Pharm. Chem. J. 2022, 56, 821–826. [Google Scholar] [CrossRef]
- Lv, J.; Duan, J.; Shen, B.; Yin, Y. Caffeic Acid Esters from Artemisia argyi and Their Antioxidant Activities. Chem. Nat. Compd. 2013, 49, 8–11. [Google Scholar] [CrossRef]
- Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Demonstration of Long-chain n-Alkyl Caffeates and Δ7-steryl Glucosides in the Bark of Acacia Species by Gas Chromatography–Mass Spectrometry. Phytochem. Anal. 2007, 18, 151–156. [Google Scholar] [CrossRef]
- Saraux, N.; Imeri, D.; Quirós-Guerrero, L.; Karimou, S.; Christen, P.; Cuendet, M. Phytochemical Investigation of the Roots of Ipomoea asarifolia and Antiproliferative Activity of the Isolated Compounds against Multiple Myeloma Cells. J. Nat. Prod. 2022, 85, 56–62. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Li, X.; Jiang, H.; Ma, Q.; Wang, P.; Liu, Y.; Hu, J.; Zheng, Y.; Zhou, J.; et al. Phenols with Anti-HIV Activity from Daphne acutiloba. Planta Med. 2012, 78, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ma, Q.; Huang, S.; Liang, W.; Wang, P.; Hu, J.; Zhou, J.; Zhao, Y. A New Guaiane-type Sesquiterpene with 15 Known Compounds from Wikstroemia scytophylla Diels. Chin. J. Chem. 2012, 30, 1335–1338. [Google Scholar] [CrossRef]
- Komatsu, M.; Yokoe, I.; Shirataki, Y. Studies on the Constituents of Sophora Species. XIII. Constituents of the Aerial Parts of Sophora tomentosa L. Chem. Pharm. Bull. 1978, 26, 3863–3870. [Google Scholar] [CrossRef] [PubMed]
- Iinuma, M.; Tanaka, T.; Mizuno, M.; Lang, F.A. Two Flavanones from Roots of Sophora leachiana. Phytochemistry 1992, 31, 721–723. [Google Scholar] [CrossRef]
- Han, J.; Weng, X.; Bi, K. Antioxidants from a Chinese Medicinal Herb—Lithospermum erythrorhizon. Food Chem. 2008, 106, 2–10. [Google Scholar] [CrossRef]
- Badawy, A.; Hassanean, H.; Ibrahim, A.K.; Habib, E.S.; El-Magd, M.A.; Ahmed, S.A. Isolates from Thymelaea hirsuta Inhibit Progression of Hepatocellular Carcinoma In Vitro And In Vivo. Nat. Prod. Res. 2021, 35, 1799–1807. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Tel-Çayan, G.; Öztürk, M.; Duru, M.E.; Nadeem, S.; Anis, I.; Ng, S.W.; Shah, M.R. Phytochemicals from Dodonaea viscosa and Their Antioxidant and Anticholinesterase Activities with Structure–Activity Relationships. Pharm. Biol. 2016, 54, 1649–1655. [Google Scholar] [CrossRef]
- Mumtaz, A.; Mohammad, A.; Khair, Z.; Habib, A.; Nazia, A.; Itrat, A.; Shah, M.R. Antiproliferative Activity and Chemical Constituents of Hypericum oblongifolium. J. Chem. Soc. Pak. 2011, 33, 772–777. [Google Scholar]
- Khan, R.; Malik, A.; Adhikari, A.; Qadir, M.I.; Choudhary, M.I. Conferols A and B, New Anti-Inflammatory 4-Hydroxyisoflavones from Caragana conferta. Chem. Pharm. Bull. 2009, 57, 415–417. [Google Scholar] [CrossRef]
- Yodsaoue, O.; Karalai, C.; Ponglimanont, C.; Tewtrakul, S.; Chantrapromma, S. Potential Anti-Inflammatory Diterpenoids from the Roots of Caesalpinia mimosoides Lamk. Phytochemistry 2010, 71, 1756–1764. [Google Scholar] [CrossRef]
- Ibrar, A.; Khan, I.; Abbas, N. Structurally Diversified Heterocycles and Related Privileged Scaffolds as Potential Urease Inhibitors: A Brief Overview. Arch. Pharm. 2013, 346, 423–446. [Google Scholar] [CrossRef]
- Du, H.; Wang, Y.; Hao, X.; Li, C.; Peng, Y.; Wang, J.; Liu, H.; Zhou, L. Antimicrobial Phenolic Compounds from Anabasis aphylla L. Nat. Prod. Commun. 2009, 4, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Tchuenmogne, A.M.T.; Donfack, E.V.; Kongue, M.D.T.; Lenta, B.N.; Ngouela, S.; Tsamo, E.; Sidhu, N.; Dittrich, B.; Laatsch, H. Ingacamerounol, A New Flavonol and Other Chemical Constituents from Leaves and Stem Bark of Inga edulis Mart. Bull. Korean Chem. Soc. 2013, 34, 3859–3862. [Google Scholar] [CrossRef]
- Wu, P.-L.; Wu, T.-S.; He, C.-X.; Su, C.-H.; Lee, K.-H. Constituents from the Stems of Hibiscus taiwanensis. Chem. Pharm. Bull. 2005, 53, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Daniels, D.G.H.; Martin, H.F. Antioxidants in Oats: Mono-esters of Caffeic and Ferulic Acids. J. Sci. Food Agric. 1967, 18, 589–595. [Google Scholar] [CrossRef]
- Sonar, V.P.; Corona, A.; Distinto, S.; Maccioni, E.; Meleddu, R.; Fois, B.; Floris, C.; Malpure, N.V.; Alcaro, S.; Tramontano, E.; et al. Natural Product-Inspired Esters and Amides of Ferulic and Caffeic Acid as Dual Inhibitors of HIV-1 Reverse Transcriptase. Eur. J. Med. Chem. 2017, 130, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, M.M.; Lima, V.S.; Junior, M.R.M. Phenolic compounds: Structure, classification, and antioxidant power. In Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. [Google Scholar]
- Gao, Q.; Li, Y.; Li, Y.; Zhang, Z.; Liang, Y. Antioxidant and Prooxidant Activities of Phenolic Acids Commonly Existed in Vegetables and Their Relationship with Structures. Food Sci. Technol. 2022, 42, e07622. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Falcão, A.; Alves, G.; Silva, L.R.; Flores-Félix, J.D. Antioxidant Activity of the Main Phenolics Found in Red Fruits: An in Vitro and in Silico Study. Food Chem. 2024, 452, 139459. [Google Scholar] [CrossRef]
- Nenadis, N.; Lazaridou, O.; Tsimidou, M.Z. Use of Reference Compounds in Antioxidant Activity Assessment. J. Agric. Food Chem. 2007, 55, 5452–5460. [Google Scholar] [CrossRef]
- Jork, H.; Funk, W.; Fischer, W.; Wimmer, H.; Burns, D.T. Thin-Layer Chromatography: Reagents and Detection Methods; VCH: Weinheim, Germany, 1990. [Google Scholar]
- Móricz, Á.M.; Ott, P.G.; Morlock, G.E. Discovered Acetylcholinesterase Inhibition and Antibacterial Activity of Polyacetylenes in Tansy Root Extract via Effect-Directed Chromatographic Fingerprints. J. Chromatogr. A 2018, 1543, 73–80. [Google Scholar] [CrossRef]
- Schreiner, T.; Sauter, D.; Friz, M.; Heil, J.; Morlock, G.E. Is Our Natural Food Our Homeostasis? Array of a Thousand Effect-Directed Profiles of 68 Herbs and Spices. Front. Pharmacol. 2021, 12, 755941. [Google Scholar] [CrossRef] [PubMed]
Isolates | hRF | Observed m/z [M−H]− | Theoretical m/z [M−H]− | Error (ppm) | Proposed Molecular Formula | Isolated Amount (mg) | Assignment |
---|---|---|---|---|---|---|---|
R1 | 68 | 617.3848 | 617.3848 | 0.1 | C39H54O6 | 2.1 | 3-O-caffeoyl oleanolic acid |
R2 | 54 | 429.3005 | 429.3010 | −1.2 | C27H42O4 | 1.3 | oleyl caffeate |
R3 | 46 | 431.3162 | 431.3167 | −1.2 | C27H44O4 | 2.3 | octadecyl caffeate |
R4 | 42 | 457.3318 | 457.3323 | −1.1 | C29H46O4 | 2.0 | gadoleyl caffeate |
R5 | 33 | 459.3475 | 459.3480 | −1.1 | C29H48O4 | 1.7 | eicosanyl caffeate |
R6 | 37 | 485.3631 | 485.3636 | −1.0 | C31H50O4 | 0.6 | (Z)-9-docosenyl caffeate |
R7 | 28 | 487.3788 | 487.3793 | −1.0 | C31H52O4 | 1.4 | docosyl caffeate |
R8 | 22 | 515.4101 | 515.4106 | −1.0 | C33H56O4 | 0.9 | tetracosyl caffeate |
R9 | 16 | 543.4414 | 543.4419 | −0.9 | C35H60O4 | 0.9 | hexacosanyl caffeate |
Position | δH (J in Hz) | δC, Type |
---|---|---|
1a | 1.69 (m, 1H) | 39.4, CH2 |
1b | 1.10 (m, 1H) | |
2a | 1.72 (m, 1H) | 24.7, CH2 |
2b | 1.67 (m, 1H) | |
3 | 4.57 (dd, J = 11.5, 4.3 Hz, 1H) | 82.3, CH |
4 | - | 39.0, C |
5 | 0.91 (m, 1H) | 56.8, CH |
6a | 1.59 (m, 1H) | 19.4, CH2 |
6b | 1.47 (m, 1H) | |
7a | 1.56 (m, 1H) | 33.9, CH2 |
7b | 1.34 (m, 1H) | |
8 | - | 40.6, C |
9 | 1.66 (m, 1H) | 49.1, CH |
10 | - | 38.2, C |
11 | 1.92 (m, 2H) | 24.5, CH2 |
12 | 5.26 (t, J = 3.6 Hz, 1H) | 123.5, CH |
13 | - | 145.3, C |
14 | - | 42.9, C |
15a | 1.79 (m, 1H) | 28.9, CH2 |
15b | 1.09 (m, 1H) | |
16a | 2.02 (td, J = 13.5, 3.5 Hz, 1H) | 24.1, CH2 |
16b | 1.60 (m, 1H) | |
17 | - | 47.7, C |
18 | 2.86 (dd, J = 13.9, 4.6 Hz, 1H) | 42.8, CH |
19a | 1.70 (m, 1H) | 47.3, CH2 |
19b | 1.14 (m, 1H) | |
20 | - | 31.6, C |
21a | 1.40 (td, J = 13.8, 3.8 Hz, 1H) | 34.9, CH2 |
21b | 1.20 (m, 1H) | |
22a | 1.77 (m, 1H) | 33.9, CH2 |
22b | 1.55 (m, 1H) | |
23 | 0.91 (s, 3H) | 28.7, CH3 |
24 | 0.97 (s, 3H) | 17.3, CH3 |
25 | 1.01 (s, 3H) | 15.9, CH3 |
26 | 0.84 (s, 3H) | 17.7, CH3 |
27 | 1.19 (s, 3H) | 26.4, CH3 |
28 | - | 182.1, C |
29 | 0.91 (s, 3H) | 33.6, CH3 |
30 | 0.95 (s, 3H) | 24.0, CH3 |
1′ | 7.03 (d, J = 2.0 Hz, 1H) | 115.1, CH |
2′ | - | 146.7, C |
3′ | - | 149.6, C |
4′ | 6.78 (d, J = 8.2 Hz, 1H) | 116.5, CH |
5′ | 6.94 (dd, J = 8.2, 2.1 Hz, 1H) | 122.9, CH |
6′ | - | 127.8, C |
7′ | 7.52 (d, J = 15.8 Hz, 1H) | 146.7, CH |
8′ | 6.24 (d, J = 15.9 Hz, 1H) | 115.6, CH |
9′ | - | 169.2, C |
Isolate | Mass Equivalency Caffeic Acid/Isolate (mg/mg ± SD) | Molar Equivalency Caffeic Acid/Isolate (mol/mol ± SD) |
---|---|---|
R1 | 0.35 ± 0.008 | 1.20 ± 0.024 |
R2 | 0.20 ± 0.005 | 0.49 ± 0.011 |
R3 | 0.19 ± 0.003 | 0.47 ± 0.007 |
R4 | 0.24 ± 0.002 | 0.61 ± 0.005 |
R5 | 0.26 ± 0.007 | 0.67 ± 0.018 |
R6 | 0.13 ± 0.003 | 0.35 ± 0.007 |
R7 | 0.17 ± 0.007 | 0.47 ± 0.021 |
R8 | 0.10 ± 0.003 | 0.29 ± 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Móricz, Á.M.; Baglyas, M.; Darcsi, A.; Balla, J.; Morlock, G.E. New Antioxidant Caffeate Esters of Fatty Alcohols Identified in Robinia pseudoacacia. Molecules 2024, 29, 5673. https://doi.org/10.3390/molecules29235673
Móricz ÁM, Baglyas M, Darcsi A, Balla J, Morlock GE. New Antioxidant Caffeate Esters of Fatty Alcohols Identified in Robinia pseudoacacia. Molecules. 2024; 29(23):5673. https://doi.org/10.3390/molecules29235673
Chicago/Turabian StyleMóricz, Ágnes M., Márton Baglyas, András Darcsi, József Balla, and Gertrud E. Morlock. 2024. "New Antioxidant Caffeate Esters of Fatty Alcohols Identified in Robinia pseudoacacia" Molecules 29, no. 23: 5673. https://doi.org/10.3390/molecules29235673
APA StyleMóricz, Á. M., Baglyas, M., Darcsi, A., Balla, J., & Morlock, G. E. (2024). New Antioxidant Caffeate Esters of Fatty Alcohols Identified in Robinia pseudoacacia. Molecules, 29(23), 5673. https://doi.org/10.3390/molecules29235673