Seedless and Surfactant-Free Synthesis of Polyhedron Gold Nanocrystals Enclosed by High-Index Facets for Enhanced Electrochemical Detection of Benzoyl Peroxide in Flour
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the HIF-Au NCs
2.2. Evaluating the Electrochemical Oxidation Activity of the HIF-Au NCs
2.3. Electrochemical Sensing Application of the HIF-Au NCs
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the HIF-Au NCs
3.3. Characterizations
3.4. SERS Measurement
3.5. Preparation of the HIF-Au NC-Modified Electrodes
3.6. Application of the Method in the BPO-Spiked Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Wang, L.; Yang, Y.; Gaskin, P.; Teng, K.S. Recent Advances on Electrochemical Sensors for the Detection of Organic Disinfection Byproducts in Water. ACS Sens. 2019, 4, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- Castle, L.M.; Schuh, D.A.; Reynolds, E.E.; Furst, A.L. Electrochemical Sensors to Detect Bacterial Foodborne Pathogens. ACS Sens. 2021, 6, 1717–1730. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, J.; Chen, L.; Lin, H.; Han, D.; Bao, Y.; Wang, W.; Niu, L. A Wearable Electrochemical Biosensor Utilizing Functionalized Ti3C2Tx MXene for the Real-Time Monitoring of Uric Acid Metabolite. Anal. Chem. 2024, 96, 3914–3924. [Google Scholar] [CrossRef]
- Klimuntowski, M.; Alam, M.M.; Singh, G.; Howlader, M.M.R. Electrochemical Sensing of Cannabinoids in Biofluids: A Noninvasive Tool for Drug Detection. ACS Sens. 2020, 5, 620–636. [Google Scholar] [CrossRef]
- Herrald, A.L.; Ambrogi, E.K.; Mirica, K.A. Electrochemical Detection of Gasotransmitters: Status and Roadmap. ACS Sens. 2024, 9, 1682–1705. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Iglesias, F.J.; Solla-Gullón, J.; Feliu, J.M. Recent Advances in the Use of Shape-Controlled Metal Nanoparticles in Electrocatalysis. In Nanomaterials for Fuel Cell Catalysis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 31–92. [Google Scholar]
- Smina, N.; Rosen, A.; Sztaberek, L.; Beatrez, W.; Kingsbury, K.; Troia, R.; Wang, Y.; Zhao, J.; Schrier, J.; Koenigsmann, C. Enhanced Electrocatalytic Oxidation of Small Organic Molecules on Platinum-Gold Nanowires: Influence of the Surface Structure and Pt-Pt/Pt-Au Pair Site Density. ACS Appl. Mater. Interfaces 2021, 13, 59892–59903. [Google Scholar] [CrossRef]
- Nuti, S.; Fernandez-Lodeiro, J.; Palomo, J.M.; Capelo-Martinez, J.L.; Lodeiro, C.; Fernandez-Lodeiro, A. Synthesis, Structural Analysis, and Peroxidase-Mimicking Activity of AuPt Branched Nanoparticles. Nanomaterials 2024, 14, 1166. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Han, X.; Guo, X.; Huang, H.; Kang, K.; Zhao, P.; Xie, S. Wet-Chemical Synthesis of Concave Hexoctahedral Pd and Pd@Pt Nanocrystals for Methanol Electrooxidation. Inorg. Chem. 2024, 63, 11424–11430. [Google Scholar] [CrossRef]
- Petrucci, R.; Bortolami, M.; Di Matteo, P.; Curulli, A. Gold Nanomaterials-Based Electrochemical Sensors and Biosensors for Phenolic Antioxidants Detection: Recent Advances. Nanomaterials 2022, 12, 959. [Google Scholar] [CrossRef]
- Kuttiyiel, K.A.; Sasaki, K.; Su, D.; Wu, L.; Zhu, Y.; Adzic, R.R. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat. Commun. 2014, 5, 5185. [Google Scholar] [CrossRef]
- Pedireddy, S.; Lee, H.K.; Tjiu, W.W.; Phang, I.Y.; Tan, H.R.; Chua, S.Q.; Troadec, C.; Ling, X.Y. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance. Nat. Commun. 2014, 5, 4947. [Google Scholar] [CrossRef]
- Sherard, M.M.; Kaplan, J.S.; Simpson, J.H.; Kittredge, K.W.; Leopold, M.C. Functionalized Gold Nanoparticles and Halogen Bonding Interactions Involving Fentanyl and Fentanyl Derivatives. Nanomaterials 2024, 14, 917. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, G.; Alsadig, A.; Chiriacò, M.S.; Turco, A.; Foscarini, A.; Ferrara, F.; Gigli, G.; Primiceri, E. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta 2024, 268, 125280. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wiley, B.J.; Xia, Y. Nanocrystals with unconventional shapes—A class of promising catalysts. Angew. Chem.-Int. Ed. 2007, 46, 7157–7159. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Miao, T.; Zhang, P.; Bi, C.; Xia, H.; Wang, D.; Tao, X. {331}-Faceted trisoctahedral gold nanocrystals: Synthesis, superior electrocatalytic performance and highly efficient SERS activity. Nanoscale 2015, 7, 8405–8415. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Jin, Y.; Zhao, S.; Wang, K.; Martinez-Alanis, P.R.; Cabot, A. Electrocatalytic Oxidation of Benzaldehyde on Gold Nanoparticles Supported on Titanium Dioxide. Nanomaterials 2024, 14, 1005. [Google Scholar] [CrossRef]
- Zhang, J.; Xi, C.; Feng, C.; Xia, H.; Wang, D.; Tao, X. High Yield Seedless Synthesis of High-Quality Gold Nanocrystals with Various Shapes. Langmuir 2014, 30, 2480–2489. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C. Controlled growth of concave gold nanobars with high surface-enhanced Raman-scattering and excellent catalytic activities. Nanoscale 2013, 5, 5794–5800. [Google Scholar] [CrossRef]
- Ke, F.-S.; Solomon, B.; Ding, Y.; Xu, G.-L.; Sun, S.-G.; Wang, Z.L.; Zhou, X.-D. Enhanced electrocatalytic activity on gold nanocrystals enclosed by high-index facets for oxygen reduction. Nano Energy 2014, 7, 179–188. [Google Scholar] [CrossRef]
- Quan, Z.; Wang, Y.; Fang, J. High-Index Faceted Noble Metal Nanocrystals. Acc. Chem. Res. 2013, 46, 191–202. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, Q.; Jiang, Z.; Xie, Z.; Huang, R.; Zheng, L. Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angew. Chem.-Int. Ed. 2008, 47, 8901–8904. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Lochon, F.; Dembélé, K.; Florea, I.; Baron, A.; Ossikovski, R.; Güell, A.G. Rapid and Facile Synthesis of Gold Trisoctahedrons for Surface-Enhanced Raman Spectroscopy and Refractive Index Sensing. ACS Appl. Nano Mater. 2024, 7, 5598–5609. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Sheng, T.; Ye, J.-Y.; Lu, B.-A.; Tian, N.; Zhou, Z.-Y.; Zhao, X.-S.; Sun, S.-G. Seeds and Potentials Mediated Synthesis of High-Index Faceted Gold Nanocrystals with Enhanced Electrocatalytic Activities. Langmuir 2017, 33, 6991–6998. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Xu, C.-D.; Huang, L.; Zhou, Z.-Y.; Chen, S.-P.; Sun, S.-G. Electrochemically Shape-Controlled Synthesis of Pd Concave-Disdyakis Triacontahedra in Deep Eutectic Solvent. J. Phys. Chem. C 2016, 120, 15569–15577. [Google Scholar] [CrossRef]
Sample | This Method | ||
---|---|---|---|
Spiked(uM) | Detected (uM) | Recovery (%) | |
Wheat flour | 0 | ND a | - |
20.0 | 17.3 | 86.5 | |
50.0 | 46.7 | 93.4 | |
Glutinous rice flour | 0 | ND a | - |
20.0 | 18.1 | 90.5 | |
50.0 | 46.3 | 92.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Gao, Q.; Yao, K.; Ran, W.; Li, Y.; Jin, Y.; Shao, B.; Sun, J. Seedless and Surfactant-Free Synthesis of Polyhedron Gold Nanocrystals Enclosed by High-Index Facets for Enhanced Electrochemical Detection of Benzoyl Peroxide in Flour. Molecules 2024, 29, 5691. https://doi.org/10.3390/molecules29235691
Wang Z, Gao Q, Yao K, Ran W, Li Y, Jin Y, Shao B, Sun J. Seedless and Surfactant-Free Synthesis of Polyhedron Gold Nanocrystals Enclosed by High-Index Facets for Enhanced Electrochemical Detection of Benzoyl Peroxide in Flour. Molecules. 2024; 29(23):5691. https://doi.org/10.3390/molecules29235691
Chicago/Turabian StyleWang, Zixuan, Qianlong Gao, Kai Yao, Wei Ran, Ying Li, Yushen Jin, Bing Shao, and Jiefang Sun. 2024. "Seedless and Surfactant-Free Synthesis of Polyhedron Gold Nanocrystals Enclosed by High-Index Facets for Enhanced Electrochemical Detection of Benzoyl Peroxide in Flour" Molecules 29, no. 23: 5691. https://doi.org/10.3390/molecules29235691
APA StyleWang, Z., Gao, Q., Yao, K., Ran, W., Li, Y., Jin, Y., Shao, B., & Sun, J. (2024). Seedless and Surfactant-Free Synthesis of Polyhedron Gold Nanocrystals Enclosed by High-Index Facets for Enhanced Electrochemical Detection of Benzoyl Peroxide in Flour. Molecules, 29(23), 5691. https://doi.org/10.3390/molecules29235691