Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis
Abstract
:1. Introduction
2. Strategies to Improve Photocatalytic Performance
2.1. Light Adsorption
2.2. Regulate Active Sites
2.3. Charge Carrier Separation
3. Applications for Photocatalysis
3.1. Photocatalytic Hydrogen Evolution (HER)
3.2. Photocatalytic Oxygen Reaction (OER)
3.3. Photocatalytic CO2 Reduction
3.3.1. Pristine MOF
3.3.2. MOF Composite
3.3.3. MOF Derived Materials
3.4. Photocatalytic Contaminant Degradation
3.5. Photocatalytic Fixation of Nitrogen to Ammonia
4. Summary and Outlook
- (1)
- The majority of photocatalysts can effectively absorb ultraviolet (UV) or visible (Vis) light, whereas the near-infrared (NIR) spectrum, which constitutes approximately 50% of natural sunlight, has seldom been harnessed. Introducing the long-wavelength-light-responsive unit into MOFs and thus extending the region of harvesting light to visible or NIR light is appealing.
- (2)
- Improving two advantageous redox half reactions by concurrently utilizing electrons and holes presents considerable promise from a practical viewpoint. The efficiency of photocatalytic water decomposition of MOF materials to produce hydrogen, oxygen, and total water is still low. Although the photocatalytic water decomposition activity of some MOFs has been improved by a series of means, it is still lower than that of traditional inorganic semiconductors and significant advancements are required before practical implementation can be achieved. The follow-up work still needs to develop specific methods to enhance the photocatalytic activity of MOFs. Creating the heterojunctions’ internal electric fields at material interfaces not only promotes efficient charge carrier separation and transfer but also broadens the absorption spectrum and thus boosts photocatalytic activity. MOF-based heterojunctions constitute a versatile platform for promoting next-generation photocatalytic and optoelectronic technologies, offering solutions to energy and environmental issues.
- (3)
- At present, the photoreduction reaction of CO2 in the laboratory is mainly completed under the high-purity CO2 atmosphere, while the CO2 content in the actual industrial exhaust gas is only 5–15%, even the CO2 concentration in air is only 400 ppm. In this case, minimizing the high energy consumption associated with the CO2 purification process holds considerable scientific importance and directly realizes the photoreduction reaction of low-concentration CO2 in practical application research. The development of high-efficiency catalysts that can effectively convert low-concentration CO2 into desired products is a key step to realize the resource utilization of CO2 in the future.
- (4)
- Through the artificial photosynthesis process directly driven by natural light, coupling the photocatalytic CO2 reduction and H2O oxidation to construct a two-in-one photocatalytic system directly captures CO2 and reduces it into fuel or high value-added chemicals in situ, accompanied by the release of oxygen. This approach presents both challenges and opportunities for achieving carbon resource recycling, as it not only significantly reduces the concentration of atmospheric CO2 but also generates high value-added chemicals.
- (5)
- In terms of contaminant degradation, numerous studies have focused on photocatalytic oxidation to eliminate highly concentrated and resistant organic compounds (like dyes) from industrial wastewater; however, there has been limited research on the treatment of ultralow concentration organic pollutants in source water.
Author Contributions
Funding
Conflicts of Interest
References
- Ager, J.W.; Lapkin, A.A. Chemical storage of renewable energy. Science 2018, 360, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Shen, C.; Yan, R.; Liu, Y.; Zhuang, C.; Li, S. Integration of plasmonic effect and S-scheme heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for boosted photocatalytic levofloxacin degradation. Acta Phys.-Chim. Sin. 2023, 40, 2310013. [Google Scholar] [CrossRef]
- Sun, K.; Qian, Y.; Jiang, H.-L. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem. Int. Ed. 2023, 62, e202217565. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; You, C.; Rong, K.; Shen, C.; Yang, F.; Li, S. An S-scheme MIL-101(Fe)-on-BiOCl heterostructure with oxygen vacancies for boosting photocatalytic removal of Cr(VI). Acta Phys.-Chim. Sin. 2023, 40, 2307045. [Google Scholar] [CrossRef]
- Wang, S.; Ai, Z.; Niu, X.; Yang, W.; Kang, R.; Lin, Z.; Waseem, A.; Jiao, L.; Jiang, H.-L. Linker engineering of sandwich-structured metal-oganic framework composites for optimized photocatalytic H2 production. Adv. Mater. 2023, 35, 2302512. [Google Scholar] [CrossRef]
- Xiao, J.-D.; Li, R.; Jiang, H.-L. Metal-organic framework-based photocatalysis for solar fuel production. Small Methods 2023, 7, 2201258. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 2016, 4, 6772–6801. [Google Scholar] [CrossRef]
- Hoshino, K.; Kuchii, R.; Ogawa, T. Dinitrogen photofixation properties of different titanium oxides in conducting polymer/titanium oxide hybrid systems. Appl. Catal. B Environ. 2008, 79, 81–88. [Google Scholar] [CrossRef]
- Hassan Raza, A.; Farhan, S.; Yu, Z.; Wu, Y. Double S-scheme ZnS/ZnO/CdS heterostructure photocatalyst for efficient hydrogen production. Acta Phys.-Chim. Sin. 2024, 40, 2406020. [Google Scholar] [CrossRef]
- Ding, D.; Jiang, Z.; Jin, J.; Li, J.; Ji, D.; Zhang, Y.; Zan, L. Impregnation of semiconductor CdS NPs in MOFs cavities via double solvent method for effective photocatalytic CO2 conversion. J. Catal. 2019, 375, 21–31. [Google Scholar] [CrossRef]
- Wang, F.; Hou, T.; Zhao, X.; Yao, W.; Fang, R.; Shen, K.; Li, Y. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv. Mater. 2021, 33, 2102690. [Google Scholar] [CrossRef]
- Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H.J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286. [Google Scholar] [CrossRef]
- Wang, X.; Dong, S.; Qi, K.; Popkov, V.; Xiang, X. Photocatalytic CO2 reduction by modified g-C3N4. Acta Phys.-Chim. Sin. 2024, 40, 2408005. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, H.; Wei, J.; Zhang, H.-X.; Wu, X.; Li, Y.; Li, C.; Zhang, J.; Ye, J. Integrating the g-C3N4 nanosheet with B-H bonding decorated metal-organic framework for CO2 activation and photoreduction. ACS Nano 2018, 12, 5333–5340. [Google Scholar] [CrossRef]
- Wang, C.-C.; Yi, X.-H.; Wang, P. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Appl. Catal. B Environ. 2019, 247, 24–48. [Google Scholar] [CrossRef]
- Ma, J.; Xu, L.; Yin, Z.; Li, Z.; Dong, X.; Song, Z.; Chen, D.; Hu, R.; Wang, Q.; Han, J.; et al. “One stone four birds” design atom Co-sharing BiOBr/Bi2S3 S-scheme heterojunction photothermal synergistic enhanced full-spectrum photocatalytic activity. Appl. Catal. B Environ. 2024, 344, 123601. [Google Scholar] [CrossRef]
- Li, M.; Sun, J.; Chen, G.; Wang, S.; Yao, S. Inducing photocarrier separation via 3D porous faveolate cross-linked carbon to enhance photothermal/pyroelectric property. Adv. Powder Mater. 2022, 1, 100032. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, P.; Ni, D.; Liu, Y.; Zhang, M.; Wang, H.; Zhang, H.; Gao, H.; Yao, Z.; Bu, W. Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Mater. Horiz. 2018, 5, 946–952. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, S.; Kitaura, R.; Noro, S.-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-C.J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar] [CrossRef]
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef]
- Corma, A.; García, H.; Llabrés i Xamena, F.X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655. [Google Scholar] [CrossRef]
- Li, Z.; Zi, J.; Luan, X.; Zhong, Y.; Qu, M.; Wang, Y.; Lian, Z. Localized surface plasmon resonance promotes metal-organic framework-based photocatalytic hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2303069. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Le, S.-K.; Jin, Q.-J.; Han, J.-A.; Zhou, H.-C.; Liu, Q.-S.; Yang, F.; Miao, J.; Liu, P.-P.; Zhu, C.-Z.; Xu, H.-T. Rare earth element-modified MOF materials: Synthesis and photocatalytic applications in environmental remediation. Rare Met. 2024, 43, 1390–1406. [Google Scholar] [CrossRef]
- Zhang, C.; Lei, D.; Xie, C.; Hang, X.; He, C.; Jiang, H.-L. Piezo-photocatalysis over metal-organic frameworks: Promoting photocatalytic activity by piezoelectric effect. Adv. Mater. 2021, 33, 2106308. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Q.; Jiang, H.-L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808. [Google Scholar] [CrossRef]
- Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef]
- Suresh, K.; Matzger, A.J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF). Angew. Chem. Int. Ed. 2019, 58, 16790–16794. [Google Scholar] [CrossRef]
- Lawson, H.D.; Walton, S.P.; Chan, C. Metal-organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020. [Google Scholar] [CrossRef]
- Abánades Lázaro, I.; Wells, C.J.R.; Forgan, R.S. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem. Int. Ed. 2020, 59, 5211–5217. [Google Scholar] [CrossRef]
- Zhao, X.; He, S.; Li, B.; Liu, B.; Shi, Y.; Cong, W.; Gao, F.; Li, J.; Wang, F.; Liu, K.; et al. DUCNP@Mn-MOF/FOE as a highly selective and bioavailable drug delivery system for synergistic combination cancer therapy. Nano Lett. 2023, 23, 863–871. [Google Scholar] [CrossRef]
- Liu, M.; Mu, Y.-F.; Yao, S.; Guo, S.; Guo, X.-W.; Zhang, Z.-M.; Lu, T.-B. Photosensitizing single-site metal-organic framework enabling visible-light-driven CO2 reduction for syngas production. Appl. Catal. B Environ. 2019, 245, 496–501. [Google Scholar] [CrossRef]
- Hu, P.; Liang, G.; Zhu, B.; Macyk, W.; Yu, J.; Xu, F. Highly selective photoconversion of CO2 to CH4 over SnO2/Cs3Bi2Br9 heterojunctions assisted by S-scheme charge separation. ACS Catal. 2023, 13, 12623–12633. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, C.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y.; Yi, H.; Fu, Y.; Li, L. Polyoxometalate@metal-organic framework composites as effective photocatalysts. ACS Catal. 2021, 11, 13374–13396. [Google Scholar] [CrossRef]
- Yang, W.; Cheng, P.; Li, Z.; Lin, Y.; Li, M.; Zi, J.; Shi, H.; Li, G.; Lian, Z.; Li, H. Tuning the cobalt-platinum alloy regulating single-atom platinum for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2205920. [Google Scholar] [CrossRef]
- An, B.; Zhang, J.; Cheng, K.; Ji, P.; Wang, C.; Lin, W. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840. [Google Scholar] [CrossRef]
- Li, G.; Zhao, S.; Zhang, Y.; Tang, Z. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater. 2018, 30, 1800702. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.; Feng, J.; Chen, Y.; Yang, X.; Gao, S.; Cao, R. Synthesis and characterization of Zn2GeO4/Mg-MOF-74 composites with enhanced photocatalytic activity for CO2 reduction. Catal. Sci. Technol. 2018, 8, 1288–1295. [Google Scholar] [CrossRef]
- Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H.-L.; Jiang, J.; Zhang, Q.; Xie, Y.; et al. Integration of an inorganic semiconductor with a metal-organic framework: A platform for enhanced gaseous photocatalytic reactions. Adv. Mater. 2014, 26, 4783–4788. [Google Scholar] [CrossRef]
- Wang, C.-C.; Wang, X.; Liu, W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. Chem. Eng. J. 2020, 391, 123601. [Google Scholar] [CrossRef]
- Zhou, T.; Du, Y.; Borgna, A.; Hong, J.; Wang, Y.; Han, J.; Zhang, W.; Xu, R. Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ. Sci. 2013, 6, 3229–3234. [Google Scholar] [CrossRef]
- Xiao, J.-D.; Shang, Q.; Xiong, Y.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem. Int. Ed. 2016, 55, 9389–9393. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-X.; Xiong, Y.-Y.; Zhong, X.; Lan, P.C.; Wei, Z.-W.; Pan, H.; Su, P.-Y.; Song, Y.; Chen, Y.-F.; Nafady, A.; et al. Enhancing photocatalytic hydrogen production via the construction of robust multivariate Ti-MOF/COF composites. Angew. Chem. Int. Ed. 2022, 61, e202114071. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Meng, H.; Chai, Y.; Chen, X.; Xu, J.; Liu, X.; Liu, W.; Guldi, D.M.; Zhu, Y. Enhancing built-in electric fields for efficient photocatalytic hydrogen evolution by encapsulating C60 fullerene into zirconium-based metal-organic frameworks. Angew. Chem. Int. Ed. 2023, 62, e202217897. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Sun, J.; Yao, S.; Wang, Y.; Chen, G.; Fan, G.; Li, Y. Synergistic interplay of dual-active-sites on metallic Ni-MOFs loaded with Pt for thermal-photocatalytic conversion of atmospheric CO2 under infrared light irradiation. Angew. Chem. Int. Ed. 2023, 62, e202313784. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Byun, W.J.; Zhao, F.; Chen, D.; Mao, J.; Zhang, W.; Peng, J.; Liu, C.; Pan, Y.; Hu, J.; et al. CO2 enrichment boosts highly selective infrared-light-driven CO2 conversion to CH4 by UiO-66/Co9S8 photocatalyst. Adv. Mater. 2024, 36, 2312616. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, C.; Meng, L.; Li, Y.; Wang, D.; Wang, C.-C. Fe-O-P bond in MIL-88A(Fe)/BOHP heterojunctions as a highway for rapid electron transfer to enhance photo-Fenton abatement of enrofloxacin. Appl. Catal. B Environ. 2023, 334, 122832. [Google Scholar] [CrossRef]
- Wang, J.; Mao, Y.; Zhang, R.; Zeng, Y.; Li, C.; Zhang, B.; Zhu, J.; Ji, J.; Liu, D.; Gao, R.; et al. In situ assembly of hydrogen-bonded organic framework on metal-organic framework: An effective strategy for constructing core-shell hybrid photocatalyst. Adv. Sci. 2022, 9, 2204036. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, C.; Gao, Y.; Tao, X.; Ding, C.; Fan, F.; Jiang, H.-L. Charge separation by creating band bending in metal-organic frameworks for improved photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2022, 61, e202204108. [Google Scholar] [CrossRef]
- Cai, Z.; Dai, J.; Li, W.; Tan, K.B.; Huang, Z.; Zhan, G.; Huang, J.; Li, Q. Pd supported on MIL-68(In)-derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol. ACS Catal. 2020, 10, 13275–13289. [Google Scholar] [CrossRef]
- Cui, W.-G.; Zhang, Q.; Zhou, L.; Wei, Z.-C.; Yu, L.; Dai, J.-J.; Zhang, H.; Hu, T.-L. Hybrid MOF template-directed construction of hollow-structured In2O3@ZrO2 heterostructure for enhancing hydrogenation of CO2 to methanol. Small 2023, 19, 2204914. [Google Scholar] [CrossRef]
- Ma, J.; Yu, J.; Chen, G.; Bai, Y.; Liu, S.; Hu, Y.; Al-Mamun, M.; Wang, Y.; Gong, W.; Liu, D.; et al. Rational design of N-doped carbon-coated cobalt nanoparticles for highly efficient and durable photothermal CO2 conversion. Adv. Mater. 2023, 35, 2302537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, T.; Tan, Q.; Li, J.; Ma, Y.; He, Y.; Han, D.; Qin, D.; Niu, L. Atomically precise dinuclear Ni2 active site-modified MOF-derived ZnO@NC heterojunction toward high-performance N2 photofixation. ACS Catal. 2023, 13, 3242–3253. [Google Scholar] [CrossRef]
- Gong, E.; Ali, S.; Hiragond, C.B.; Kim, H.S.; Powar, N.S.; Kim, D.; Kim, H.; In, S.-I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937. [Google Scholar] [CrossRef]
- Gomes Silva, C.; Luz, I.; Llabres I Xamena, F.X.; Corma, A.; García, H. Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem. Eur. J. 2010, 16, 11133–11138. [Google Scholar] [CrossRef]
- Hendrickx, K.; Vanpoucke, D.E.P.; Leus, K.; Lejaeghere, K.; Van Yperen-De Deyne, A.; Van Speybroeck, V.; Van Der Voort, P.; Hemelsoet, K. Understanding intrinsic light absorption properties of UiO-66 frameworks: A combined theoretical and experimental study. Inorg. Chem. 2015, 54, 10701–10710. [Google Scholar] [CrossRef]
- Wang, X.-K.; Liu, J.; Zhang, L.; Dong, L.-Z.; Li, S.-L.; Kan, Y.-H.; Li, D.-S.; Lan, Y.-Q. Monometallic catalytic models hosted in stable metal-organic frameworks for tunable CO2 photoreduction. ACS Catal. 2019, 9, 1726–1732. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, J.; Dong, J.; Liu, G.; Shi, L.; An, P.; Zhao, G.; Kong, J.; Wang, X.; Meng, X.; et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem. Int. Ed. 2016, 55, 14310–14314. [Google Scholar] [CrossRef]
- Fang, M.; Yang, Z.; Guo, Y.; Xia, X.; Pan, S. Piezoelectric effect achieves efficient carriers’ spatial separation and enhanced photocatalytic H2 evolution of UiO-66-NH2@CdS by transforming charge transfer mechanism. Sep. Purif. Technol. 2024, 328, 125069. [Google Scholar] [CrossRef]
- Wu, X.-P.; Gagliardi, L.; Truhlar, D.G. Cerium metal-organic framework for photocatalysis. J. Am. Chem. Soc. 2018, 140, 7904–7912. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Zhang, C.; Qi, Q.; Mei, Y.; Hu, J.; Sun, M.; Zhang, Y.; Huang, B.; Zhang, L.; Yang, S. Rationally reconstructed metal-organic frameworks as robust oxygen evolution electrocatalysts. Adv. Mater. 2023, 35, 2208904. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Ou, X.; Deng, Z.; Song, Y.; Tian, C.; Deng, H.; Xu, Y.-J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem. Int. Ed. 2018, 57, 16811–16815. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.-M.; Gu, Y.; Zhang, X.-Y.; Dao, X.-Y.; Wang, S.-Q.; Ma, J.; Zhao, J.; Sun, W.-Y. Crystallographic facet heterojunction of MIL-125-NH2(Ti) for carbon dioxide photoreduction. Appl. Catal. B Environ. 2021, 298, 120524. [Google Scholar] [CrossRef]
- Cui, W.-G.; Zhuang, X.-Y.; Li, Y.-T.; Zhang, H.; Dai, J.-J.; Zhou, L.; Hu, Z.; Hu, T.-L. Engineering Co/MnO heterointerface inside porous graphitic carbon for boosting the low-temperature CO2 methanation. Appl. Catal. B Environ. 2021, 287, 119959. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, T.; Wang, J.; Liu, H.; Dao, T.D.; Li, M.; Liu, G.; Meng, X.; Chang, K.; Shi, L.; et al. Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 2016, 28, 3703–3710. [Google Scholar] [CrossRef]
- Doan, H.V.; Nguyen, H.T.; Ting, V.P.; Guan, S.; Eloi, J.-C.; Hall, S.R.; Pham, X.N. Improved photodegradation of anionic dyes using a complex graphitic carbon nitride and iron-based metal-organic framework material. Faraday Discuss. 2021, 231, 81–96. [Google Scholar] [CrossRef]
- Shi, L.; Wang, T.; Zhang, H.; Chang, K.; Ye, J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 2015, 25, 5360–5367. [Google Scholar] [CrossRef]
- Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhang, Y.-Q.; Guo, G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867. [Google Scholar] [CrossRef]
- Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J.J.; Belver, C. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 2019, 9, 52. [Google Scholar] [CrossRef]
- Pham, X.N.; Vu, V.-T.; Nguyen, H.V.T.; Nguyen, T.T.-B.; Doan, H.V. Designing a novel heterostructure AgInS2@MIL-101(Cr) photocatalyst from PET plastic waste for tetracycline degradation. Nanoscale Adv. 2022, 4, 3600–3608. [Google Scholar] [CrossRef]
- Hu, Y.; Zhong, Z.; Lu, M.; Muhammad, Y.; Jalil Shah, S.; He, H.; Gong, W.; Ren, Y.; Yu, X.; Zhao, Z.; et al. Biomimetic O2-carrying and highly in-situ H2O2 generation using Ti3C2 MXene/MIL-100(Fe) hybrid via Fe-protoporphyrin bridging for photo-fenton synergistic degradation of thiacloprid. Chem. Eng. J. 2022, 450, 137964. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, X.; Chen, L.; Zhang, Q.; Ma, L.; Liu, J. A review on catalysts for electrocatalytic and photocatalytic reduction of N2 to ammonia. Green Chem. 2022, 24, 9003–9026. [Google Scholar] [CrossRef]
- Boudart, M. Ammonia synthesis: The bellwether reaction in heterogeneous catalysis. Top. Catal. 1994, 1, 405–414. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Chen, J.G.; Miranda, R.; Fitzsimmons, T.; Stack, R.G. Sustainable Ammonia Synthesis-Exploring the Scientific Challenges Associated with Discovering Alternative, Sustainable Processes for Ammonia Production; US DOE Office of Science: Washington, DC, USA, 2016. [CrossRef]
- Sun, B.; Lu, S.; Qian, Y.; Zhang, X.; Tian, J. Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy 2023, 5, e305. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, H.; Sun, Y.; Zhang, G.; Zhou, H.; Cao, S.; Liu, S.; Zhang, L.; Li, W.; Zhu, X.; et al. Synergistic effect of oxygen vacancy and high porosity of nano MIL-125(Ti) for enhanced photocatalytic nitrogen fixation. Angew. Chem. Int. Ed. 2024, 63, e202316973. [Google Scholar] [CrossRef]
- Ren, G.; Zhao, J.; Zhao, Z.; Li, Z.; Wang, L.; Zhang, Z.; Li, C.; Meng, X. Defects-induced single-atom anchoring on metal-organic frameworks for high-efficiency photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 2024, 63, e202314408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Yu, L.; Kang, P.; Chu, Z.; Li, Y. Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis. Molecules 2024, 29, 5834. https://doi.org/10.3390/molecules29245834
Ma W, Yu L, Kang P, Chu Z, Li Y. Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis. Molecules. 2024; 29(24):5834. https://doi.org/10.3390/molecules29245834
Chicago/Turabian StyleMa, Weimin, Liang Yu, Pei Kang, Zhiyun Chu, and Yingxuan Li. 2024. "Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis" Molecules 29, no. 24: 5834. https://doi.org/10.3390/molecules29245834
APA StyleMa, W., Yu, L., Kang, P., Chu, Z., & Li, Y. (2024). Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis. Molecules, 29(24), 5834. https://doi.org/10.3390/molecules29245834