Molecular Structure and Internal Dynamics of 2′-Hydroxyacetophenone by Free-Jet Absorption Millimeter-Wave Spectroscopy
Abstract
:1. Introduction
2. Results
3. Discussion
4. Experimental Methods
5. Computational Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Maris, A.; Calabrese, C.; Usabiaga, I.; Geppert, W.D.; Evangelisti, L.; Melandri, S. Atmospherically relevant acrolein-water complexes: Spectroscopic evidence of aldehyde hydration and oxygen atom exchange. Phys. Chem. Chem. Phys. 2019, 21, 23559–23566. [Google Scholar] [CrossRef] [PubMed]
- Gordy, W.; Cook, R. Microwave Molecular Spectra, 3rd ed.; Wiley-Interscience: New York, NY, USA, 1984. [Google Scholar]
- Ilyushin, V.; Rizzato, R.; Evangelisti, L.; Feng, G.; Maris, A.; Melandri, S.; Caminati, W. Almost free methyl top internal rotation: Rotational spectrum of 2-butynoic acid. J. Mol. Spectrosc. 2011, 267, 186–190. [Google Scholar] [CrossRef]
- Owen, N.L.; Soerensen, G.O. Microwave spectrum, conformation and barrier to internal rotation of ethyl vinyl ether. J. Phys. Chem. 1979, 83, 1483–1488. [Google Scholar] [CrossRef]
- Dreizler, H.; Hansen, N. High Resolution Microwave Spectroscopy of Ethyl Vinyl Ether: Accurate Determination of the Methyl Top Internal Rotation Barrier. Z. Naturforschung A 2000, 55, 481–485. [Google Scholar] [CrossRef]
- Ford, R.G.; Beaudet, R.A. Microwave Spectra of Methylcyclopropanes. II. Methylcyclopropane. J. Chem. Phys. 1968, 48, 4671–4674. [Google Scholar] [CrossRef]
- Hinze, R.; Lesarri, A.; López, J.C.; Alonso, J.L.; Guarnieri, A. Rotational spectrum, internal rotation barrier and ab initio calculations on 1-chloro-1-fluoroethane. J. Chem. Phys. 1996, 104, 9729–9734. [Google Scholar] [CrossRef]
- Bauder, A.; Günthard, H. Internal rotation in acetaldehyde. J. Mol. Spectrosc. 1976, 60, 290–311. [Google Scholar] [CrossRef]
- Vacherand, J.; Van Eijck, B.; Burie, J.; Demaison, J. The rotational spectrum of acetone: Internal rotation and centrifugal distortion analysis. J. Mol. Spectrosc. 1986, 118, 355–362. [Google Scholar] [CrossRef]
- Nguyen, H.V.L.; Van, V.; Stahl, W.; Kleiner, I. The effects of two internal rotations in the microwave spectrum of ethyl methyl ketone. J. Chem. Phys. 2014, 140, 214303. [Google Scholar] [CrossRef]
- Sheridan, J.; Bossert, W.; Bauder, A. Internal rotation of molecules with two inequivalent methyl groups: The microwave spectrum of methyl acetate. J. Mol. Spectrosc. 1980, 80, 1–11. [Google Scholar] [CrossRef]
- Jelisavac, D.; Cortés Gómez, D.; Nguyen, H.; Sutikdja, L.; Stahl, W.; Kleiner, I. The microwave spectrum of the trans conformer of ethyl acetate. J. Mol. Spectrosc. 2009, 257, 111–115. [Google Scholar] [CrossRef]
- Velino, B.; Maris, A.; Melandri, S.; Caminati, W. Millimeter wave free-jet spectrum of vinyl acetate. J. Mol. Spectrosc. 2009, 256, 228–231. [Google Scholar] [CrossRef]
- Ferres, L.; Evangelisti, L.; Maris, A.; Melandri, S.; Caminati, W.; Stahl, W.; Nguyen, H.V.L. Skeletal Torsion Tunneling and Methyl Internal Rotation: The Coupled Large Amplitude Motions in Phenyl Acetate. Molecules 2022, 27, 2730. [Google Scholar] [CrossRef]
- Kaluza, C.; Bauder, A.; Günthard, H. The microwave spectrum of pyruvic acid. Chem. Phys. Lett. 1973, 22, 454–457. [Google Scholar] [CrossRef]
- Velino, B.; Favero, L.B.; Ottaviani, P.; Maris, A.; Caminati, W. Rotational Spectrum and Internal Dynamics of Methylpyruvate. J. Phys. Chem. A 2013, 117, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Uriarte, I.; Melandri, S.; Maris, A.; Calabrese, C.; Cocinero, E.J. Shapes, Dynamics, and Stability of β-Ionone and Its Two Mutants Evidenced by High-Resolution Spectroscopy in the Gas Phase. J. Phys. Chem. Lett. 2018, 9, 1497–1502. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, J.; Feng, G.; Grabow, J.U.; Gou, Q. Conformational preference determined by inequivalent n-pairs: Rotational studies on acetophenone and its monohydrate. Phys. Chem. Chem. Phys. 2019, 21, 22888–22894. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Lei, J.; Xu, X.; Zheng, Y.; Chen, J.; Tian, X.; Gou, Q. Fluorination effects probed in 4-fluoroacetophenone and its monohydrate. Phys. Chem. Chem. Phys. 2023, 25, 25450–25457. [Google Scholar] [CrossRef] [PubMed]
- Herbers, S.; Fritz, S.M.; Mishra, P.; Nguyen, H.V.L.; Zwier, T.S. Local and global approaches to treat the torsional barriers of 4-methylacetophenone using microwave spectroscopy. J. Chem. Phys. 2020, 152, 074301. [Google Scholar] [CrossRef]
- Salvitti, G.; Sigismondi, S.; Melandri, S.; López, J.C.; Blanco, S.; Maris, A. Structure and dynamics of 3′-aminoacetophenone and 4′-aminoacetophenone from rotational spectroscopy. Phys. Chem. Chem. Phys. 2024, 26, 1881–1890. [Google Scholar] [CrossRef]
- Cocinero, E.J.; Basterretxea, F.J.; Écija, P.; Lesarri, A.; Fernández, J.A.; Castaño, F. Conformational behaviour, hydrogen bond competition and intramolecular dynamics in vanillin derivatives: Acetovanillone and 6-hydroxy-3-methoxyacetophenone. Phys. Chem. Chem. Phys. 2011, 13, 13310–13318. [Google Scholar] [CrossRef] [PubMed]
- Boi, S.; Melandri, S.; Evangelisti, L.; Maris, A. Free-jet absorption millimeter-wave spectrum of 2′-aminoacetophenone. J. Mol. Spectrosc. 2024, 407, 111966. [Google Scholar] [CrossRef]
- Boi, S.; Melandri, S.; Evangelisti, L.; Maris, A. Reference Data for Isolated 2’-Hydroxyacetophenone. University of Bologna. Available online: https://amsacta.unibo.it/id/eprint/7984/ (accessed on 15 November 2024).
- Scappini, F.; Dreizler, H. Internal Rotation Spectrum in the Ground State of cis Propionyl Fluoride. Z. Naturforschung A 1981, 36, 1327–1333. [Google Scholar] [CrossRef]
- Woods, R. A general program for the calculation of internal rotation splittings in microwave spectroscopy. J. Mol. Spectrosc. 1966, 21, 4–24. [Google Scholar] [CrossRef]
- Hartwig, H.; Dreizler, H. The Microwave Spectrum of trans-2,3-Dimethyloxirane in Torsional Excited States. Z. Naturforschung A 1996, 51A, 923–932. [Google Scholar] [CrossRef]
- Oka, T.; Morino, Y. Calculation of inertia defect: Part I. General formulation. J. Mol. Spectrosc. 1961, 6, 47–482. [Google Scholar] [CrossRef]
- Onda, M.; Kohama, Y.; Suga, K.; Yamaguchi, I. Microwave spectrum and molecular planarity of acetophenone. J. Mol. Struct. 1998, 442, 19–22. [Google Scholar] [CrossRef]
- Durig, J.; Bist, H.; Furic, K.; Qiu, J.; Little, T. Far infrared spectra and barriers to internal rotation of benzaldehyde, benzoyl fluoride, benzoyl chloride and acetophenone. J. Mol. Struct. 1985, 129, 45–56. [Google Scholar] [CrossRef]
- Kojima, T. Potential Barrier of Phenol from its Microwave Spectrum. J. Phys. Soc. Jpn. 1960, 15, 284–287. [Google Scholar] [CrossRef]
- Kolesniková, L.; Daly, A.; Alonso, J.; Tercero, B.; Cernicharo, J. The millimeter wave tunneling-rotational spectrum of phenol. J. Mol. Spectrosc. 2013, 289, 13–20. [Google Scholar] [CrossRef]
- Salvitti, G.; Blanco, S.; López, J.C.; Melandri, S.; Evangelisti, L.; Maris, A. Probing intra- and inter-molecular interactions through rotational spectroscopy: The case of the odorant 2′-aminoacetophenone and its 1:1 water and neon complexes. J. Chem. Phys. 2022, 157, 144303. [Google Scholar] [CrossRef] [PubMed]
- Herschbach, D.R. Calculation of Energy Levels for Internal Torsion and Over-All Rotation. III. J. Chem Phys. 1959, 31, 91–108. [Google Scholar] [CrossRef]
- Calabrese, C.; Vigorito, A.; Maris, A.; Mariotti, S.; Fathi, P.; Geppert, W.D.; Melandri, S. Millimeter Wave Spectrum of the Weakly Bound Complex CH2=CHCN·H2O: Structure, Dynamics, and Implications for Astronomical Search. J. Phys. Chem. A 2015, 119, 11674–11682. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Maris, A.; Evangelisti, L.; Favero, L.B.; Melandri, S.; Caminati, W. Keto-Enol Tautomerism and Conformational Landscape of 1,3-Cyclohexanedione from Its Free Jet Millimeter-Wave Absorption Spectrum. J. Phys. Chem. A 2013, 117, 13712–13718. [Google Scholar] [CrossRef]
- Vigorito, A.; Calabrese, C.; Melandri, S.; Caracciolo, A.; Mariotti, S.; Giannetti, A.; Massardi, M.; Maris, A. Millimeter-wave spectroscopy and modeling of 1,2-butanediol - Laboratory spectrum in the 59.6–103.6 GHz region and comparison with the ALMA archived observations. Astron. Astrophys. 2018, 619, A140. [Google Scholar] [CrossRef]
- Sun Fufeiand Maris, A.; Evangelisti, L.; Song, W.; Melandri, S.; Morán, J.; Calabrese, C.; Lesarri, A. The conformational space of 3-chloropropionic acid in gas phase explored by rotational spectroscopy. J. Phys. Chem. 2024. submitted. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Grimme, S.; Steinmetz, M. Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase. Phys. Chem. Chem. Phys. 2013, 15, 16031–16042. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Alqahtani, S.; Hu, X. An Assessment of Dispersion-Corrected DFT Methods for Modeling Nonbonded Interactions in Protein Kinase Inhibitor Complexes. Molecules 2024, 29, 304. [Google Scholar] [CrossRef] [PubMed]
- Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
EXP. | EXP. | |||
---|---|---|---|---|
A/MHz | 2292.530 | 2277.076(10) f | 2278.667 | 2277.076(10) |
B/MHz | 1219.819 | 1212.1125(40) | 1220.725 | 1212.1122(42) |
C/MHz | 800.120 | 795.2771(44) | 798.814 | 795.2772(46) |
/Hz | 23.9 | 25.9(29) | 24.0 | 25.9(30) |
/Hz | 25.2 | 28.2(42) | 26.7 | 28.2(44) |
/Hz | 115.0 | 118.1(56) | 118.1 | 118.1(59) |
/Hz | −9.6 | −5.3(20) | −9.7 | −5.3(20) |
/Hz | −1.9 | −4.6(14) | −1.9 | −4.6(15) |
/ | 409 | 565.5(4) | 540 | 565.1(4) |
N | - | 134 | - | 134 |
/MHz | - | 0.064 | - | 0.068 |
/ | 412.745 | [415.237(3)] g | 412.437 | [415.237(3)] |
/ | 218.426 | [220.238(3)] | 220.225 | [220.238(3)] |
/ | 1.562 | [1.704(3)] | 1.562 | [1.704(3)] |
/D | 0.94 | - | 0.77 | - |
/D | 3.13 | - | 3.15 | - |
−0.438 | [−0.437] | −0.430 | [−0.437] | |
/MHz | 303 | [50] | 68 | [51] |
14(13,1)-13(12,2) | 59,987.54 | −0.01 | 14(13,2)-13(12,2) | 59,986.92 | −0.02 | 19(9,10)-18(8,11) | 60,030.62 | −0.06 | 19(9,10)-18(8,11) | 60,030.62 | 0.04 |
14(13,2)-13(12,1) | 59,987.54 | −0.01 | 14(13,1)-13(12,1) | 59,987.79 | −0.04 | 19(10,9)-18(9,10) | 62,405.54 | −0.02 | 19(10,9)-18(9,10) | 62,406.51 | 0.05 |
14(14,1)-13(13,0) | 62,500.40 | 0.16 | 14(14,1)-13(13,1) | 62,499.65 | 0.02 | 19(10,10)-18(9,9) | 62,298.94 | −0.05 | 19(10,10)-18(9,9) | 62,297.77 | −0.01 |
14(14,0)-13(13,1) | 62,500.40 | 0.16 | 14(14,0)-13(13,0) | 62,500.40 | −0.12 | 19(11,9)-18(10,8) | 65,010.24 | 0.02 | 19(11,9)-18(10,9) | 65,014.29 | −0.03 |
15(13,3)-14(12,2) | 62,027.50 | 0.06 | 15(13,3)-14(12,3) | 62,026.82 | −0.02 | 19(11,8)-18(10,9) | 65,017.71 | 0.04 | 19(11,8)-18(10,8) | 65,013.26 | 0.02 |
15(13,2)-14(12,3) | 62,027.50 | 0.06 | 15(13,2)-14(12,2) | 62,027.69 | −0.04 | 19(12,8)-18(11,7) | 67,601.49 | 0.07 | 19(12,8)-18(11,8) | 67,600.99 | 0.00 |
15(14,2)-14(13,1) | 64,541.52 | 0.09 | 15(14,2)-14(13,2) | 64,540.78 | −0.04 | 19(12,7)-18(11,8) | 67,601.84 | 0.05 | 19(12,7)-18(11,7) | 67,601.84 | −0.04 |
15(14,1)-14(13,2) | 64,541.52 | 0.09 | 15(14,1)-14(13,1) | 64,541.66 | −0.04 | 19(13,7)-18(12,6) | 70,153.84 | 0.01 | 19(13,7)-18(12,7) | 70,153.20 | −0.01 |
15(15,1)-14(14,0) | 67,053.98 | −0.01 | 15(15,1)-14(14,1) | 67,053.32 | −0.05 | 19(13,6)-18(12,7) | 70,153.84 | 0.00 | 19(13,6)-18(12,6) | 70,154.07 | −0.03 |
15(15,0)-14(14,1) | 67,053.98 | −0.01 | 15(15,0)-14(14,0) | 67,054.20 | −0.06 | 19(14,6)-18(13,5) | 72,687.49 | 0.03 | 19(14,6)-18(13,6) | 72,686.84 | 0.00 |
16(12,5)-15(11,4) | 61,543.09 | 0.00 | 16(12,5)-15(11,5) | 61,542.45 | −0.04 | 19(14,5)-18(13,6) | 72,687.49 | 0.03 | 19(14,5)-18(13,5) | 72,687.70 | −0.02 |
16(12,4)-15(11,5) | 61,543.09 | −0.01 | 16(12,4)-15(11,4) | 61,543.30 | −0.08 | 19(15,4)-18(14,5) | 75,210.89 | 0.00 | 19(15,5)-18(14,5) | 75,210.25 | −0.01 |
16(13,4)-15(12,3) | 64,065.17 | −0.01 | 16(13,4)-15(12,4) | 64,064.55 | −0.02 | 19(15,5)-18(14,4) | 75,210.89 | 0.00 | 19(15,4)-18(14,4) | 75,211.07 | −0.07 |
16(13,3)-15(12,4) | 64,065.17 | −0.01 | 16(13,3)-15(12,3) | 64,065.40 | −0.06 | 20(9,12)-19(8,11) | 60,179.84 | −0.06 | 20(9,12)-19(8,11) | 60,179.84 | 0.05 |
16(14,3)-15(13,2) | 66,581.60 | 0.02 | 16(14,3)-15(13,3) | 66,580.95 | −0.02 | 20(9,11)-19(8,12) | 62,378.36 | −0.06 | 20(9,11)-19(8,12) | 62,378.36 | 0.11 |
16(14,2)-15(13,3) | 66,581.60 | 0.02 | 16(14,2)-15(13,2) | 66,581.81 | −0.04 | 20(10,10)-19(9,11) | 64,391.09 | −0.02 | 20(10,10)-19(9,11) | 64,391.29 | −0.04 |
16(15,2)-15(14,1) | 69,095.37 | 0.14 | 16(15,2)-15(14,2) | 69,094.62 | 0.01 | 20(10,11)-19(9,10) | 64,115.54 | 0.01 | 20(10,11)-19(9,10) | 64,114.97 | −0.03 |
16(15,1)-15(14,2) | 69,095.37 | 0.14 | 16(15,1)-15(14,1) | 69,095.37 | −0.13 | 20(11,10)-19(10,9) | 66,969.23 | 0.04 | 20(11,10)-19(10,9) | 66,964.98 | 0.03 |
16(16,1)-15(15,0) | 71,607.76 | 0.07 | 16(16,1)-15(15,1) | 71,607.04 | −0.02 | 20(11,10)-19(10,10) | 66,985.80 | 0.02 | |||
16(16,0)-15(15,1) | 71,607.76 | 0.07 | 16(16,0)-15(15,0) | 71,607.89 | −0.05 | 20(11,9)-19(10,9) | 66,975.09 | 0.01 | |||
17(11,7)-16(10,6) | 61,024.09 | 0.01 | 17(11,7)-16(10,7) | 61,023.76 | −0.01 | 20(11,9)-19(10,10) | 66,992.01 | 0.01 | 20(11,9)-19(10,10) | 66,995.95 | 0.04 |
17(11,6)-16(10,7) | 61,024.62 | −0.05 | 17(11,6)-16(10,6) | 61,024.62 | −0.04 | 20(12,9)-19(11,8) | 69,599.75 | 0.07 | 20(12,9)-19(11,9) | 69,599.75 | −0.01 |
17(12,6)-16(11,5) | 63,570.63 | 0.02 | 17(12,6)-16(11,6) | 63,569.96 | −0.05 | 20(12,8)-19(11,9) | 69,601.09 | 0.06 | 20(12,8)-19(11,8) | 69,600.59 | −0.01 |
17(12,5)-16(11,6) | 63,570.63 | 0.00 | 17(12,5)-16(11,5) | 63,570.86 | −0.04 | 20(13,8)-19(12,7) | 72,170.55 | 0.19 | 20(13,8)-19(12,8) | 72,169.76 | 0.00 |
17(13,5)-16(12,4) | 66,099.69 | 0.01 | 17(13,5)-16(12,5) | 66,099.05 | −0.02 | 20(13,7)-19(12,8) | 72,170.55 | 0.13 | 20(13,7)-19(12,7) | 72,170.55 | −0.09 |
17(13,4)-16(12,5) | 66,099.69 | 0.01 | 17(13,4)-16(12,4) | 66,099.90 | −0.06 | 20(14,7)-19(13,6) | 74,714.61 | 0.12 | 20(14,7)-19(13,7) | 74,713.83 | −0.03 |
17(14,4)-16(13,3) | 68,619.93 | 0.01 | 17(14,4)-16(13,4) | 68,619.27 | −0.03 | 20(14,6)-19(13,7) | 74,714.61 | 0.11 | 20(14,6)-19(13,6) | 74,714.61 | −0.13 |
17(14,3)-16(13,4) | 68,619.93 | 0.01 | 17(14,3)-16(13,3) | 68,620.15 | −0.04 | 21(9,12)-20(8,13) | 65,121.19 | −0.16 | 21(9,12)-20(8,13) | 65,121.19 | 0.08 |
17(15,3)-16(14,2) | 71,135.61 | 0.02 | 17(15,3)-16(14,3) | 71,134.96 | 0.00 | 21(9,13)-20(8,12) | 60,881.07 | −0.05 | 21(9,13)-20(8,12) | 60,881.07 | −0.01 |
17(15,2)-16(14,3) | 71,135.61 | 0.02 | 17(15,2)-16(14,2) | 71,135.76 | −0.08 | 21(10,12)-20(9,11) | 65,773.04 | 0.01 | 21(10,12)-20(9,11) | 65,772.72 | −0.03 |
17(16,2)-16(15,1) | 73,649.03 | 0.07 | 17(16,2)-16(15,2) | 73,648.30 | −0.03 | 21(10,11)-20(9,12) | 66,429.91 | −0.04 | 21(10,11)-20(9,12) | 66,429.91 | 0.00 |
17(16,1)-16(15,2) | 73,649.03 | 0.07 | 17(16,1)-16(15,1) | 73,649.03 | −0.18 | 21(11,10)-20(10,11) | 68,953.17 | 0.01 | 21(11,10)-20(10,11) | 68,954.94 | −0.02 |
18(10,9)-17(9,8) | 60,393.27 | 0.01 | 18(10,9)-17(9,8) | 60390.47 | −0.01 | 21(11,11)-20(10,10) | 68,888.82 | −0.03 | 21(11,11)-20(10,10) | 68,886.68 | −0.02 |
18(10,9)-17(9,9) | 60,422.93 | 0.00 | 21(12,10)-20(11,9) | 71,581.75 | 0.03 | 21(12,10)-20(11,10) | 71,583.80 | 0.12 | |||
18(10,8)-17(9,8) | 60,401.12 | 0.00 | 21(12,9)-20(11,10) | 71,586.18 | −0.02 | 21(12,9)-20(11,9) | 71,583.80 | −0.08 | |||
18(10,8)-17(9,9) | 60,431.10 | 0.01 | 18(10,8)-17(9,9) | 60433.54 | −0.03 | 21(13,9)-20(12,8) | 74,177.54 | 0.23 | 21(13,9)-20(12,9) | 74,176.81 | 0.01 |
18(11,8)-17(10,7) | 63,025.86 | −0.06 | 18(11,8)-17(10,8) | 63,026.56 | 0.05 | 21(13,8)-20(12,9) | 74,177.54 | 0.00 | 21(13,8)-20(12,8) | 74,177.54 | −0.14 |
18(11,7)-17(10,8) | 63,028.19 | 0.06 | 18(11,7)-17(10,7) | 63,027.28 | 0.06 | 22(9,14)-21(8,13) | 61,051.48 | 0.07 | 22(9,14)-21(8,13) | 61,051.48 | 0.06 |
18(12,7)-17(11,6) | 65,590.85 | 0.06 | 18(12,7)-17(11,7) | 65,590.20 | −0.02 | 22(9,13)-21(8,14) | 68,481.21 | −0.14 | 22(9,13)-21(8,14) | 68,481.21 | 0.18 |
18(12,6)-17(11,7) | 65,590.85 | −0.03 | 18(12,6)-17(11,6) | 65,591.06 | −0.05 | 22(10,13)-21(9,12) | 67,159.40 | −0.08 | 22(10,13)-21(9,12) | 67,159.40 | 0.09 |
18(13,6)-17(12,5) | 68,129.69 | −0.02 | 18(13,6)-17(12,6) | 68,129.06 | −0.03 | 22(10,12)-21(9,13) | 68,603.38 | −0.08 | 22(10,12)-21(9,13) | 68,603.38 | 0.06 |
18(13,5)-17(12,6) | 68,129.69 | −0.02 | 18(13,5)-17(12,5) | 68,129.96 | −0.02 | 23(9,15)-22(8,14) | 60,774.22 | 0.04 | 23(9,15)-22(8,14) | 60,774.22 | −0.02 |
18(14,5)-17(13,4) | 70,655.57 | 0.02 | 18(14,5)-17(13,5) | 70,654.91 | −0.02 | 23(10,14)-22(9,13) | 68,130.46 | −0.08 | 23(10,14)-22(9,13) | 68,130.46 | 0.00 |
18(14,4)-17(13,5) | 70,655.57 | 0.02 | 18(14,4)-17(13,4) | 70,655.81 | 0.00 | 23(12,11)-22(11,12) | 75,508.20 | −0.05 | 23(12,11)-22(11,12) | 75,511.45 | 0.05 |
18(15,4)-17(14,3) | 73,174.49 | 0.10 | 18(15,4)-17(14,4) | 73,173.72 | −0.04 | 25(11,15)-24(10,14) | 75,242.93 | −0.14 | 25(11,15)-24(10,14) | 75,242.93 | 0.01 |
18(15,3)-17(14,4) | 73,174.49 | 0.10 | 18(15,3)-17(14,3) | 73,174.49 | −0.15 | 29(9,21)-28(8,20) | 60,753.68 | 0.00 | 29(9,21)-28(8,20) | 60,753.68 | 0.04 |
18(16,2)-17(15,3) | 75,689.53 | 0.06 | 18(16,3)-17(15,3) | 75,688.79 | −0.05 | 30(7,23)-29(8,22) | 59,727.16 | −0.06 | 30(7,23)-29(8,22) | 59,727.16 | 0.03 |
18(16,3)-17(15,2) | 75,689.53 | 0.06 | 18(16,2)-17(15,2) | 75,689.53 | −0.18 | 30(8,22)-29(9,21) | 61,223.83 | −0.06 | 30(8,22)-29(9,21) | 61,223.83 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boi, S.; Melandri, S.; Evangelisti, L.; Maris, A. Molecular Structure and Internal Dynamics of 2′-Hydroxyacetophenone by Free-Jet Absorption Millimeter-Wave Spectroscopy. Molecules 2024, 29, 5842. https://doi.org/10.3390/molecules29245842
Boi S, Melandri S, Evangelisti L, Maris A. Molecular Structure and Internal Dynamics of 2′-Hydroxyacetophenone by Free-Jet Absorption Millimeter-Wave Spectroscopy. Molecules. 2024; 29(24):5842. https://doi.org/10.3390/molecules29245842
Chicago/Turabian StyleBoi, Salvatore, Sonia Melandri, Luca Evangelisti, and Assimo Maris. 2024. "Molecular Structure and Internal Dynamics of 2′-Hydroxyacetophenone by Free-Jet Absorption Millimeter-Wave Spectroscopy" Molecules 29, no. 24: 5842. https://doi.org/10.3390/molecules29245842
APA StyleBoi, S., Melandri, S., Evangelisti, L., & Maris, A. (2024). Molecular Structure and Internal Dynamics of 2′-Hydroxyacetophenone by Free-Jet Absorption Millimeter-Wave Spectroscopy. Molecules, 29(24), 5842. https://doi.org/10.3390/molecules29245842