Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Liposome Size Determination by DLS
2.2. DSC Study of Chelator/DMPC Liposome Mixtures
2.3. EPR Study of Chelator/POPC and Chelator/DMPC Liposome Mixtures
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of the Chelators
3.3. Preparation of Liposomes
3.4. Vesicle Size Distribution
3.5. Differential Scanning Calorimetry (DSC)
3.6. Electron Paramagnetic Resonance (EPR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alves, A.C.; Ribeiro, D.; Nunes, C.; Reis, S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochim. Biophys. Acta Biomembr. 2016, 1858, 2231–2244. [Google Scholar] [CrossRef]
- Peetla, C.; Vijayaraghavalu, S.; Labhasetwar, V. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Adv. Drug Deliv. Rev. 2013, 65, 1686–1698. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.I.; Lopes, C.M.; Amaral, M.H.; Costa, P.C. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur. J. Pharm. Biopharm. 2020, 149, 192–217. [Google Scholar] [CrossRef] [PubMed]
- Lamptey, R.N.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Su, Y.; Wang, Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv. Drug Deliv. Rev. 2022, 186, 114340. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Qian, H.; Rao, P.; Mu, D.; Liu, Y.; Liu, G.; Lin, Z. Bioinspired membrane-based nanomodulators for immunotherapy of autoimmune and infectious diseases. Acta Pharm. Sin. B 2022, 12, 1126–1147. [Google Scholar] [CrossRef] [PubMed]
- Aditya, J.; Desai, A.J.; Miller, L.J. Changes in the plasma membrane in metabolic disease: Impact of the membrane environment on G protein-coupled receptor structure and function. Br. J. Pharmacol. 2018, 175, 4009–4025. [Google Scholar] [CrossRef]
- Furuhashi, M.; Hotamisligil, G. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 2008, 7, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, Y.; Long, Q.; Nong, J.; Shao, H.; Liang, G.; Wu, F. Drug–drug interactions between propofol and ART drugs: Inhibiting neuronal activity by affecting glucose metabolism. CNS Neurosci. Ther. 2024, 30, e14437. [Google Scholar] [CrossRef]
- Chunxi, L.; Zhang, N. Pharmaceutical strategies enhancing cell penetration efficiencies of non-viral gene delivery systems. Curr. Gene Ther. 2009, 9, 267–290. [Google Scholar] [CrossRef]
- Cusnir, R.; Imberti, C.; Hider, R.C.; Blower, P.J.; Ma, M.T. Hydroxypyridinone chelators: From iron scavenging to radiopharmaceuticals for PET imaging with Gallium-68. Int. J. Mol. Sci. 2017, 18, 116. [Google Scholar] [CrossRef] [PubMed]
- Queirós, C.; Leite, A.; Couto, M.G.M.; Moniz, T.; Cunha-Silva, L.; Gameiro, P.; Silva, A.M.G.; Rangel, M. Tuning the limits of pH interference of a rhodamine ion sensor by introducing catechol and 3-hydroxy-4-pyridinone chelating units. Dye. Pigment. 2014, 110, 193–202. [Google Scholar] [CrossRef]
- Moniz, T.; Cunha-Silva, L.; Mesquita, R.B.R.; Miranda, J.L.A.; Silva, A.M.N.; Silva, A.M.G.; Rangel, A.O.S.S.; de Castro, B.; Rangel, M. New hydrophilic 3-hydroxy-4-pyridinone chelators with ether-derived substituents: Synthesis and evaluation of analytical performance in the determination of iron in waters. Polyhedron 2019, 160, 145–156. [Google Scholar] [CrossRef]
- Santos, M.A.; Irto, A.; Buglyó, P.; Chaves, S. Hydroxypyridinone-based metal chelators towards ecotoxicity: Remediation and biological mechanisms. Molecules 2022, 27, 1966. [Google Scholar] [CrossRef] [PubMed]
- Hruby, M.; Martínez, I.I.S.; Stephan, H.; Pouckova, P.; Benes, J.; Stepanek, P. chelators for treatment of iron and copper overload: Shift from low-molecular-weight compounds to polymers. Polymers 2021, 13, 3969. [Google Scholar] [CrossRef] [PubMed]
- Moniz, M.; Amorim, M.J.; Ferreira, R.; Nunes, A.; Silva, A.; Queirós, C.; Leite, A.; Gameiro, P.; Sarmento, B.; Remião, F.; et al. Investigation of the insulin-like properties of zinc(II) complexes of 3-hydroxy-4-pyridinones: Identification of a compound with glucose lowering effect in STZ-induced type I diabetic animals. J. Inorg. Biochem. 2011, 105, 1675–1682. [Google Scholar] [CrossRef]
- Rangel, M.; Tamura, A.; Fukushima, C.; Sakurai, H. In vitro study of the insulin-like action of vanadyl-pyrone and -pyridinone complexes with a VO(O4) coordination mode. J. Biol. Inorg. Chem. 2001, 6, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.M.P.F.; Moniz, T.; Silva, A.M.N.; Rangel, M. Vanadium compounds with antidiabetic potential. Int. J. Mol. Sci. 2023, 24, 15675. [Google Scholar] [CrossRef]
- Santos, M.A.; Marques, S.M.; Chaves, S. Hydroxypyridinones as “privileged” chelating structures for the design of medicinal drugs. Coord. Chem. Rev. 2012, 256, 240–259. [Google Scholar] [CrossRef]
- Aragón-Muriel, A.; Liscano-Martínez, Y.; Rufino-Felipe, E.; Morales-Morales, D.; Oñate-Garzón, J.; Polo-Cerón, D. Synthesis, biological evaluation and model membrane studies on metal complexes containing aromatic N,O-chelate ligands. Heliyon 2020, 6, e04126. [Google Scholar] [CrossRef]
- Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; S Sethuraman, S.; Krishnan, U.M. Investigations on Membrane Perturbation by Chrysin and Its Copper Complex Using Self-Assembled Lipid Bilayers. Langmuir 2011, 27, 13374–13382. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Tarahovsky, Y.S.; Yagolnik, E.A.; Kuznetsova, S.M.; Muzafarov, E.N. Lipophilicity of flavonoid complexes with iron(II) and their interaction with liposomes. Biochem. Biophys. Res. Commun. 2013, 431, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Jurczak, P.; Szutkowski, K.; Lach, S.; Jurga, S.; Czaplewska, P.; Szymanska, A.; Zhukov, I. DMPC Phospholipid bilayer as a potential interface for human cystatin c oligomerization: Analysis of protein-liposome interactions using NMR spectroscopy. Membranes 2021, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, B. On the reversibility of the phase transitions in lipid-water systems. Chem. Phys. Lipids 1991, 57, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, M.; Hogan, J. LIPIDAT: A database of lipid phase transition temperatures and enthalpy changes. DMPC data subset analysis. Chem. Phys. Lipids 1992, 61, 1–109. [Google Scholar] [CrossRef] [PubMed]
- Koynova, R.; Caffrey, M. Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta Biomembr. 1998, 1376, 91–145. [Google Scholar] [CrossRef] [PubMed]
- Lúcio, M.; Nunes, C.; Gaspar, D.; Gołębska, K.; Wisniewski, M.; Lima, J.L.F.C.; Brezesinski, G.; Reis, S. Effect of anti-inflammatory drugs in phosphatidylcholine membranes: A fluorescence and calorimetric study. Chem. Phys. Lett. 2009, 471, 300–309. [Google Scholar] [CrossRef]
- Yusuf, M.; Destiarani, W.; Firdaus, A.R.R.; Rohmatulloh, F.G.; Novianti, M.T.; Pradini, G.W.; Dwiyana, R.F. Residual interactions of LL-37 with POPC and POPE:POPG bilayer model studied by All-Atom Molecular Dynamics Simulation. Int. J. Mol. Sci. 2022, 23, 13413. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Leite, A.; Vinhas, S.; Ferreira, S.; Moniz, T.; Vasconcelos, M.W.; Rangel, M. A combined physiological and biophysical approach to understand the ligand-dependent efficiency of 3-hydroxy-4-pyridinone Fe-chelates. Plant Direct 2020, 4, 1–15. [Google Scholar] [CrossRef]
- McLaren, C.W.F. An accurate and convenient organic phosphorous assay. Anal. Biochem. 1971, 39, 527–530. [Google Scholar] [CrossRef]
- Bastos, M. CIQ-UP. Using DSC to Characterize Thermotropic Phase Transitions in Lipid Bilayer Membranes. App Note/Case Study ©2016 Malvern Instruments Limited. Available online: https://cdn.technologynetworks.com/TN/Resources/PDF/AN160630DSCLiposomeSamplePreparation.pdf (accessed on 29 October 2024).
- Coimbra, J.T.S.; Brás, N.F.; Fernandes, P.A.; Rangel, M.; Ramos, M.J. Membrane partition of bis-(3-hydroxy-4-pyridinonato) zinc(II) complexes revealed by molecular dynamics simulations. RSC Adv. 2018, 8, 27081–27090. [Google Scholar] [CrossRef] [PubMed]
Chelator | d (nm) | PDI | d (nm) | PDI |
---|---|---|---|---|
DMPC | POPC | |||
No chelator | 112.2 ± 1.8 | 0.031 ± 0.009 | 115.0 ± 1.2 | 0.065 ± 0.020 |
butmpp | 110.6 ± 1.5 | 0.056 ± 0.015 | 117.1 ± 2.0 | 0.047 ± 0.022 |
hexylmpp | 110.2 ± 2.2 | 0.037 ± 0.036 | 115.9 ± 1.8 | 0.054 ± 0.061 |
butetpp | 109.8 ± 1.9 | 0.059 ± 0.013 | 114.9 ± 2.4 | 0.081 ± 0.061 |
hexyletpp | 110.3 ± 1.2 | 0.056 ± 0.011 | 116.3 ± 1.9 | 0.062 ± 0.061 |
Tm/°C | ΔT1/2/°C | ΔH/kJ·mol−1 | |
---|---|---|---|
DMPC (no ligand added) | 24.4 | 0.8 | 20.2 |
DMPC + mpp | 24.4 | 0.8 | 20.2 |
DMPC + dmpp | 24.4 | 0.8 | 20.3 |
DMPC + etmpp | 24.4 | 0.8 | 22.1 |
DMPC + butmpp | 24.2 | 0.8 | 22.5 |
DMPC + hexylmpp | 22.5 | 0.8 | 23.7 |
DMPC + MRB13 | 24.4 | 0.8 | 20.2 |
DMPC + etpp | 24.4 | 0.8 | 20.2 |
DMPC + detpp | 24.4 | 0.8 | 19.8 |
DMPC + butetpp | 24.1 | 0.8 | 22.2 |
DMPC + hexyletpp | 21.5 | 0.8 | 21.5 |
DMPC + MRE13 | 24.4 | 0.8 | 20.5 |
Tm/°C | ΔT1/2/°C | ΔH/kJ·mol−1 | |
---|---|---|---|
DMPC (no chelator added) | 24.4 | 0.8 | 20.2 |
DMPC + butmpp 2 mM | 24.4 | 0.8 | 22.2 |
DMPC + butmpp 5 mM | 24.2 | 0.8 | 22.5 |
DMPC + butmpp 10 mM | 24.1 | 0.8 | 22.7 |
DMPC + hexylmpp 0.5 mM | 24.4 | 0.8 | 20.3 |
DMPC + hexylmpp 2 mM | 24.0 | 0.8 | 21.4 |
DMPC + hexylmpp 5 mM | 23.5 | 0.8 | 23.7 |
DMPC + hexylmpp 10 mM | 22.4 | 0.8 | 23.8 |
DMPC + butetpp 1 mM | 24.4 | 0.8 | 22.0 |
DMPC + butetpp 2 mM | 24.4 | 0.8 | 22.1 |
DMPC + butetpp 3 mM | 24.1 | 0.8 | 22.1 |
DMPC + butetpp 5 mM | 24.1 | 0.8 | 22.2 |
DMPC + hexyletpp 0.2 mM | 24.3 | 0.8 | 20.8 |
DMPC + hexyletpp 0.5 mM | 24.0 | 0.8 | 20.7 |
DMPC + hexyletpp 1 mM | 23.4 | 0.8 | 21.6 |
DMPC + hexyletpp 5 mM | 21.5 | 0.8 | 21.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, L.M.P.F.; Moniz, T.; Rangel, M. Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis. Molecules 2024, 29, 5905. https://doi.org/10.3390/molecules29245905
Amaral LMPF, Moniz T, Rangel M. Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis. Molecules. 2024; 29(24):5905. https://doi.org/10.3390/molecules29245905
Chicago/Turabian StyleAmaral, Luísa M. P. F., Tânia Moniz, and Maria Rangel. 2024. "Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis" Molecules 29, no. 24: 5905. https://doi.org/10.3390/molecules29245905
APA StyleAmaral, L. M. P. F., Moniz, T., & Rangel, M. (2024). Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis. Molecules, 29(24), 5905. https://doi.org/10.3390/molecules29245905