Terahertz Time-Domain Spectroscopic Characteristics of Typical Metallic Minerals
Abstract
:1. Introduction
2. Experimental Results and Discussion
2.1. Mineral Composition and Microstructural Characteristics
2.2. Electron Microprobe Analysis
2.3. THz-TDS
2.3.1. Mineral Spectral Characterization
2.3.2. Analysis Using THz-TDS
3. Methods
3.1. Microscopy
- (1)
- Cut: partition the ore specimen for observation into pieces of a specific size on a slicing machine.
- (2)
- Ground: after washing the cut pieces of ore with water, the specimen and the slide were ground on a grinder so that the cut surface of the sample became a smooth plane, after which it was glued.
- (3)
- Sliced: after the gel had hardened, the specimen was placed in a thin-section cutter, which cut and ground it to a 100–150 μm thickness.
- (4)
- Fine ground: the rock specimen was ground on a grinder to a thickness of 75 μm.
- (5)
- Polished: put the finely ground ore on the canvas grinding disk and the tweed grinding disk, and add the water-tuned MgO for polishing, until the surface is as smooth as a mirror.
3.2. Electron Microprobe Analysis
3.3. THz-TDS
Sample Preparation
- (1)
- Ground: the bulk sample was placed into the appropriate grinding device and periodically operated to achieve a particle size range within 200 mesh or below.
- (2)
- Sieved: the powdered samples were filtered through a sieve to ensure they were below 200 mesh.
- (3)
- Dried: before sizing, the mineral powders undergo drying in an oven to eliminate any adverse effects of moisture on the characterization results.
- (4)
- Prepared: in Group I, the powder of the four metal samples was mixed with Polytetrafluoroethylene (PTFE) powder in different ratios of 2:8, 4:6, and 6:4 to control the concentration of the metal minerals and porosity. The weighed samples had a mass of 0.3 g and were prepared using a tablet press pressure of 4 MPa, resulting in a specimen thickness of approximately 0.8 mm. Moving on to Group II, the powder of the four metal samples was mixed with PTFE powder in a 4:6 ratio. Sample preparation involved applying press pressures of 4 MPa, 7 MPa, 10 MPa, 13 MPa, 16 MPa, and 19 MPa, while the mass of the weighed samples remained at 0.3 g. Lastly, in Group III, the powder of the four metal samples was mixed with PTFE powder in a 4:6 ratio, and a press pressure of 19 MPa was applied for the preparation of Stibnite, Sphalerite, Galena, and Pyrite samples, all had the same particle size. The mass of the samples varied at 0.2 g, 0.3 g, 0.4 g, and 0.5 g, and Table 3 presented their corresponding thicknesses.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubiński, J. Sustainable Development of Mining Mineral Resources. J. Sustain. Min. 2013, 12, 1–6. [Google Scholar] [CrossRef]
- Aryee, B.N.A. Ghana’s Mining Sector: Its Contribution to the National Economy. Resour. Policy 2001, 27, 61–75. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Z.; Chen, C. Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies. Minerals 2017, 7, 203. [Google Scholar] [CrossRef]
- Zhou, L. Towards Sustainability in Mineral Resources. Ore Geol. Rev. 2023, 160, 105600. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, A.; Wang, J.; Taghizadeh-Hesary, F.; Dong, X. Green Growth in the Global South: How Does Metallic Minerals Affect GTFP Enhancement? Resour. Policy 2024, 88, 104505. [Google Scholar] [CrossRef]
- Sinforiano, S.-R.; Antonio, D.-C.; José Vicente, G.-A.; Juan, P.-V. Analytical and Mineralogical Studies of Ore and Impurities from a Chromite Mineral Using X-Ray Analysis, Electrochemical and Microscopy Techniques. Talanta 2008, 74, 1592–1597. [Google Scholar] [CrossRef]
- Marshall, C.P.; Kamali, S.; Wilson, M.; Guerbois, J.P.; Hartung-Kagi, B.; Hart, G. Potential of Thermogravimetric Analysis Coupled with Mass Spectrometry for the Evaluation of Kerogen in Source Rocks. Chem. Geol. 2002, 184, 185–194. [Google Scholar] [CrossRef]
- Deboucha, W.; Leklou, N.; Khelidj, A.; Oudjit, M.N. Hydration Development of Mineral Additives Blended Cement Using Thermogravimetric Analysis (TGA): Methodology of Calculating the Degree of Hydration. Constr. Build. Mater. 2017, 146, 687–701. [Google Scholar] [CrossRef]
- Karato, S.I. Scanning Electron Microscope Observation of Dislocations in Olivine. Phys. Chem. Miner. 1987, 14, 245–248. [Google Scholar] [CrossRef]
- Kim, H.I.; Cho, H.G.; Lee, S.; Koo, H.J.; Hong, J.K.; Jin, Y.K. Spatial Distribution of Manganese Oxide Minerals in the Natural Ferromanganese Nodule of the Arctic Sea: A View from Raman Spectroscopy. Chem. Geol. 2023, 623, 121398. [Google Scholar] [CrossRef]
- Kemp, S.J.; Lewis, A.L.; Rushton, J.C. Detection and Quantification of Low Levels of Carbonate Mineral Species Using Thermogravimetric-Mass Spectrometry to Validate CO2 Drawdown via Enhanced Rock Weathering. Appl. Geochem. 2022, 146, 105465. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, E.-H.; Zhang, D.; Sun, D.; Yang, M.; Zheng, Z.; Zhang, Z.; Gao, L.; Panezai, S.; Qiu, K. Free Field of View Infrared Digital Holography for Mineral Crystallization. Cryst. Growth Des. 2023, 23, 7992–8008. [Google Scholar] [CrossRef]
- Siidra, O.I.; Nekrasova, D.O.; Depmeier, W.; Chukanov, N.V.; Zaitsev, A.N.; Turner, R.W. Hydrocerussite-Related Minerals and Materials: Structural Principles, Chemical Variations and Infrared Spectroscopy. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2018, 74, 182–195. [Google Scholar] [CrossRef]
- Baxter, J.B.; Guglietta, G.W. Terahertz Spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef]
- Manjappa, M.; Singh, R. Materials for Terahertz Optical Science and Technology. Adv. Opt. Mater. 2020, 8, 1901984. [Google Scholar] [CrossRef]
- Heshmat, B.; Andrews, G.M.; Naranjo-Montoya, O.A.; Castro-Camus, E.; Ciceri, D.; Sanchez, A.R.; Allanore, A.; Kmetz, A.A.; Eichmann, S.L.; Poitzsch, M.E.; et al. Terahertz Scattering and Water Absorption for Porosimetry. Opt. Express 2017, 25, 27370. [Google Scholar] [CrossRef]
- Qu, F.; Nie, P.; Liang, L.; Cai, C.; He, Y. Review of Theoretical Methods and Research Aspects for Detecting Leaf Water Content Using Terahertz Spectroscopy and Imaging. Int. J. Agric. Biol. Eng. 2018, 11, 27–34. [Google Scholar] [CrossRef]
- Siegel, P.H. Terahertz Technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Zhang, N.; Lim, S.J.; Toh, J.M.; Wei, Y.F.; Rusli; Ke, L. Investigation of Spoilage in Salmon by Electrochemical Impedance Spectroscopy and Time-Domain Terahertz Spectroscopy. ChemPhysMater 2022, 1, 148–154. [Google Scholar] [CrossRef]
- Yin, X.; Feng, M.; Jiang, Y.; Chen, T. Quantitative Analysis of the 2-Mercaptobenzothiazole Based on Terahertz Time-Domain Spectroscopy and an Improved Support Vector Regression. Infrared Phy. Technol. 2021, 119, 103953. [Google Scholar] [CrossRef]
- Ge, L.N.; Zhan, H.; Leng, W.X.; Zhao, K.; Xiao, L. Optical Characterization of the Principal Hydrocarbon Components in Natural Gas Using Terahertz Spectroscopy. Energy Fuels 2015, 29, 1622–1627. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, S.-Q.; Huang, H.; Ma, Y.; Hao, S.; Zhang, Z.; Zheng, Z. Insights into a Mineral Resource Chlorite Mica Carbonate Schist by Terahertz Spectroscopy Technology. Energies 2022, 15, 6314. [Google Scholar] [CrossRef]
- Li, S.; Qiu, K.; Hernández-Uribe, D.; Gao, Y.; Santosh, M.; Huang, H.; Zheng, Z.; Zhang, Z.; Gao, S. Water Recycling in the Deep Earth: Insights from Integrated μ-XRF, THz-TDS Spectroscopy, TG, and DCS of High-Pressure Granulite. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025915. [Google Scholar] [CrossRef]
- Zhan, H.; Wu, S.; Bao, R.; Ge, L. Qualitative Identification of Crude Oils from Different Oil Fields Using Terahertz Time-Domain Spectroscopy. Fuel 2015, 143, 189–193. [Google Scholar] [CrossRef]
- Kiritharan, S.; Lucas, S.; Degl’Innocenti, R.; Xia, H.; Dawson, R.; Lin, H. Porosity Characterisation of Solid-State Battery Electrolyte with Terahertz Time-Domain Spectroscopy. J. Power Sources 2024, 595, 234050. [Google Scholar] [CrossRef]
- Bretz, L.; Niehues, G.; Funkner, S.; Bründermann, E.; Müller, A.-S.; Lanza, G. In-Line Measurement of Fiber Mass Fraction Using Terahertz Spectroscopy for a Function-Oriented Quality Assurance of Glass Fiber Sheet Molding Compound. Measurement 2023, 222, 113560. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, H.; Yang, M.; Yang, M.; Yan, H.; Panezai, S.; Zheng, Z.; Zhang, Z.; Zhang, Z.L. Characterization of the Remediation of Chromium Ion Contamination with Bentonite by Terahertz Time-Domain Spectroscopy. Sci. Rep. 2022, 12, 11149. [Google Scholar] [CrossRef]
- Han, D.; Jeong, H.; Song, Y.; Ahn, J.S.; Ahn, J. Lattice Vibrations of Natural Seraphinite Gemstone Probed by Terahertz Time-Domain Spectroscopy. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 1021–1027. [Google Scholar] [CrossRef]
- Bao, R.; Wu, S.; Zhao, K.; Zheng, L.; Xu, C.-H. Applying Terahertz Time-Domain Spectroscopy to Probe the Evolution of Kerogen in Close Pyrolysis Systems. Sci. China Phys. Mech. Astron. 2013, 56, 1603–1605. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Yoshikiyo, M.; Namai, A.; Nakagawa, K.; Chiba, K.; Fujiwara, R.; Tokoro, H. Cesium Ion Detection by Terahertz Light. Sci. Rep. 2017, 7, 8088. [Google Scholar] [CrossRef] [PubMed]
- Casasanta, G.; Falcini, F.; Garra, R. Beer–Lambert Law in Photochemistry: A New Approach. J. Photochem. Photobiol. A Chem. 2022, 432, 114086. [Google Scholar] [CrossRef]
- Stahl, D.; Sallis, H. Model-Based Cluster Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2012, 4, 341–358. [Google Scholar] [CrossRef]
- Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat.-Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Fraley, C. How Many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis. Comput. J. 1998, 41, 578–588. [Google Scholar] [CrossRef]
- Han, P.; Wang, W.; Shi, Q.; Yue, J. A Combined Online-Learning Model with K-Means Clustering and GRU Neural Networks for Trajectory Prediction. Ad Hoc Netw. 2021, 117, 102476. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, B.; Wu, H.; Liu, H.; Qiao, Y.; Zhang, S. Microscopic Characterisation of Metallic Nanoparticles in Ore Rocks, Fault Gouge and Geogas from the Shanggong Gold Deposit, China. J. Geochem. Explor. 2020, 217, 106562. [Google Scholar] [CrossRef]
- Wei, Y.; Li, H.; Yamada, N.; Sato, A.; Ninomiya, Y.; Honma, K.; Tanosaki, T. A Microscopic Study of the Precipitation of Metallic Iron in Slag from Iron-Rich Coal during High Temperature Gasification. Fuel 2013, 103, 101–110. [Google Scholar] [CrossRef]
- Keil, K.; Fredriksson, K. Electron Microprobe Analysis of Some Rare Minerals in the Norton County Achondrite. Geochim. Cosmochim. Acta 1963, 27, 939–947. [Google Scholar] [CrossRef]
- Velde, B. Electron Microprobe Analysis of Clay Minerals. Clay Miner. 1984, 19, 243–247. [Google Scholar] [CrossRef]
- Ferguson, B.; Zhang, X.-C. Materials for Terahertz Science and Technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Duvillaret, L.; Garet, F.; Coutaz, J.-L. A Reliable Method for Extraction of Material Parameters in Terahertz Time-Domain Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 739–746. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, Y.; Hang, H.; Xie, W. Nondestructive Testing of Corrosion Thickness in Coated Steel Structures with THz-TDS. Measurement 2023, 217, 113088. [Google Scholar] [CrossRef]
Pyrite | |||||||||||
Point | As | Fe | S | Ni | Co | Pb | Cu | Ag | Zn | Sb | Total |
1 | 0.19 | 45.48 | 54.36 | 0.00 | 0.06 | 0.00 | 0.05 | 0.00 | 0.06 | 0.01 | 100.22 |
2 | 0.22 | 45.11 | 54.35 | 0.02 | 0.09 | 0.00 | 0.04 | 0.03 | 0.00 | 0.00 | 99.85 |
3 | 0.28 | 45.00 | 54.41 | 0.03 | 0.18 | 0.00 | 0.03 | 0.03 | 0.00 | 0.01 | 99.96 |
4 | 0.24 | 45.41 | 53.30 | 0.00 | 0.08 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 99.09 |
5 | 0.25 | 46.30 | 54.19 | 0.00 | 0.08 | 0.00 | 0.05 | 0.00 | 0.02 | 0.00 | 100.89 |
Stibnite | |||||||||||
Point | As | Fe | S | Ni | Co | Pb | Cu | Ag | Zn | Sb | Total |
1 | 0.88 | 0.00 | 28.42 | 0.05 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 | 69.58 | 98.97 |
2 | 0.90 | 0.01 | 28.42 | 0.01 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 69.47 | 98.85 |
3 | 0.01 | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.04 | 0.11 |
4 | 0.00 | 0.00 | 0.01 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.10 |
5 | 0.72 | 0.00 | 30.90 | 0.05 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 68.86 | 100.56 |
Sphalerite | |||||||||||
Point | As | Fe | S | Ni | Co | Pb | Cu | Ag | Zn | Sb | Total |
1 | 0.00 | 0.66 | 34.26 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 64.68 | 0.01 | 99.62 |
2 | 0.00 | 0.70 | 34.72 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 65.01 | 0.00 | 100.47 |
3 | 0.00 | 0.66 | 33.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 64.29 | 0.03 | 98.64 |
4 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.35 |
5 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.78 | 0.00 | 0.83 |
Galena | |||||||||||
Point | As | Fe | S | Ni | Co | Pb | Cu | Ag | Zn | Sb | Total |
1 | 0.00 | 0.02 | 13.18 | 0.07 | 0.00 | 87.32 | 0.00 | 0.00 | 0.04 | 0.02 | 100.64 |
2 | 0.00 | 0.00 | 10.82 | 0.02 | 0.00 | 88.06 | 0.10 | 0.00 | 0.08 | 0.00 | 99.07 |
3 | 0.00 | 0.03 | 10.82 | 0.00 | 0.00 | 88.01 | 0.03 | 0.00 | 0.00 | 0.01 | 98.89 |
4 | 0.00 | 0.00 | 13.01 | 0.00 | 0.07 | 87.61 | 0.03 | 0.00 | 0.00 | 0.00 | 100.72 |
5 | 0.00 | 0.00 | 13.08 | 0.06 | 0.00 | 87.58 | 0.00 | 0.00 | 0.00 | 0.00 | 100.71 |
Pyrite | Stibnite | |||||||
Point | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 5 |
Fe (%) | 32.40 | 32.22 | 32.14 | 32.80 | 32.86 | |||
Sb (%) | 39.15 | 39.11 | 36.93 | |||||
S (%) | 67.59 | 67.77 | 67.85 | 67.19 | 67.13 | 60.84 | 60.88 | 63.06 |
Galena | Sphalerite | |||||||
Point | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 |
Pb (%) | 50.58 | 55.69 | 55.67 | 50.98 | 50.84 | |||
Zn (%) | 48.02 | 47.82 | 48.34 | |||||
S (%) | 51.97 | 52.17 | 51.65 | 49.41 | 44.3 | 44.32 | 49.01 | 49.15 |
Sample Name | 4 MPa | 7 MPa | 10 MPa | |||
Porosity (%) | Thickness (mm) | Porosity (%) | Thickness (mm) | Porosity (%) | Thickness (mm) | |
Galena | 9.16 | 0.81 | 8.98 | 0.81 | 8.9 | 0.81 |
Pyrite | 6.43 | 0.87 | 4.82 | 0.83 | 4.42 | 0.83 |
Stibnite | 5.12 | 0.88 | 3.36 | 0.86 | 2.45 | 0.85 |
Sphalerite | 7.8 | 0.91 | 7.62 | 0.91 | 7.21 | 0.91 |
Sample Name | 13 MPa | 16 MPa | 19 MPa | |||
Porosity (%) | Thickness (mm) | Porosity (%) | Thickness (mm) | Porosity (%) | Thickness (mm) | |
Galena | 8.15 | 0.79 | 8.02 | 0.79 | 7.75 | 0.79 |
Pyrite | 4.16 | 0.83 | 4.13 | 0.83 | 4.8 | 0.82 |
Stibnite | 1.95 | 0.84 | 1.13 | 0.83 | 0.8 | 0.82 |
Sphalerite | 6.8 | 0.9 | 6.07 | 0.88 | 5.22 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Huang, H.; Zhao, P.; Xu, L.; Tan, Z.; Zhao, J.; Yuan, E.; Zheng, Z.; Li, S.; Li, X.; et al. Terahertz Time-Domain Spectroscopic Characteristics of Typical Metallic Minerals. Molecules 2024, 29, 648. https://doi.org/10.3390/molecules29030648
Zhang J, Huang H, Zhao P, Xu L, Tan Z, Zhao J, Yuan E, Zheng Z, Li S, Li X, et al. Terahertz Time-Domain Spectroscopic Characteristics of Typical Metallic Minerals. Molecules. 2024; 29(3):648. https://doi.org/10.3390/molecules29030648
Chicago/Turabian StyleZhang, Jingjing, Haochong Huang, Pengbo Zhao, Luyong Xu, Zhenbo Tan, Jinyuan Zhao, Enhui Yuan, Zhiyuan Zheng, Shanshan Li, Xinyu Li, and et al. 2024. "Terahertz Time-Domain Spectroscopic Characteristics of Typical Metallic Minerals" Molecules 29, no. 3: 648. https://doi.org/10.3390/molecules29030648
APA StyleZhang, J., Huang, H., Zhao, P., Xu, L., Tan, Z., Zhao, J., Yuan, E., Zheng, Z., Li, S., Li, X., & Qiu, K. (2024). Terahertz Time-Domain Spectroscopic Characteristics of Typical Metallic Minerals. Molecules, 29(3), 648. https://doi.org/10.3390/molecules29030648