Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Protein Adsorption Behaviors
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instruments
3.3. Synthesis
3.3.1. Fabrication of Na-Titanate Nanotubes (Na-TNT)
3.3.2. Fabrication of Urchin-like Na-Titanate Microspheres (Na-UTMS)
3.3.3. Fabrication of Urchin-like Protonated Titanate Microspheres (H-UTMS)
3.3.4. Fabrication of Polydopamine-Coated Urchin-like Titanate Microspheres (PDA-UTMS)
3.3.5. Fabrication of Cu (II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres (Cu-PDA-UTMS)
3.4. Protein Adsorption Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Topkan, E.; Selek, U.; Ozdemir, Y.; Yildirim, B.A.; Guler, O.C.; Mertsoylu, H.; Hahn, S.M. Chemoradiotherapy-induced hemo globin nadir values and survival in patients with stage III non-small cell lung cancer. Lung Cancer 2018, 121, 30–36. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Yang, X.; Liu, X.; Zhang, H. Facile synthesis of copper(II)-decorated functional mesoporous material for specific adsorption of histidine-rich proteins. Talanta 2018, 176, 308–317. [Google Scholar] [CrossRef]
- Gaudre, N.; Cougoul, P.; Bartolucci, P.; Dörr, G.; Bura-Riviere, A.; Kamar, N.; Del Bello, A. Improved fetal hemoglobin with mTOR inhibitor–based immunosuppression in a kidney transplant recipient with sickle cell disease. Am. J. Transplant. 2017, 17, 2212–2214. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, W.; Wu, H.; Li, Y.; Ren, X.; Li, M.; Liu, J.; Sun, J.; Yue, T.; Wang, J. In situ ascade derivation toward a hierarchical layered double hydroxide magnetic absorbent for high-performance protein separation. ACS Sustain. Chem. Eng. 2020, 8, 4966–4974. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Gao, R.; Heinlein, J.A.; Pfefferle, L.D.; Hussain, S.; Zhang, J.; Wang, X.; An, J. Facile and green preparation of multifeatured montmorillonite-supported Fe3O4-Cu2+ hybrid magnetic nanomaterials for the selective adsorption of a high-abundance protein from complex biological matrices. Green Chem. 2023, 25, 3705–3714. [Google Scholar] [CrossRef]
- Guo, Z.-Y.; Zhang, Y.; Zhang, D.-D.; Shu, Y.; Chen, X.-W.; Wang, J.-H. Magnetic nanospheres encapsulated by mesoporous copper oxide shell for selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 2016, 8, 29734–29741. [Google Scholar] [CrossRef]
- Xue, X.; Lu, R.; Liu, M.; Li, Y.; Li, J.; Wang, L. A facile and general approach for the preparation of boronic acid-functionalized magnetic nanoparticles for the selective enrichment of glycoproteins. Analyst 2019, 144, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Tang, Y.; Gao, R.; Chen, X.; Wang, Y.; Gao, Y.; Zhang, S.; Hussain, S.; Hao, Y.; Wang, S. One-step synthesis of sustain able montmorillonite-supported, copper-doped magnetic nanoparticles for highly specific separation of his-rich proteins. ACS Sustain. Chem. Eng. 2022, 10, 5341–5351. [Google Scholar] [CrossRef]
- Colombo, R.; Wu, M.A.; Castelli, A.; Fossali, T.; Rech, R.; Ottolina, D.; Cogliati, C.; Catena, E. The effects of severe hemocon centration on acid-base equilibrium in critically Ill patients: The forgotten role of buffers in whole blood. J. Crit. Care 2020, 57, 177–184. [Google Scholar] [CrossRef]
- Wang, J.; Han, Q.; Wang, K.; Li, S.; Luo, W.; Liang, Q.; Zhong, J.; Ding, M. Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta 2023, 253, 123919. [Google Scholar] [CrossRef]
- Guo, P.-F.; Wang, X.-M.; Wang, M.-M.; Yang, T.; Chen, M.-L.; Wang, J.-H. Boron-titanate monolayer nanosheets for highly selective adsorption of immunoglobulin G. Nanoscale 2019, 11, 9362–9368. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Mori, A.; Ito, S.; Ohtsuki, S. Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers. Drug Metab. Pharmacokinet. 2021, 36, 100361. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, Y.; Song, H.; Niu, Y.; Chen, X.; Liu, X.; Gao, R.; Wang, S. Fabrication of metal coordination-synergistic magnetic imprinted microspheres based on ligand-free Fe3O4–Cu for specific recognition of bovine hemoglobin. Talanta 2021, 233, 122496. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, M.; Wu, J.; Yan, Y.; Ding, C.-F. Efficient enrichment of global phosphopeptides using magnetic tannic acid—tita nium(IV)/zirconium(IV) functionalized spheres as a novel sorbent for immobilized metal ion affinity chromatography (IMAC). Anal. Lett. 2023, 56, 1016–1030. [Google Scholar] [CrossRef]
- Chen, X.; Chai, J.; Yang, X.; Chai, F.; Tian, M. Amino acid-immobilized copper ion-modified carbon-based adsorbent for selec tive adsorption of bovine hemoglobin. J. Chromatogr. A 2022, 1680, 463440. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lin, Z. Recent advances in protein-imprinted polymers: Synthesis, applications and challenges. J. Mater. Chem. B 2022, 10, 6571–6589. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Gao, P.; Sun, S.; Du, Q.; Wang, Z.; Jiang, Y. Preparation of Fe3O4@PMAA@Ni microspheres towards the efficient and selective enrichment of histidine-rich proteins. ACS Appl. Mater. Interfaces 2021, 13, 11166–11176. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Zhao, L.; Liang, C.; Du, K. The construction of porous chitosan microspheres with high specific surface area by using agarose as the pore-forming agent and further functionalized application in bioseparation. J. Mater. Chem. B 2019, 7, 5510–5519. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guan, H.; Liang, Q.; Ding, M. Construction of copper (II) affinity- DTPA functionalized magnetic composite for efficient adsorption and specific separation of bovine hemoglobin from bovine serum. Compos. Part B 2020, 198, 108248. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Xu, Q.; Shao, S.; Man, H.; Nie, Y.; Wang, Z.; Jiang, Y. Fabrication of yolk–shell Fe3O4@NiSiO3 /Ni micro spheres for efficient purification of histidine-rich proteins. Langmuir 2021, 37, 14167–14176. [Google Scholar] [CrossRef]
- Franklin, L.M.; Walker, S.M.; Hill, G. A dft study of isolated histidine interactions with metal ions (Ni2+, Cu2+, Zn2+) in a six-coordinated octahedral complex. J. Mol. Model. 2020, 26, 116. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Zhang, J.; Gai, Z.; Fan, R.; Hu, S.; Liu, G.; Cao, Y.; Du, X.; Shen, Y. Synthesis of magnetic Fe3O4@PS-ANTA-M2+(M = Ni, Co, Cu and Zn) nanospheres for specific isolation of histidine-tagged proteins. Chem. Eng. J. 2021, 404, 126427. [Google Scholar] [CrossRef]
- He, Q.-L.; Jia, B.-X.; Wang, Y.-K.; Qin, M.; Xu, W.-B.; Zhang, Z.; Feng, Y.-F.; Zhou, B. Copper ion based metal–organic frame work nanomaterials with roughness enhanced protein adhesion for high-efficiency hemoglobin separation. New J. Chem. 2023, 47, 7245–7252. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, J.; Wang, L.; Wan, Y.; Shen, J.; Bai, Q. Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins. Talanta 2019, 195, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Miao, T.; Zheng, J.; Xu, J.; Asiri, A.M.; Marwani, H.M. Oriented-assembly of hierarchical fe3o4@cusio3 microchains towards efficient separation of histidine-rich proteins. Microporous Mesoporous Mater. 2019, 286, 207–213. [Google Scholar] [CrossRef]
- Guo, P.-F.; Zhang, D.-D.; Guo, Z.-Y.; Chen, M.-L.; Wang, J.-H. Copper-decorated titanate nanosheets: Novel homogeneous monolayers with a superior capacity for selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 2017, 9, 28273–28280. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.-F.; Wang, X.-M.; Chen, X.-W.; Yang, T.; Chen, M.-L.; Wang, J.-H. Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. TrAC Trends Anal. Chem. 2019, 120, 115650. [Google Scholar] [CrossRef]
- Fei, P.; Guo, Z.; Ye, C.; Teng, Z.; Chen, Q.; Zhang, G.; Zhuang, Y.; Lai, W.; Xiong, H.; Cai, J. The enhancement of the flame retardance of bamboo fibre/hdpe composites: Cerium doped H2Ti2O5·H2O nanotubes effects. Constr. Build. Mater. 2019, 201, 728–735. [Google Scholar] [CrossRef]
- Helbig, U.; Herbst, K.; Roudenko, J.; Helbig, J.; Barton, B.; Kolb, U. Carbon-Doped Titania as a Precursor for Titanate Nanotubes. J. Mater. Res. 2018, 33, 1288–1300. [Google Scholar] [CrossRef]
- Song, Z.; Xu, H.; Li, K.; Wang, H.; Yan, H. Hydrothermal synthesis and photocatalytic properties of titanium acid H2Ti2O5·H2O nanosheets. J. Mol. Catal. A Chem. 2005, 239, 87–91. [Google Scholar] [CrossRef]
- Li, A.; Wang, X.; Guo, L.; Li, S. Tunable subradiant mode in free-standing metallic nanohole arrays for high-performance plasmofluidic sensing. J. Phys. Chem. C 2019, 123, 25394–25401. [Google Scholar] [CrossRef]
- Zheng, G.; Schaefer, M.; Karplus, M. Hemoglobin bohr effects: Atomic origin of the histidine residue contributions. Biochem. Try 2013, 52, 8539–8555. [Google Scholar] [CrossRef]
- Guan, H.; Wang, J.; Tan, S.; Han, Q.; Liang, Q.; Ding, M. A facile method to synthesize magnetic nanoparticles chelated with copper(II) for selective adsorption of bovine hemoglobin. Korean J. Chem. Eng. 2020, 37, 1097–1106. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, M.; Ren, Y.; Xu, J.; Zheng, J.; Alsulami, H.; Kutbi, A.; Zhang, F.-Y. Carbon-supported nickel nanoparticles on SiO2 cores for protein adsorption and nitroaromatics reduction. ACS Appl. Nano Mater. 2020, 3, 4623–4634. [Google Scholar] [CrossRef]
- Wang, J.; Tan, S.; Liang, Q.; Sun, S.; Han, Q.; Ding, M. Preparation of magnetic microspheres functionalized by lanthanide oxides for selective isolation of bovine hemoglobin. Talanta 2018, 190, 210–218. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, D.; Shen, J.; Wei, Y.; Wang, C. Preparation of bottlebrush polymer–modified magnetic graphene as immobilized metal ion affinity adsorbent for purification of hemoglobin from blood samples. Microchim. Acta 2020, 187, 472. [Google Scholar] [CrossRef]
- Liu, J.; Liang, Y.; Liang, Q.; Yan, H.; Shen, J.; Wang, C.; Bai, Q. Tunable composites prepared from graphene oxide and zeolitic imidazolate framework-8 for improved selective isolation of hemoglobin. Microchim. Acta 2018, 185, 361. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, M.; Zheng, J.; Li, W.; Gan, W.; Xu, J.; Hayat, T.; Alharbi, N.S.; Yang, F. Ni nanoparticles decorated onto graphene oxide with SiO2 as interlayer for high performance on histidine-rich protein separation. Appl. Surf. Sci. 2018, 439, 128–138. [Google Scholar] [CrossRef]
- Zhao, L.; Qi, L.; Wang, H. Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic elec trolytes. J. Power Sources 2013, 242, 597–603. [Google Scholar] [CrossRef]
- Li, J.; Wan, W.; Zhu, F.; Li, Q.; Zhou, H.; Li, J.; Xu, D. Nanotube-based hierarchical titanate microspheres: An improved anode structure for li-ion batteries. Chem. Commun. 2012, 48, 389–391. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Hu, L.; Yang, J.; Guo, P.; Wang, J.; Zhang, W. Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation. Molecules 2024, 29, 1656. https://doi.org/10.3390/molecules29071656
Zhang Q, Hu L, Yang J, Guo P, Wang J, Zhang W. Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation. Molecules. 2024; 29(7):1656. https://doi.org/10.3390/molecules29071656
Chicago/Turabian StyleZhang, Qian, Linlin Hu, Jianyu Yang, Pengfei Guo, Jinhong Wang, and Weifen Zhang. 2024. "Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation" Molecules 29, no. 7: 1656. https://doi.org/10.3390/molecules29071656
APA StyleZhang, Q., Hu, L., Yang, J., Guo, P., Wang, J., & Zhang, W. (2024). Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation. Molecules, 29(7), 1656. https://doi.org/10.3390/molecules29071656