Characterization of Key Aroma Compounds and Main Contributing Amino Acids in Hot-Pressed Oil Prepared from Various Peanut Varieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensory Analysis
2.2. Volatile Components of Different Peanut Oils
2.3. OAVs of Key Aroma-Active Compounds
2.4. Correlation between Amino Acids and Sensory Evaluation Attributes in Different Samples
2.5. Correlations between Amino Acids and Core Flavor Compounds
2.6. Principal Component Analysis
3. Materials and Methods
3.1. Materials
3.2. Sensory Analysis
3.3. Amino Acid Profile Analysis
3.4. Total Sugar Content Analysis
3.5. Headspace Solid-Phase Micro-Extraction (HS-SPME)
3.6. Identification and Quantification of Flavor Components
3.7. Odor Activity Values
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, W.; Maradza, W.; Xu, Y.; Ma, X.; Shi, R.; Zhao, R.; Wang, X. Comparison of Key Aroma-active Composition and Aroma Perception of Cold-pressed and Roasted Peanut Oils. Int. J. Food Sci. Tech. 2022, 57, 2968–2979. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Cao, Y.; Wang, C.; Xue, Y. Effect of Roasting on the Chemical Components of Peanut Oil. LWT 2020, 125, 109249. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Zhang, Z.; Zhang, J.; Sun, Q.; Duan, X.; Sun, H.; Cao, Y. Influence of Roasting on the Physicochemical Properties, Chemical Composition and Antioxidant Activities of Peanut Oil. LWT 2022, 154, 112613. [Google Scholar] [CrossRef]
- Matsui, T.; Guth, H.; Grosch, W. A Comparative Study of Potent Odorants in Peanut, Hazelnut, and Pumpkin Seed Oils on the Basis of Aroma Extract Dilution Analysis (AEDA) and Gas Chromatography-Olfactometry of Headspace Samples (GCOH). Lipid-Fett 1998, 100, 51–56. [Google Scholar] [CrossRef]
- Dun, Q.; Yao, L.; Deng, Z.; Li, H.; Li, J.; Fan, Y.; Zhang, B. Effects of Hot and Cold-Pressed Processes on Volatile Compounds of Peanut Oil and Corresponding Analysis of Characteristic Flavor Components. LWT 2019, 112, 107648. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, C.; Chu, B.; Gu, P.; Zhu, B.; Qian, W.; Chang, X.; Yu, M.; Zhang, Y.; Wang, X. Unraveling the Relationship between Key Aroma Components and Sensory Properties of Fragrant Peanut Oils Based on Flavoromics and Machine Learning. Food Chem. X 2023, 20, 100880. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, C.; Liu, T.; Karrar, E.; Ouyang, Y.; Li, D. Effect of Microwave Heating on Lipid Composition, Chemical Properties and Antioxidant Activity of Oils from Trichosanthes Kirilowii Seed. Food Res. Int. 2022, 159, 111643. [Google Scholar] [CrossRef]
- Lin, G.; He, Q.; Cai, J.; Yang, X.; Wang, Y. Detection of Single Nucleotide Polymorphisms Based on Triple-Helix Molecular Switch Combined with Invader Assay. Microchem. J. 2024, 199, 109954. [Google Scholar] [CrossRef]
- Magaletta, R.L.; Ho, C.-T. Effect of Roasting Time and Temperature on the Generation of Nonvolatile (Polyhydroxyalkyl)Pyrazine Compounds in Peanuts, As Determined by High-Performance Liquid Chromatography. J. Agric. Food Chem. 1996, 44, 2629–2635. [Google Scholar] [CrossRef]
- Hu, H.; Shi, A.; Liu, H.; Liu, L.; Fauconnier, M.L.; Wang, Q. Study on Key Aroma Compounds and Its Precursors of Peanut Oil Prepared with Normal- and High-Oleic Peanuts. Foods 2021, 10, 3036. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, X.; Wang, Q.; Zhao, L.; Sun, Q.; Duan, X.; Cao, Y.; Sun, H. Investigation on Lipid Profile of Peanut Oil and Changes during Roasting by Lipidomic Approach. LWT 2022, 154, 112594. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, K.; Xu, C.; Lai, C.; Liu, Y.; Cao, Y.; Zhao, L. Contribution of Lipid to the Formation of Characteristic Volatile Flavor of Peanut Oil. Food Chem. 2024, 442, 138496. [Google Scholar] [CrossRef]
- Jing, B.; Guo, R.; Wang, M.; Zhang, L.; Yu, X. Influence of Seed Roasting on the Quality of Glucosinolate Content and Flavor in Virgin Rapeseed Oil. LWT 2020, 126, 109301. [Google Scholar] [CrossRef]
- Magnuson, S.M.; Kelly, B.; Koppel, K.; Reid, W. A Comparison of Flavor Differences between Pecan Cultivars in Raw and Roasted Forms. J. Food Sci. 2016, 81, S1243–S1253. [Google Scholar] [CrossRef]
- Zamuz, S.; Purriños, L.; Tomasevic, I.; Domínguez, R.; Brnčić, M.; Barba, F.J.; Lorenzo, J.M. Consumer Acceptance and Quality Parameters of the Commercial Olive Oils Manufactured with Cultivars Grown in Galicia (NW Spain). Foods 2020, 9, 427. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Q.; Liu, Y.; Huang, J.; Wang, X.; Mao, W.; Wang, S. Changes in Volatile Compounds of Peanut Oil during the Roasting Process for Production of Aromatic Roasted Peanut Oil. J. Food Sci. 2011, 76, C404–C412. [Google Scholar] [CrossRef] [PubMed]
- Suri, K.; Singh, B.; Kaur, A.; Singh, N. Impact of Roasting and Extraction Methods on Chemical Properties, Oxidative Stability and Maillard Reaction Products of Peanut Oils. J. Food Sci. Technol. 2019, 56, 2436–2445. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhou, T.; Zhang, H.; Cui, H.; Zhang, F.; Hayat, K.; Zhang, X.; Ho, C.-T. Simultaneously Enhanced Formation of Pyrazines and Furans during Thermal Degradation of the Glycyl-l-Glutamine Amadori Compound by Selected Exogenous Amino Acids and Appropriate Elevated Temperatures. J. Agric. Food Chem. 2023, 71, 4346–4357. [Google Scholar] [CrossRef] [PubMed]
- Baker, G.L.; Cornell, J.A.; Gorbet, D.W.; O’Keefe, S.F.; Sims, C.A.; Talcott, S.T. Determination of Pyrazine and Flavor Variations in Peanut Genotypes During Roasting. J. Food Sci. 2003, 68, 394–400. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, R.; Yang, F.; Xie, Y.; Guo, Y.; Yao, W.; Zhou, W. Control strategies of pyrazines generation from Maillard reaction. Trends Food Sci. Technol. 2021, 112, 795–807. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Sun, Y.; Yu, H.; Yang, F.; Guo, Y.; Xie, Y.; Yao, W. High-Intensity Ultrasound Promoted the Aldol-Type Condensation as an Alternative Mean of Synthesizing Pyrazines in a Maillard Reaction Model System of D-Glucose-13C6 and L-Glycine. Ultrason. Sonochem. 2022, 82, 105913. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.C.; Dunford, N.T. Flavour Characteristics of Peanut Cultivars Developed for Southwestern United States. International J. Food Sci. Technol. 2009, 44, 603–609. [Google Scholar] [CrossRef]
- Gama, A.P.; Adhikari, K. Sensory Characterization of Dominant Malawi Peanut Varieties After Roasting. J. Food Sci. 2019, 84, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Chetschik, I.; Granvogl, M.; Schieberle, P. Quantitation of Key Peanut Aroma Compounds in Raw Peanuts and Pan-Roasted Peanut Meal. Aroma Reconstitution and Comparison with Commercial Peanut Products. J. Agric. Food Chem. 2010, 58, 11018–11026. [Google Scholar] [CrossRef]
- Guo, X.; Song, C.; Ho, C.-T.; Wan, X. Contribution of L-Theanine to the Formation of 2,5-Dimethylpyrazine, a Key Roasted Peanutty Flavor in Oolong Tea during Manufacturing Processes. Food Chem. 2018, 263, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Chetschik, I.; Granvogl, M.; Schieberle, P. Comparison of the Key Aroma Compounds in Organically Grown, Raw West-African Peanuts (Arachis Hypogaea) and in Ground, Pan-Roasted Meal Produced Thereof. J. Agric. Food Chem. 2008, 56, 10237. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Adhikari, K.; Hung, Y.-C. Acceptability and Preference Drivers of Freshly Roasted Peanuts: Acceptability of Roasted Peanuts. J. Food Sci. 2017, 82, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-M.; Chao, L.K.; Wu, C.-S.; Ye, Z.-S.; Chen, H.-C. Headspace Solid-Phase Microextraction Analysis of Volatile Components in Peanut Oil. Molecules 2021, 26, 3306. [Google Scholar] [CrossRef] [PubMed]
- Newell, J.A.; Mason, M.E.; Matlock, R.S. Precursors of Typical and Atypical Roasted Peanut Flavor. J. Agric. Food Chem. 1967, 15, 767–772. [Google Scholar] [CrossRef]
- Ku, K.-L.; Lee, R.-S.; Young, C.T.; Chiou, R.Y.-Y. Roasted Peanut Flavor and Related Compositional Characteristics of Peanut Kernels of Spring and Fall Crops Grown in Taiwan. J. Agric. Food Chem. 1998, 46, 3220–3224. [Google Scholar] [CrossRef]
- Klevorn, C.M.; Dean, L.L. A Metabolomics-Based Approach Identifies Changes in the Small Molecular Weight Compound Composition of the Peanut as a Result of Dry-Roasting. Food Chem. 2018, 240, 1193–1200. [Google Scholar] [CrossRef]
- Pattee, H.E.; Isleib, T.G.; Giesbrecht, F.G.; Mcfeeters, R.F. Relationships of Sweet, Bitter, and Roasted Peanut Sensory Attributes with Carbohydrate Components in Peanuts. J. Agric. Food Chem. 2000, 48, 757–763. [Google Scholar] [CrossRef]
- Shakoor, A.; Zhang, C.; Xie, J.; Yang, X. Maillard Reaction Chemistry in Formation of Critical Intermediates and Flavour Compounds and Their Antioxidant Properties. Food Chem. 2022, 393, 133416. [Google Scholar] [CrossRef]
- Zou, T.; Kang, L.; Yang, C.; Song, H.; Liu, Y. Flavour Precursor Peptide from an Enzymatic Beef Hydrolysate Maillard Reaction-II: Mechanism of the Synthesis of Flavour Compounds from a Sulphur-Containing Peptide through a Maillard Reaction. LWT 2019, 110, 8–18. [Google Scholar] [CrossRef]
- Hwang, H.-I.; Hartman, T.G.; Rosen, R.T.; Lech, J.; Ho, C.-T. Formation of Pyrazines from the Maillard Reaction of Glucose and Lysine-.alpha.-amine-15N. J. Agric. Food Chem. 1994, 42, 1000–1004. [Google Scholar] [CrossRef]
- Schieberle, P. The Carbon Module Labeling (CAMOLA) Technique: A Useful Tool for Identifying Transient Intermediates in the Formation of Maillard-Type Target Molecules. Ann. N. Y. Acad. Sci. 2005, 1043, 236–248. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Liu, D.; Yang, L.; Hu, W.; Kuang, L.; Huang, Y.; Teng, J.; Liu, Y. Multi-Omics and Enzyme Activity Analysis of Flavour Substances Formation: Major Metabolic Pathways Alteration during Congou Black Tea Processing. Food Chem. 2023, 403, 134263. [Google Scholar] [CrossRef]
- Cui, H.; Jia, C.; Hayat, K.; Yu, J.; Deng, S.; Karangwa, E.; Duhoranimana, E.; Xia, S.; Zhang, X. Controlled Formation of Flavor Compounds by Preparation and Application of Maillard Reaction Intermediate (MRI) Derived from Xylose and Phenylalanine. RSC Adv. 2017, 7, 45442–45451. [Google Scholar] [CrossRef]
- Dong, R.; Zhu, M.; Long, Y.; Yu, Q.; Li, C.; Xie, J.; Huang, Y.; Chen, Y. Exploring Correlations between Green Coffee Bean Components and Thermal Contaminants in Roasted Coffee Beans. Food Res. Int. 2023, 167, 112700. [Google Scholar] [CrossRef]
- Hu, H.; Liu, X.; Jiang, L.; Zhang, Q.; Zhang, H. The Relationship between Acrylamide and Various Components during Coffee Roasting and Effect of Amino Acids on Acrylamide Formation. J. Food Process. Preserv. 2021, 45, e15421. [Google Scholar] [CrossRef]
- Lykomitros, D.; Fogliano, V.; Capuano, E. Flavor of Roasted Peanuts (Arachis Hypogaea)—Part I: Effect of Raw Material and Processing Technology on Flavor, Color and Fatty Acid Composition of Peanuts. Food Res. Int. 2016, 89, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Pontes, M.; Marques, J.C.; Câmara, J.S. Screening of Volatile Composition from Portuguese Multifloral Honeys Using Headspace Solid-Phase Microextraction-Gas Chromatography–Quadrupole Mass Spectrometry. Talanta 2007, 74, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Van Gemert, L.J. Odour Thresholds. In Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011. [Google Scholar]
Odorants | Odor Threshold mg/L | OAVs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZLP1 | ZLP2 | ZLP3 | ZLP4 | ZLP5 | ZLP6 | ZLP7 | ZLP8 | ZLP9 | ||||
1 | Alcohols | Methyl mercaptan | 0.00006 | 4350.00 | 3200.000 | 3150.000 | 3250.00 | 2550.000 | 3100.000 | 1750.000 | 2000.000 | 1800.000 |
2 | 1-Pentanol | 0.15020 | 3.45539 | 2.47670 | 0.00000 | 2.83622 | 0.00000 | 2.69640 | 0.00000 | 2.03728 | 0.00000 | |
3 | Phenolics | 4-Hydroxy-3-methoxystyrene | 0.05000 | 5.22000 | 5.94000 | 7.44000 | 6.18000 | 11.10000 | 15.60000 | 11.88000 | 17.34000 | 15.18000 |
4 | Aldehydes | 2-Methylbutyraldehyde | 0.00220 | 354.54545 | 216.81818 | 263.18182 | 197.72727 | 261.81818 | 246.81818 | 278.18182 | 162.27273 | 173.18182 |
5 | Glutaraldehyde | 0.00900 | 32.33333 | 24.33333 | 14.00000 | 13.33333 | 18.00000 | 13.66667 | 12.33333 | 11.00000 | 17.33333 | |
6 | Hexanal | 0.27600 | 4.57609 | 4.76087 | 2.41304 | 2.11957 | 3.71739 | 3.20652 | 2.18478 | 2.96739 | 3.42391 | |
7 | 2-Hexenal | 0.08870 | 0.94701 | 1.35287 | 0.50733 | 0.33822 | 1.42052 | 1.11612 | 0.57497 | 0.54115 | 1.38670 | |
8 | Octanal | 0.05150 | 1.92233 | 5.76699 | 3.26214 | 5.82524 | 6.64078 | 5.82524 | 5.41748 | 6.58252 | 15.20388 | |
9 | Furfural | 0.97000 | 1.68557 | 1.59278 | 1.35155 | 0.94330 | 1.67010 | 1.08866 | 0.99588 | 0.93402 | 1.05464 | |
10 | Decanal | 0.00010 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 570.0000 | 480.0000 | 0.00000 | 0.00000 | 360.0000 | |
11 | Benza | 0.04170 | 13.52518 | 4.38849 | 6.61871 | 6.76259 | 10.07194 | 17.26619 | 17.91367 | 12.30216 | 12.58993 | |
12 | Phenylacetaldehyde | 0.00400 | 219.00000 | 175.5000 | 84.75000 | 123.750 | 117.7500 | 293.2500 | 282.0000 | 273.7500 | 195.7500 | |
13 | Ketones | 2,3-Pentanedione | 0.00030 | 670.000 | 320.000 | 260.000 | 290.000 | 180.000 | 150.000 | 180.000 | 220.000 | 90.000 |
14 | Pyrazines | 2,5-Dimethyl pyrazine | 1.00000 | 0.00000 | 4.56300 | 2.95200 | 3.51300 | 5.02800 | 4.31100 | 4.85700 | 4.13100 | 4.19100 |
15 | 2,6-Dimethyl pyrazine | 0.71800 | 1.64206 | 1.52089 | 0.93175 | 0.96100 | 1.79248 | 1.20334 | 1.65042 | 1.16992 | 1.33705 | |
16 | 2-Ethyl-6-methylpyrazine | 0.04000 | 23.47500 | 27.30000 | 17.55000 | 15.52500 | 34.42500 | 18.30000 | 30.97500 | 16.65000 | 22.57500 | |
17 | 2-Ethyl-5-methylpyrazin | 0.10000 | 20.79000 | 26.16000 | 17.79000 | 20.64000 | 32.46000 | 25.59000 | 29.22000 | 22.08000 | 18.36000 | |
18 | 2,3,5-Trimethylpyrazine | 1.50000 | 1.00400 | 0.00000 | 0.00000 | 0.64800 | 0.00000 | 0.89000 | 1.32200 | 0.84400 | 1.02800 | |
19 | 3,5-Dimethyl-2-ethylpyrazine | 0.00220 | 0.00000 | 0.00000 | 53.18182 | 50.45455 | 90.00000 | 57.27273 | 83.18182 | 40.90909 | 75.00000 | |
20 | 2,6-Diethylpyrazine | 0.00600 | 16.00000 | 20.50000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
21 | 3-Ethyl-2,5-dimethylpyrazine | 0.00100 | 0.00000 | 2670.000 | 2040.000 | 0.00000 | 2742.000 | 1965.000 | 2502.000 | 1941.000 | 2418.000 | |
22 | 2,3-Dimethyl-5-ethylpyrazine | 0.53000 | 0.99623 | 1.52264 | 0.95660 | 0.95660 | 1.46038 | 1.04151 | 1.31887 | 1.06981 | 1.50000 | |
23 | 2-Pentylpyridine | 0.00060 | 0.00000 | 70.00000 | 0.00000 | 0.00000 | 0.00000 | 140.0000 | 0.00000 | 0.00000 | 315.0000 | |
24 | Other heterocyclics | N-methyl-2-pyrrolaldehyde | 0.03700 | 1.05405 | 0.72973 | 0.64865 | 0.72973 | 1.21622 | 0.64865 | 1.21622 | 0.72973 | 0.00000 |
25 | Furanone | 0.02230 | 24.08072 | 18.02691 | 14.12556 | 14.66368 | 20.98655 | 19.91031 | 20.44843 | 26.23318 | 17.48879 |
Phenylalanine | Lysine | Proline | Serine | Threonine | Aspartate | Valine | Isoleucine | Histidine | Alanine | Methionine | Glycine | Glutamate | Arginine | Tyrosine | Leucine | Total sugar | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZLP1 | 1.32 ± 0.11 abc | 0.95 ± 0.03 a | 0.96 ± 0.03 a | 1.19 ± 0.28 ab | 0.66 ± 0.05 ab | 3.06 ± 0.28 ab | 1.08 ± 0.05 b | 0.92 ± 0.05 b | 0.94 ± 0.07 ab | 0.95 ± 0.03 ab | 0.19 ± 0.05 a | 1.42 ± 0.23 bc | 4.940 ± 0.13 bc | 2.55 ± 0.23 bc | 1.02 ± 0.15 bc | 1.68 ± 0.21 b | 4.8 ± 0.15 c |
ZLP2 | 1.22 ± 0.15 bc | 0.88 ± 0.07 a | 0.72 ± 0.01 bc | 1.08 ± 0.07 b | 0.6 ± 0.03 b | 2.96 ± 0.27 b | 1.54 ± 0.15 a | 0.92 ± 0.09 b | 1.03 ± 0.03 ab | 0.74 ± 0.07 cd | 0.17 ± 0.01 a | 1.310 ± 0.13 c | 4.76 ± 0.28 bc | 2.5 ± 0.15 bc | 0.95 ± 0.05 c | 1.68 ± 0.05 b | 4.9 ± 0.36 bc |
ZLP3 | 1.16 ± 0.07 c | 0.9 ± 0.07 a | 0.94 ± 0.05 a | 1.12 ± 0.15 ab | 0.62 ± 0.06 b | 2.8 ± 0.17 b | 0.9 ± 0.03 b | 0.85 ± 0.07 b | 0.9 ± 0.05 ab | 0.86 ± 0.09 abc | 0.16 ± 0.01 a | 1.4 ± 0.21 bc | 4.66 ± 0.35 c | 2.44 ± 0.17 c | 0.96 ± 0.05 c | 1.56 ± 0.09 b | 4.8 ± 0.09 c |
ZLP4 | 1.2 ± 0.21 bc | 0.85 ± 0.01 a | 0.68 ± 0.01 c | 1.08 ± 0.03 b | 0.6 ± 0.06 b | 2.8 ± 0.28 b | 1.48 ± 0.06 a | 0.87 ± 0.06 b | 0.93 ± 0.06 ab | 0.710 ± 0.09 d | 0.19 ± 0.07 a | 1.39 ± 0.07 bc | 4.6 ± 0.31 bc | 2.54 ± 0.23 bc | 0.94 ± 0.08 c | 1.6 ± 0.09 b | 4.2 ± 0.31 c |
ZLP5 | 1.520 ± 0.13 a | 1.08 ± 0.28 a | 0.82 ± 0.07 b | 1.37 ± 0.03 a | 0.73 ± 0.01 a | 3.48 ± 0.36 a | 1.5 ± 0.28 a | 1.13 ± 0.21 a | 1.14 ± 0.15 ab | 0.92 ± 0.17 a | 0.2 ± 0.03 a | 1.65 ± 0.15 a | 6.16 ± 0.43 a | 3.38 ± 0.59 a | 1.26 ± 0.21 a | 2.1 ± 0.31 a | 5.3 ± 0.45 ab |
ZLP6 | 1.32 ± 0.08 abc | 0.95 ± 0.01 a | 0.65 ± 0.01 c | 1.14 ± 0.17 ab | 0.62 ± 0.03 b | 2.97 ± 0.21 b | 1.1 ± 0.07 b | 0.9 ± 0.03 b | 0.88 ± 0.07 b | 0.77 ± 0.06 abc | 0.21 ± 0.07 a | 1.37 ± 0.17 bc | 5.02 ± 0.17 bc | 2.64 ± 0.21 bc | 0.98 ± 0.09 c | 1.67 ± 0.15 b | 4.6 ± 0.31 c |
ZLP7 | 1.32 ± 0.03 abc | 0.96 ± 0.01 a | 0.81 ± 0.03 b | 1.18 ± 0.05 ab | 0.66 ± 0.07 ab | 3.04 ± 0.17 ab | 1.08 ± 0.21 b | 0.95 ± 0.01 ab | 1.02 ± 0.17 a | 0.88 ± 0.01 abc | 0.2 ± 0.02 a | 1.48 ± 0.21 bc | 5.04 ± 0.68 bc | 2.77 ± 0.28 bc | 1.02 ± 0.09 bc | 1.73 ± 0.15 b | 4.8 ± 0.45 c |
ZLP8 | 1.43 ± 0.13 ab | 0.98 ± 0.03 a | 0.72 ± 0.07 bc | 1.22 ± 0.07 ab | 0.65 ± 0.01 ab | 3.19 ± 0.28 ab | 1.47 ± 0.17 a | 0.98 ± 0.03 ab | 0.94 ± 0.03 ab | 0.81 ± 0.05 abc | 0.2 ± 0.07 a | 1.56 ± 0.15 bc | 5.3 ± 0.21 b | 3 ± 0.13 ab | 1.13 ± 0.15 ab | 1.82 ± 0.12 ab | 4.5 ± 0.25 c |
ZLP9 | 1.34 ± 0.05 abc | 0.92 ± 0.05 a | 0.80 ± 0.13 b | 1.19 ± 0.21 ab | 0.64 ± 0.05 b | 3.1 ± 0.15 ab | 1.16 ± 0.03 b | 0.92 ± 0.17 b | 1 ± 0.28 ab | 0.76 ± 0.03 bcd | 0.2 ± 0.03 a | 1.55 ± 0.17 bc | 5.12 ± 0.23 bc | 2.74 ± 0.07 bc | 1.06 ± 0.05 bc | 1.7 ± 0.21 b | 5.5 ± 0.41 a |
Sensory Attribute | Description |
---|---|
Roasted nut | A slightly oily smell reminiscent of roasted nuts. |
Fresh peanuts | A smell reminiscent of raw peanuts. |
Sweet aroma | A smell associated with sweetness. |
Burnt | A smell reminiscent of burnt grain. |
Over-burnt | A smell reminiscent of burnt or fried food. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Zhang, C.; Song, Y.; Chu, B.; Wang, M.; Zhang, Z.; Wang, X. Characterization of Key Aroma Compounds and Main Contributing Amino Acids in Hot-Pressed Oil Prepared from Various Peanut Varieties. Molecules 2024, 29, 1947. https://doi.org/10.3390/molecules29091947
Sun J, Zhang C, Song Y, Chu B, Wang M, Zhang Z, Wang X. Characterization of Key Aroma Compounds and Main Contributing Amino Acids in Hot-Pressed Oil Prepared from Various Peanut Varieties. Molecules. 2024; 29(9):1947. https://doi.org/10.3390/molecules29091947
Chicago/Turabian StyleSun, Jie, Chunhua Zhang, Yu Song, Baijun Chu, Mingqing Wang, Zhiran Zhang, and Xiangyu Wang. 2024. "Characterization of Key Aroma Compounds and Main Contributing Amino Acids in Hot-Pressed Oil Prepared from Various Peanut Varieties" Molecules 29, no. 9: 1947. https://doi.org/10.3390/molecules29091947
APA StyleSun, J., Zhang, C., Song, Y., Chu, B., Wang, M., Zhang, Z., & Wang, X. (2024). Characterization of Key Aroma Compounds and Main Contributing Amino Acids in Hot-Pressed Oil Prepared from Various Peanut Varieties. Molecules, 29(9), 1947. https://doi.org/10.3390/molecules29091947