Highly Efficient Photocatalytic Degradation of Tetracycline Antibiotics by BiPO4/g-C3N4: A Novel Heterojunction Nanocomposite with Nanorod/Stacked-like Nanosheets Structure
Abstract
1. Introduction
2. Results and Discussion
2.1. Crystal Structure and Morphology
2.2. Photoelectrochemical Properties
2.3. Photocatalytic Degradation Properties
2.4. Identification of Active Species
2.5. Mechanism of the Photocatalytic Performance Improvement
3. Materials and Methods
3.1. Materials
3.2. Synthesis of BiPO4/g-C3N4 Heterojunction Photocatalysts
3.3. Characterization of Synthetic Catalysts
3.4. Photocatalytic Degradation Experimental Set Up
3.5. Analytical and Computational Simulation Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, P.-H.; Li, Z.; Yu, T.-L.; Munkhbayer, S.; Kuo, T.-H.; Hung, Y.-C.; Jean, J.-S.; Lin, K.-H. Sorptive removal of tetracycline from water by palygorskite. J. Hazard. Mater. 2009, 165, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhang, H.; Wang, L.; Chen, L. Ultrasound-enhanced magnetite catalytic ozonation of tetracycline in water. Chem. Eng. J. 2013, 229, 577–584. [Google Scholar] [CrossRef]
- Hou, J.; Wan, W.; Mao, D.; Wang, C.; Mu, Q.; Qin, S.; Luo, Y. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environ. Sci. Pollut. Res. 2015, 22, 4545–4554. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Y.; Guo, Y.; Wan, J.; Yan, Y.; Zhou, Y.; Sun, C. Environmental-friendly synthesis of heterojunction photocatalysts g-C3N4/BiPO4 with enhanced photocatalytic performance. Appl. Surf. Sci. 2021, 544, 148872. [Google Scholar] [CrossRef]
- Wang, D.; Jia, F.; Wang, H.; Chen, F.; Fang, Y.; Dong, W.; Zeng, G.; Li, X.; Yang, Q.; Yuan, X. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J. Colloid Interface Sci. 2018, 519, 273–284. [Google Scholar] [CrossRef]
- Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P.J.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015, 85, 458–466. [Google Scholar] [CrossRef]
- Phoon, B.L.; Ong, C.C.; Saheed, M.S.M.; Show, P.-L.; Chang, J.-S.; Ling, T.C.; Lam, S.S.; Juan, J.C. Conventional and emerging technologies for removal of antibiotics from wastewater. J. Hazard. Mater. 2020, 400, 122961. [Google Scholar]
- Wu, G.; Qin, W.; Sun, L.; Yuan, X.; Xia, D. Role of peroxymonosulfate on enhancing ozonation for micropollutant degradation: Performance evaluation, mechanism insight and kinetics study. Chem. Eng. J. 2019, 360, 115–123. [Google Scholar] [CrossRef]
- Muller, H.D.; Steinbac, F. Decomposition of Isopropyl Alcohol photosensitized by Zinc Oxide. Nature 1970, 225, 728–729. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.R. Preparation and characterization of nitrogen-doped TiO2/diatomite integrated photocatalytic pellet for the adsorption-degradation of tetracycline hydrochloride using visible light. Chem. Eng. J. 2016, 302, 682–696. [Google Scholar] [CrossRef]
- Tang, T.; Yin, Z.L.; Chen, J.R.; Zhang, S.; Sheng, W.C.; Wei, W.X.; Xiao, Y.G.; Shi, Q.Y.; Cao, S.S. Novel p-n heterojunction Bi2O3/Ti3+-TiO2 photocatalyst enables the complete removal of tetracyclines under visible light. Chem. Eng. J. 2021, 417, 128058. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974. [Google Scholar] [PubMed]
- Wu, A.; Tian, C.; Jiao, Y.; Yan, Q.; Yang, G.; Fu, H. Sequential two-step hydrothermal growth of MoS2/CdS core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl. Catal. B Environ. 2017, 203, 955–963. [Google Scholar]
- Liu, T.; Zhang, X.; Zhao, F.; Wang, Y. Targeting inside charge carriers transfer of photocatalyst: Selective deposition of Ag2O on BiVO4 with enhanced UV–vis-NIR photocatalytic oxidation activity. Appl. Catal. B Environ. 2019, 251, 220–228. [Google Scholar]
- Bi, Y.; Hu, H.; Ouyang, S.; Jiao, Z.; Lu, G.; Ye, J. Selective growth of Ag3PO4 submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications. J. Mater. Chem. 2012, 22, 14847–14850. [Google Scholar]
- Ye, L.; Su, Y.; Jin, X.; Xie, H.; Zhang, C. Recent advances in BiOX (X = Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms. Environ. Sci. Nano 2014, 1, 90–112. [Google Scholar]
- Wang, P.; Ao, Y.; Wang, C.; Hou, J.; Qian, J. A one-pot method for the preparation of graphene-Bi2MoO6 hybrid photocatalysts that are responsive to visible-light and have excellent photocatalytic activity in the degradation of organic pollutants. Carbon 2012, 50, 5256–5264. [Google Scholar] [CrossRef]
- Rao, P.M.; Cai, L.; Cho, I.S.; Lee, C.H.; Weisse, J.M.; Zheng, X.; Liu, C.; Yang, P. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 Core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 2014, 14, 1099–1105. [Google Scholar] [CrossRef]
- Gui, M.S.; Zhang, W.D.; Su, Q.X.; Chen, C.H. Preparation and visible light photocatalytic activity of Bi 2O3/Bi2WO6 heterojunction photocatalysts. J. Solid State Chem. 2011, 184, 1977–1982. [Google Scholar] [CrossRef]
- Pan, C.; Zhu, Y. New Type of BiPO4 Oxy-Acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye. Environ. Sci. Technol. 2010, 44, 5570–5574. [Google Scholar] [CrossRef] [PubMed]
- Nithya, V.D.; Kalai Selvan, R.; Vasylechko, L. Hexamethylenetetramine assisted hydrothermal synthesis of BiPO4 and its electrochemical properties for supercapacitors. J. Phys. Chem. Solids 2015, 86, 11–18. [Google Scholar] [CrossRef]
- Pan, C.; Xu, J.; Chen, Y.; Zhu, Y. Influence of OH-related defects on the performances of BiPO4 photocatalyst for the degradation of rhodamine B. Appl. Catal. B Environ. 2012, 115–116, 314–319. [Google Scholar] [CrossRef]
- Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar]
- Moniz, S.J.; Shevlin, S.A.; Martin, D.J.; Guo, Z.-X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar]
- Song, Y.; Tian, J.; Gao, S.; Shao, P.; Qi, J.; Cui, F. Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: Effectiveness, mechanism and pathways. Appl. Catal. B Environ. 2017, 210, 88–96. [Google Scholar]
- Kong, H.J.; Won, D.H.; Kim, J.; Woo, S.I. Sulfur-Doped g-C3N4/BiVO4 Composite Photocatalyst for Water Oxidation under Visible Light. Chem. Mater. 2016, 28, 1318–1324. [Google Scholar] [CrossRef]
- Yuan, J.; Gao, Q.; Li, X.; Liu, Y.; Fang, Y.; Yang, S.; Peng, F.; Zhou, X. Novel 3-D nanoporous graphitic-C3N4 nanosheets with heterostructured modification for efficient visible-light photocatalytic hydrogen production. RSC Adv. 2014, 4, 52332–52337. [Google Scholar] [CrossRef]
- Tan, G.Q.; She, L.N.; Liu, T.; Xu, C.; Ren, H.J.; Xia, A. Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4 heterostructured photocatalysts with improved visible light photocatalytic activity. Appl. Catal. B-Environ. 2017, 207, 120–133. [Google Scholar] [CrossRef]
- Zhuang, Z.; Li, Y.; Li, Z.; Lv, F.; Lang, Z.; Zhao, K.; Zhou, L.; Moskaleva, L.; Guo, S.; Mai, L. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew. Chem. 2018, 130, 505–509. [Google Scholar]
- Ge, L.; Chen, J.; Wei, X.; Zhang, S.; Qiao, X.; Cai, X.; Xie, Q. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents. Environ. Sci. Technol. 2010, 44, 2400–2405. [Google Scholar] [PubMed]
- Xu, Y.; Shen, M. Fabrication of anatase-type TiO2 films by reactive pulsed laser deposition for photocatalyst application. J. Mater. Process. Technol. 2008, 202, 301–306. [Google Scholar]
- Shi, H.; Zhou, C.; Zhang, C. Silver vanadate nanowires: Photocatalytic properties and theoretical calculations. Res. Chem. Intermed. 2015, 41, 7725–7737. [Google Scholar]
- He, R.; Cheng, K.; Wei, Z.; Zhang, S.; Xu, D. Room-temperature in situ fabrication and enhanced photocatalytic activity of direct Z-scheme BiOI/g-C3N4 photocatalyst. Appl. Surf. Sci. 2019, 465, 964–972. [Google Scholar]
- He, R.; Zhou, J.; Fu, H.; Zhang, S.; Jiang, C. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 2018, 430, 273–282. [Google Scholar]
- Zheng, X.; Wang, J.; Liu, J.; Wang, Z.; Chen, S.; Fu, X. Photocatalytic degradation of benzene over different morphology BiPO4: Revealing the significant contribution of high–energy facets and oxygen vacancies. Appl. Catal. B Environ. 2019, 243, 780–789. [Google Scholar]
- Vincent, M.J.; Gonzalez, R.D. A Langmuir–Hinshelwood model for a hydrogen transfer mechanism in the selective hydrogenation of acetylene over a Pd/γ-Al2O3 catalyst prepared by the sol–gel method. Appl. Catal. A Gen. 2001, 217, 143–156. [Google Scholar]
- Long, B.; Huang, J.; Wang, X. Photocatalytic degradation of benzene in gas phase by nanostructured BiPO4 catalysts. Prog. Nat. Sci. Mater. Int. 2012, 22, 644–653. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, J.; Yuan, J.; Zhao, W.; Zhu, X.; Sun, C.; Xie, J. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem. Eng. J. 2018, 331, 242–254. [Google Scholar] [CrossRef]
- Chen, Z.-J.; Guo, H.; Liu, H.-Y.; Niu, C.-G.; Huang, D.-W.; Yang, Y.-Y.; Liang, C.; Li, L.; Li, J.-C. Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline. Chem. Eng. J. 2022, 438, 135471. [Google Scholar] [CrossRef]
- Chen, W.; Huang, J.; He, Z.-C.; Ji, X.; Zhang, Y.-F.; Sun, H.-L.; Wang, K.; Su, Z.-W. Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 p-n heterojunctions under visible light irradiation. Sep. Purif. Technol. 2021, 277, 119461. [Google Scholar] [CrossRef]
- Shao, B.; Liu, Z.; Zeng, G.; Wu, Z.; Liu, Y.; Cheng, M.; Chen, M.; Liu, Y.; Zhang, W.; Feng, H. Nitrogen-Doped Hollow Mesoporous Carbon Spheres Modified g-C3N4/Bi2O3 Direct Dual Semiconductor Photocatalytic System with Enhanced Antibiotics Degradation under Visible Light. ACS Sustain. Chem. Eng. 2018, 6, 16424–16436. [Google Scholar] [CrossRef]
- Durandurdu, M. Amorphous carbon nitride (C3N4). J. Non-Cryst. Solids 2024, 631, 122916. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Wei, Z.; Yang, S.; He, H.; Sun, C. Fabrication of a novel p–n heterojunction photocatalyst n-BiVO4@p-MoS2 with core–shell structure and its excellent visible-light photocatalytic reduction and oxidation activities. Appl. Catal. B Environ. 2016, 185, 242–252. [Google Scholar]
- Guo, Y.; Dai, Y.; Zhao, W.; Li, H.; Xu, B.; Sun, C. Highly efficient photocatalytic degradation of naphthalene by Co3O4/Bi2O2CO3 under visible light: A novel p–n heterojunction nanocomposite with nanocrystals/lotus-leaf-like nanosheets structure. Appl. Catal. B Environ. 2018, 237, 273–287. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.-Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
Target Pollutants | g-C3N4 | BiPO4 | 5%-CN/BiP |
---|---|---|---|
TC | 7.12 × 10−3 | 7.13 × 10−4 | 3.71 × 10−2 |
OTC | 7.42 × 10−3 | 1.37 × 10−3 | 2.77 × 10−2 |
Type of Photocatalyst | Dosage (g/L) | C0 of NA (mg/L) | Light Sources | Time (min) | Removal Efficiency (%) | References |
---|---|---|---|---|---|---|
g-C3N4/BiPO4 | 1 | 20 | λ > 420 nm | 90 | 99.4% | This study |
Ag/Ag2CO3/BiVO4 | 1 | 20 | λ > 400 | 150 | 94.9% | [39] |
Ag2CO3/Bi4O5I2/g-C3N4 | 2/3 | 20 | λ > 400 | 60 | 82.16% | [40] |
CuAl2O4/g-C3N4 | 0.2 | 100 | λ > 400 | 60 | 89.6% | [41] |
g-C3N4/Bi2O3@N-HMCs | 2 | 10 | λ > 420 | 60 | 90.06% | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Luo, M.; Sun, C.; Jiang, J.; Guo, Y. Highly Efficient Photocatalytic Degradation of Tetracycline Antibiotics by BiPO4/g-C3N4: A Novel Heterojunction Nanocomposite with Nanorod/Stacked-like Nanosheets Structure. Molecules 2025, 30, 2905. https://doi.org/10.3390/molecules30142905
Zhu X, Luo M, Sun C, Jiang J, Guo Y. Highly Efficient Photocatalytic Degradation of Tetracycline Antibiotics by BiPO4/g-C3N4: A Novel Heterojunction Nanocomposite with Nanorod/Stacked-like Nanosheets Structure. Molecules. 2025; 30(14):2905. https://doi.org/10.3390/molecules30142905
Chicago/Turabian StyleZhu, Xin, Moye Luo, Cheng Sun, Jinlin Jiang, and Yang Guo. 2025. "Highly Efficient Photocatalytic Degradation of Tetracycline Antibiotics by BiPO4/g-C3N4: A Novel Heterojunction Nanocomposite with Nanorod/Stacked-like Nanosheets Structure" Molecules 30, no. 14: 2905. https://doi.org/10.3390/molecules30142905
APA StyleZhu, X., Luo, M., Sun, C., Jiang, J., & Guo, Y. (2025). Highly Efficient Photocatalytic Degradation of Tetracycline Antibiotics by BiPO4/g-C3N4: A Novel Heterojunction Nanocomposite with Nanorod/Stacked-like Nanosheets Structure. Molecules, 30(14), 2905. https://doi.org/10.3390/molecules30142905