Ustisorbicillinols G and H, Two New Antibacterial Sorbicillinoids from the Albino Strain LN02 of Rice False Smut Fungus Villosiclava virens
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Identification of Compounds 1 and 2
2.2. Antibacterial Activity of Compounds 1 and 2
3. Materials and Methods
3.1. Fungus and Fermentation
3.2. Extraction and Separation
3.3. Calculation of ECD
3.4. Antibacterial Assay
3.5. Cytotoxic Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harned, A.M.; Volp, K.A. The sorbicillinoid family of natural products: Isolation, biosynthesis and synthetic studies. Nat. Prod. Rep. 2011, 28, 1790–1810. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Wang, X.; Xu, D.; Fu, X.; Zhang, X.; Lai, D.; Zhou, L.; Zhang, G. Sorbicillinoids from fungi and their bioactivities. Molecules 2016, 21, 715. [Google Scholar] [CrossRef] [PubMed]
- Milzarek, T.M.; Gulder, T.A.M. The fungal natural product class of the sorbicillinoids: Structures, bioactivities, biosynthesis, and synthesis. Nat. Prod. Rep. 2025, 42, 482–500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; An, N.; Guo, J.; Wang, Z.; Meng, X.; Liu, W. Influences of genetically perturbing synthesis of the typical yellow pigment on conidiation, cell wall integrity, stress tolerance, and cellulase production in Trichoderma reesei. J. Microbiol. 2021, 59, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, D.; Hou, X.; Wei, P.; Fu, J.; Zhao, Z.; Jing, M.; Lai, D.; Yin, W.; Zhou, L. UvSorA and UvSorB involved in sorbicillinoid biosynthesis contribute to fungal development, stress response and phytotoxicity in Ustilaginoidea virens. Int. J. Mol. Sci. 2022, 23, 11056. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, J.; Choi, S.; Choi, J.; Lee, J.W.; Kang, K.S.; Shim, S.H. 2,3-Dihydrosorbicillin and chrysopanol stimulate insulin secretion in INS-1 cells. Bioorg. Med. Chem. Lett. 2023, 83, 129186. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhang, X.; Xue, M.; Zhao, Z.; Zhang, H.; Xu, D.; Lai, D.; Zhou, L. Recent advances in sorbicillinoids from fungi and their bioactivities (covering 2016–2021). J. Fungi 2022, 8, 62. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Wang, S.; Huo, R.; Li, E.; Wang, M.; Ren, J.; Pan, Y.; Liu, L.; Liu, G. Sorbicillinoid derivatives with the radical scavenging activities from the marine-derived fungus Acremonium chrysogenum C10. J. Fungi 2022, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, S.; Zhou, W.; Chen, Y.; Wang, Z.; Zeng, Z.; Zhou, H.; Lin, T. Dihydrotrichodimerol Purified from the Marine Fungus Acremonium citrinum prevents NAFLD by targeting PPARα. J. Nat. Prod. 2023, 86, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Meng, Q.; Liu, D.; Fan, A.; Huang, J.; Lin, W. Targeted isolation of sorbicilinoids from a deep-sea derived fungus with anti-neuroinffammatory activities. Phytochemistry 2024, 219, 113976. [Google Scholar] [CrossRef] [PubMed]
- Koiso, Y.; Li, Y.; Iwasaki, S.; Hanaoka, K.; Kobayashi, T.; Fujita, Y.; Yaegashi, H.; Sato, Z. Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. J. Antibiot. 1994, 47, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Sun, W.; Meng, J.; Wang, A.; Wang, X.; Tian, J.; Fu, X.; Dai, J.; Liu, Y.; Lai, D.; et al. Bioactive bis-naphtho-γ-pyrones from rice false smut pathogen Ustilaginoidea virens. J. Agric. Food Chem. 2015, 63, 3501–3508. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wang, A.; Xu, D.; Wang, W.; Meng, J.; Dai, J.; Liu, Y.; Lai, D.; Zhou, L. New ustilaginoidins from rice false smut balls caused by Villosiclava virens and their phytotoxic and cytotoxic activities. J. Agric. Food Chem. 2017, 65, 5151–5160. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, J.; Lai, D.; Wang, W.; Dai, J.; Zhou, L.; Liu, Y. Ustiloxin G, a new cyclopeptide mycotoxin from rice false smut balls. Toxins 2017, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Meng, J.; Zhang, X.; Xu, D.; Dai, J.; Zhou, L. Ustilobisorbicillinol A, a cytotoxic sorbyl-containing aromatic polyketide from Ustilaginoidea virens. Org. Lett. 2019, 21, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Liu, H.; Zhang, Y.; Yi, X.; Kong, R.; Cheng, S.; Man, J.; Zheng, L.; Huang, J.; Su, G.; et al. Global distribution of ustiloxins in rice and their male-biased hepatotoxicity. Environ. Pollut. 2022, 301, 118992. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Qian, Z.; Liu, H.; Zhang, Y.; Yi, X.; Kong, R.; Cheng, S.; Man, J.; Zheng, L.; Huang, J.; et al. Occurrence and translocation of ustiloxins in rice false smut-occurred paddy fields, Hubei, China. Environ. Pollut. 2022, 307, 119460. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, G.; Liu, X.; Zhou, Y.; Hu, J.; Wu, Y.; Wang, W.; Shi, J.; Xu, J. Ustiloxin A impairs oocyte quality by disrupting organelles function. Environ. Pollut. 2025, 368, 125733. [Google Scholar] [CrossRef] [PubMed]
- Evidente, A.; Andolfi, A.; Cimmino, A.; Ganassi, S.; Altomare, C.; Favilla, M.; De Cristofaro, A.; Vitagliano, S.; Sabatini, M. Bisorbicillinoids produced by the fungus Trichoderma citrinoviride affect feeding preference of the aphid Schizaphis graminum. J. Chem. Ecol. 2009, 35, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Balde, E.S.; Andolfi, A.; Bruyere, C.; Cimmino, A.; Lamoral-Theys, D.; Vurro, M.; Damme, M.V.; Altomare, C.; Mathieu, V.; Kiss, R.; et al. Investigations of fungal secondary metabolites with potential anticancer activity. J. Nat. Prod. 2010, 73, 969–971. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Yang, J.; Wang, Y.-Q.; Li, G.-B.; Li, Y.; Huang, F.; Wang, W.-M. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. Mol. Plant Pathol. 2016, 17, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Fan, J.; Fang, A.; Li, Y.; Tariqjiaveed, M.; Li, D.; Hu, D.; Wang, W. Ustilaginoidea virens: Inghts into an emerging rice pathogen. Annu. Rev. Phytopathol. 2020, 58, 363–385. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Srinivasan, T.S.; Singh, U.M.; Peramaiyan, P. Insights on the genetics, molecular biology and management strategies on emerging false smut pathogenesis in rice. Physiol. Mol. Plant Pathol. 2025, 136, 102552. [Google Scholar] [CrossRef]
- Xue, M.; Zhao, S.; Gu, G.; Xu, D.; Zhang, X.; Hou, X.; Miao, J.; Dong, H.; Hu, D.; Lai, D.; et al. A genome-wide comparison of rice false smut fungus Villosiclava virens albino strain LN02 reveals the genetic diversity of secondary metabolites and the cause of albinism. Int. J. Mol. Sci. 2023, 24, 15196. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Hou, X.; Gu, G.; Dong, J.; Yang, Y.; Pan, X.; Zhang, X.; Xu, D.; Lai, D.; Zhou, L. Activation of ustilaginoidin biosynthesis gene uvpks1 in Villosiclava virens albino strain LN02 influences development, stress responses, and inhibition of rice seed germination. J. Fungi 2024, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Koyama, K.; Natori, S. Further characterization of seven bis(naphtho-γ-pyrone) congeners of ustilaginoidins, coloring matters of Claviceps virens (Ustilaginoidea virens). Chem. Pharm. Bull. 1988, 36, 146–152. [Google Scholar] [CrossRef]
- Wen, H.; Shi, H.; Jiang, N.; Qiu, J.; Lin, F.; Kou, Y. Antifungal mechanisms of silver nanoparticles on mycotoxin producing rice false smut fungus. iScience 2023, 26, 105763. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Gu, G.; Dang, P.; Zhang, X.; Wang, W.; Dai, J.; Liu, Y.; Lai, D.; Zhou, L. Sorbicillinoids from the fungus Ustilaginoidea virens and their phytotoxic, cytotoxic, and antimicrobial activities. Front. Chem. 2019, 7, 435. [Google Scholar] [CrossRef] [PubMed]
- Shirota, O.; Pathak, V.; Hossain, C.F.; Sekita, S.; Takatori, K.; Satake, M. Structural elucidation of trichotetronines: Polyketides possessing a bicyclo[2.2.2]octane skeleton with a tetronic acid moiety isolated from Trichoderma sp. J. Chem. Soc. Perkin Trans 1997, 20, 2961–2964. [Google Scholar] [CrossRef]
- Andrade, R.; Ayer, W.A.; Trifonov, L.S. The metabolitesof Trichoderma longibrachiatum. III. Two new tetronic acids: 5-hydroxyvertinolide and bislongiquinolide. Aust. J. Chem. 1997, 50, 255–257. [Google Scholar] [CrossRef]
- Sperry, S.; Samuels, G.J.; Crews, P. Vertinoid polyketides from the saltwater culture of the fungus Trichoderma longibrachiatum separated from a Haliclona marine sponge. J. Org. Chem. 1998, 63, 10011–10014. [Google Scholar] [CrossRef]
- Zhai, M.; Qi, F.; Li, J.; Jiang, C.; Hou, Y.; Shi, Y.; Di, D.; Zhang, J.; Wu, Q. Isolation of secondary metabolites from the soil-derived fungus Clonostachys rosea YRS-06, a biological control agent, and evaluation of antibacterial activity. J. Agric. Food Chem. 2016, 64, 2298–2306. [Google Scholar] [CrossRef] [PubMed]
- Elissawy, A.M.; El-Shazly, M.; Ebada, S.S.; Singab, A.B.; Proksch, P. Bioactive terpenes from marine-derived fungi. Mar. Drugs 2015, 13, 1966–1992. [Google Scholar] [CrossRef] [PubMed]
- Shabana, S.; Lakshmi, K.R.; Satya, A.K. An updated review of secondary metabolites from marine fungi. Mini-Rev. Med. Chem. 2021, 21, 592–632. [Google Scholar] [CrossRef] [PubMed]
- Sonowal, S.; Gogoi, U.; Buragohain, K.; Nath, R. Endophytic fungi as a potential source of anti-cancer drug. Arch. Microbiol. 2024, 206, 122. [Google Scholar] [CrossRef] [PubMed]
- Rustamova, N.; Bozorov, K.; Efferth, T.; Yili, A. Novel secondary metabolites from endophytic fungi: Synthesis and biological properties. Phytochem. Rev. 2020, 19, 425–448. [Google Scholar] [CrossRef]
- Moraga, J.; Gomes, W.; Pinedo, C.; Cantoral, J.M.; Hanson, J.R.; Carbu, M.; Carrido, C.; Duran-Patron, R.; Collado, I.G. The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochem. Rev. 2019, 18, 215–239. [Google Scholar] [CrossRef]
- Girimpuhwe, D.; Wu, Q.-X. Plant pathogenic fungi: A treasure trove of bioactive γ-pyrones. J. Agric. Food Chem. 2025, 73, 13229–13262. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, J.; Sun, S.; Li, Y.; Liu, Y. Fungi: Outstanding source of novel chemical scaffolds. J. Asian Nat. Prod. Res. 2020, 22, 99–120. [Google Scholar] [CrossRef] [PubMed]
- Tsukui, T.; Nagano, N.; Umemura, M.; Kumagai, T.; Terai, G.; Machida, M.; Asai, K. Ustiloxins, fungal cyclic peptides, are ribosomally synthesized in Ustilaginoidea virens. Bioinformatics 2015, 31, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Tian, J.; Keller, N.P. Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: A review. Environ. Microbiol. 2022, 24, 2857–2881. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ke, X.; Zhou, J.; Liu, Z.; Zheng, Y. Recent advances in metabolic regulation and bioengineering of gibberellic acid biosynthesis in Fusarium fujikuroi. World J. Microbiol. Biotechnol. 2022, 38, 131. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Pei, R.; Zhou, J.; Zeng, B.; Tu, Y.; He, B. Molecular regulation of fungal secondary metabolism. World J. Microbiol. Biotechnol. 2023, 39, 204. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Tiwari, H.; Singh, S.; Gupta, P.; Rai, N.; Singh, S.K.; Singh, B.P.; Rao, S.; Gautam, V. Epigenetic manipulation for secondary metabolite activation in endophytic fungi: Current progress and future directions. Mycology 2023, 14, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, W.; Lu, Y.; Wu, Y.; Ouyang, Z.; Tu, Y.; He, B. Epigenetic regulation of fungal secondary metabolism. J. Fungi 2024, 10, 648. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, J.; Zhong, J.; Xiao, H. Use of epigenetic regulation for the discovery of fungi derived cryptic natural product. Process Biochem. 2024, 145, 32–40. [Google Scholar] [CrossRef]
- Chiang, Y.-M.; Ahuja, M.; Oakley, C.E.; Entwistle, R.; Asokan, A.; Zutz, C.; Wang, C.C.; Oakley, B.R. Development of genetic dereplication strains in Aspergillus nidulans results in the discovery of aspercryptin. Angew. Chem. Int. Ed. 2016, 55, 1662–1665. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, H.; Liu, H.; Li, E.; Ren, J.; Wang, W.; Wang, S.; Yin, W.-B. Genetic dereplication of Trichoderma hypoxylon reveals two novel polycyclic lactones. Bioorg. Chem. 2019, 91, 103185. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pu, Y.; Ren, J.; Li, E.; Guo, L.; Yin, W. Genetic dereplication driven discovery of a tricinoloniol acid biosynthetic pathway in Trichoderma hypoxylon. Org. Biomol. Chem. 2020, 18, 5344–5348. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Bai, J.; Yan, D.; Bao, X.; Li, W.; Liu, B.; Zhang, D.; Qi, X.; Yu, D.; Hu, Y. Genome mining combined metabolic shunting and OSMAC strategy of an endophytic fungus leads to the production of diverse natural products. Acta Pharm. Sin. B 2021, 11, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, G.; Meng, F.; Ran, H.; Yin, W.; Li, W.; Liu, X. Combination strategy of genetic dereplication and manipulation of epigenetic regulators reveals a novel compound from plant endophytic fungus. Int. J. Mol. Sci. 2022, 23, 3686. [Google Scholar] [CrossRef] [PubMed]
- Alberti, F.; Foster, G.D.; Bailey, A.M. Natural products from filamentous fungi and production by heterologous expression. Appl. Microbiol. Biotechnol. 2017, 101, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.; Ahuja, M.; Chiang, Y.; Oakley, C.E.; Moore, S.; Yoon, O.; Hajovsky, E.; Bok, J.; Keller, N.P.; Wang, C.C.C.; et al. Resistance gene-guided genome mining: Serial promoter exchanges in Aspergillus nidulans reveal the biosynthetic pathway for fellutamide B, a proteasome inhibitor. ACS Chem. Biol. 2016, 11, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Liu, H.; Keller, N.P.; Yin, W. Harnessing diverse transcriptional regulators for natural product discovery in fungi. Nat. Prod. Rep. 2020, 37, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.B.; Slipchenko, L.V.; Levchenko, S.V.; O’Neill, D.P.; et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191. [Google Scholar] [CrossRef] [PubMed]
- Bruhn, T.; Schaumloeffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef] [PubMed]
Position | δC, Type | δH, Mult. (J in Hz) |
---|---|---|
1 | 56.5, C | |
2 | 169.5, C * | |
3 | 116.4, C | |
4 | 41.2, CH | 3.57, d (2.0) |
5 | 44.5, CH | 3.03, dd (6.1, 2.0) |
6 | 53.8, CH | 2.79, d (6.1) |
7 | 209.0, C * | |
8 | 73.7, C | |
9 | 11.2, CH3 | 1.02, s |
10 | 25.2, CH3 | 1.29, s |
11 | 85.1, C | |
12 | 181.6, C * | |
13 | 95.5, C * | |
14 | 177.9, C * | |
15 | 22.0, CH3 | 1.45, s |
16 | 6.3, CH3 | 1.56, s |
17 | 190.8, C | |
18 | 42.1, CH2 | 2.90, dd (16.7, 13.8); 2.43, dd (16.7, 3.4) |
19 | 83.1, CH | 4.92, m |
20 | 129.1, CH | 5.78, ddd (15.4, 7.4, 1.8) |
21 | 132.9, CH | 5.95, dq (15.4, 6.4) |
22 | 17.9, CH3 | 1.78, dd (6.4, 1.8) |
23 | 203.2, C * | |
24 | 128.9, CH | 6.10, d (15.5) |
25 | 147.9, CH * | 7.14, dd (15.5, 10.8) |
26 | 131.8, CH | 6.31, dd (15.1, 10.8) |
27 | 145.1, CH | 6.41,dq (15.1, 6.8) |
28 | 19.1, CH3 | 1.90, d (6.8) |
Position | δC, Type | δH, Mult. (J in Hz) |
---|---|---|
1 | 59.0, CH | 3.11, d (2.4) |
2 | 79.6, C | |
3 | 105.3, C | |
4 | 60.8, C | |
5 | 202.3, C | |
6 | 105.5, C | |
7 | 174.3, C | |
8 | 120.5, CH | 6.52, dd (14.8, 4.2) |
9 | 143.1, CH | 7.30, ddd (14.8, 11.0, 7.0) |
10 | 132.1, CH | 6.42, m |
11 | 139.8, CH | 6.26, dqd (15.0, 7.6, 3.8) |
12 | 19.0, CH3 | 1.88, d (7.6) |
13 | 22.2, CH3 | 1.34, s |
14 | 19.9, CH3 | 1.32, s |
1′ | 53.9, CH | 3.19, s |
2′ | 79.4, C | |
3′ | 105.0, C | |
4′ | 56.4, C | |
5′ | 173.7, C | |
6′ | 109.5, C | |
7′ | 189.8, C | |
8′ | 36.6, CH2 | 2.66, dd (16.9, 14.6); 2.37, dd (16.9, 3.2) |
9′ | 81.6, CH | 4.15, ddd (14.6, 4.43.2) |
10′ | 76.7, CH | 3.64, dd (6.3, 4.5) |
11′ | 67.6, CH | 3.69, dq (6.3, 6.1) |
12′ | 19.5, CH3 | 1.12, d (6.1) |
13′ | 19.5, CH3 | 1.41, s |
14′ | 21.7, CH3 | 1.24, s |
Bacterium | MIC/IC50 (μg/mL) | Compound | ||
---|---|---|---|---|
1 | 2 | CK+ | ||
R. solanacearum | MIC | 32.00 | 64.00 | 2.50 |
IC50 | 24.33 ± 2.04 | 35.42 ± 1.29 | 1.15 ± 0.27 | |
A. tumefaciens | MIC | 32.00 | 64.00 | 5.00 |
IC50 | 19.76 ± 2.77 | 45.48 ± 3.22 | 1.12 ± 0.17 | |
B. subtilis | MIC | 32.00 | 32.00 | 5.00 |
IC50 | 25.43 ± 2.74 | 25.35 ± 3.98 | 1.37 ± 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Xue, M.; Gu, G.; Xu, D.; Lai, D.; Zhou, L. Ustisorbicillinols G and H, Two New Antibacterial Sorbicillinoids from the Albino Strain LN02 of Rice False Smut Fungus Villosiclava virens. Molecules 2025, 30, 3039. https://doi.org/10.3390/molecules30143039
Hou X, Xue M, Gu G, Xu D, Lai D, Zhou L. Ustisorbicillinols G and H, Two New Antibacterial Sorbicillinoids from the Albino Strain LN02 of Rice False Smut Fungus Villosiclava virens. Molecules. 2025; 30(14):3039. https://doi.org/10.3390/molecules30143039
Chicago/Turabian StyleHou, Xuwen, Mengyao Xue, Gan Gu, Dan Xu, Daowan Lai, and Ligang Zhou. 2025. "Ustisorbicillinols G and H, Two New Antibacterial Sorbicillinoids from the Albino Strain LN02 of Rice False Smut Fungus Villosiclava virens" Molecules 30, no. 14: 3039. https://doi.org/10.3390/molecules30143039
APA StyleHou, X., Xue, M., Gu, G., Xu, D., Lai, D., & Zhou, L. (2025). Ustisorbicillinols G and H, Two New Antibacterial Sorbicillinoids from the Albino Strain LN02 of Rice False Smut Fungus Villosiclava virens. Molecules, 30(14), 3039. https://doi.org/10.3390/molecules30143039