Larvicidal Activity of Essential Oil, Hydrolate, and Aqueous Extract from Leaves of Myrciaria floribunda Against Aedes Aegypti
Abstract
1. Introduction
2. Results
2.1. Yield and Chemical Identification of Essential Oil from Leaves of M. floribunda
2.2. Chemical Characterization of Aqueous Extract
2.3. Larvicidal Activity
3. Discussion
3.1. Yield and Chemical Characterization of Essential Oil from M. floribunda
3.2. Chemical Characterization of Aqueous Extract
3.3. Larvicidal Activity
4. Materials and Methods
4.1. Plant Material and Extraction of Essential Oil
4.2. Identification of Essential Oil
4.3. Characterization of Non-Volatile Secondary Metabolites of Aqueous Extract
4.4. Aedes Aegypti Colony
4.5. Larvicidal Bioassays
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laporta, G.Z.; Potter, A.M.; Oliveira, J.F.; Bourke, B.P.; Pecor, D.B.; Linton, Y.M. Global distribution of Aedes aegypti and Aedes albopictus in a climate change scenario of regional rivalry. Insects 2023, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, C.; Monteiro, A.M.V.; Corvalán, C.; Gurgel, H.C.; Carvalho, M.S.; Artaxo, P.; Hacon, S.; Ragoni, V. Mudanças climáticas e ambientais e as doenças infecciosas: Cenários e incertezas para o Brasil. Epidemiol. Serviços Saúde 2009, 18, 285–304. [Google Scholar] [CrossRef]
- WHO. World Health Organization.WHO: Dengue and severe dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 26 May 2025).
- Brady, O.J.; Hay, S.I. The global expansion of dengue: How Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 2020, 65, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Schildhauer, S.A.; Billeter, S.; Yoshimizu, M.H.; Payne, R.; Pakingan, M.J.E.; Metzger, M.A.; Liebman, K.; Hu, R.; Kramer, V.; et al. Insecticide Resistance Status of Aedes aegypti (Diptera: Culicidae) in California by Biochemical Assays. J. Med. Èntomol. 2020, 57, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Khan, G.Z.; Ullah, M.; Ahmed, N.; Sohail, K.; Ullah, I.; Bukhari, N.A.; Perveen, K.; Ali, I.; Li, K. Evaluation of different high doses aqueous plant extracts for the sustainable control of Aedes aegypti mosquitoes under laboratory conditions. J. King Saud Univ. Sci. 2023, 35, 102–991. [Google Scholar] [CrossRef]
- Smith, L.B.; Kasai, S.; Scott, J.G. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pest. Biochem. Physiol. 2016, 133, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Feder, D.; Gonzalez, M.S.; Mello, C.B.; Santos, M.G.; Rocha, L.; Kelecom, A.; Folly, E. Exploring the insecticide and acaricide potential of development regulators obtained from restinga vegetation from Brazil. An. Acad. Bras. Ciênc. 2019, 91, e20180381. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.; Wiater, G.; Puton, B.M.S.; Mielniczki-Pereira, A.A.; Paroul, N.; Cansian, R.L. Atividade repelente e inseticida do óleo essencial de Baccharis dracunculifolia DC sobre Sitophilus zeamais Mots, 1855. Perspectiva 2019, 43, 123–130. [Google Scholar]
- Tietbohl, L.A.; Mello, C.B.; Silva, L.R.; Dolabella, I.B.; Franco, T.C.; Enríquez, J.J.; Gonzalez, M.S. Green insecticide against Chagas disease: Effects of essential oil from Myrciaria floribunda (Myrtaceae) on the development of Rhodnius prolixus nymphs. J. Essent. Oil Res. 2019, 32, 1–11. [Google Scholar] [CrossRef]
- Tietbohl, L.A.C.; Oliveira, A.P.; Esteves, R.S.; Albuquerque, R.; Folly, D.; Machado, F.P.; Correa, A.L.; Santos, M.G.; Ruiz, A.L.G.; Rocha, L. Antiproliferative activity in tumor cell lines, antioxidant capacity and total phenolic, flavonoid and tannin contents of Myrciaria floribunda. An. Acad. Bras. Cienc. 2017, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.F. Rumberry. In Fruits of Warm Climates; Morton, J.F., Ed.; Florida Flair Books: Miami, FL, USA, 1987; pp. 388–390. [Google Scholar]
- García, Y.M.; Ramos, A.L.C.C.; Paula, A.C.C.F.F.; Nascimento, M.H.; Augusti, R.; Araújo, R.L.B.; Melo, J.O.F. Chemical physical characterization and profile of fruit volatile compounds from different accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through polyacrylate fiber. Molecules 2021, 26, 5281. [Google Scholar] [CrossRef] [PubMed]
- Tietbohl, L.A.C.; Barbosa, T.; Fernandes, C.P.; Santos, M.G.; Machado, F.P.; Santos, K.T.; Mello, C.B.; Araújo, H.P.; Gonzalez, M.S.; Feder, D.; et al. Laboratory evaluation of the effects of essential oil of Myrciaria floribunda leaves on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Rev. Bras. Farmacogn. 2014, 24, 316–321. [Google Scholar] [CrossRef]
- Moraes, Â.A.B.; Ferreira, O.O.; Costa, L.S.; Almeida, L.Q.; Varela, E.L.P.; Cascaes, M.M.; Andrade, E.H.D.A. Phytochemical profile, preliminary toxicity, and antioxidant capacity of the essential oils of Myrciaria floribunda (H. West ex Willd.) O. Berg. And Myrcia sylvatica (G. Mey) DC.(Myrtaceae). Antioxidants 2022, 11, 2076. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Sharma, R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015, 5, 129–151. [Google Scholar] [CrossRef] [PubMed]
- dos Santos de Moraes, P.G.; da Silva Santos, I.B.; Silva, V.B.G.; dede Oliveira FariasAguiar, J.C.R.; do Amaral Ferraz Navarro, D.M.; de Oliveira, A.M.; dos Santos Correia, M.T.; Costa, W.K.; da Silva, M.V. Essential oil from leaves of Myrciaria floribunda (H. West ex Willd.) O. Berg has antinociceptive and anti-inflammatory potential. Inflammopharmacology 2023, 31, 3143–3151. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.C.; Marques, A.M.; Figueiredo, M.R.; de Oliveira Farias, J.C.R.; da Câmara, C.A.G.; de Moraes, M.M.; de Oliveira, A.P.S.; Napoleão, T.H.; Paiva, P.M.G.; de Aquino, T.M.; et al. Larvicidal activity, enzyme inhibitory effect, and molecular docking by essential oil, hydrolate, aqueous extract, and major compounds from the leaves of Eugenia uniflora against Aedes aegypti. Ind. Crops Prod. 2023, 204, 117–380. [Google Scholar] [CrossRef]
- Barboza de Lima, E.; da Silva Carvalho, K.; da Silva, M.S.; Dantas da Cruz, R.C.; da Silva, A.C.; Antônia de Souza, I.; dos Santos Correia, M.T.; da Silva, M.V.; Maria Do Amaral Ferraz Navarro, D. Phytochemical analysis and insecticidal effect of essential oils from Myroxylon peruiferum (Leguminosae) and Eugenia gracillima (Myrtaceae) for the control of Aedes aegypti (Diptera: Culicidae). J. Essent. Oil Res. 2024, 36, 493–505. [Google Scholar] [CrossRef]
- Costa, W.K.; da Cruz, R.C.D.; Carvalho, K.S.; de Souza, I.A.; Correia, M.T.S.; de Oliveira, A.M.; da Silva, M.V. Insecticidal activity of essential oil from leaves of Eugenia stipitata McVaugh against Aedes aegypti. Parasitol. Int. 2024, 98, 102–820. [Google Scholar] [CrossRef] [PubMed]
- Simas, N.K.; Lima, E.C.; Conceição, S.R.; Kuster, R.M.; Oliveira Filho, A.M.; Lage, C.L.S. Produtos naturais para o controle da transmissão da dengue: Atividade larvicida de myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Quím. Nova 2004, 27, 46–49. [Google Scholar] [CrossRef]
- Mabry, T.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: New York, NY, USA, 1970. [Google Scholar] [CrossRef]
- Barbosa, D.C.S.; Holanda, V.N.; Assis, C.R.D.; Farias, J.C.R.O.; Nascimento, P.H.; Silva, W.V.; Correia, M.T.S. Chemical composition and acetylcholinesterase inhibitory potential, in silico, of Myrciaria floribunda (H. West ex Willd.) O. Berg fruit peel essential oil. Ind. Crops Prod. 2020, 151, 112372. [Google Scholar] [CrossRef]
- Machado, F.P.; Folly, D.; Esteves, R.; Ruppelt, B.M.; da Silva, V.M.; Matos, A.P.d.S.; Santos, J.A.A.d.; Rangel, L.d.S.; Santos, M.G.; von Ranke, N.L.; et al. Molluscicidal and Cercaricidal Effects of Myrciaria floribunda Essential Oil Nanoemulsion. Molecules 2023, 28, 5944. [Google Scholar] [CrossRef] [PubMed]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Correia, V.T.V.; Da Silva, P.R.; Ribeiro, C.M.S.; Ramos, A.L.C.C.; Mazzinghy, A.C.D.C.; Silva, V.D.M.; Júnior, A.H.O.; Nunes, B.V.; Vieira, A.L.S.; Ribeiro, L.V.; et al. An integrative review on the main Flavonoids found in some species of the Myrtaceae family: Phytochemical characterization, health benefits and development of products. Plants 2022, 11, 2796. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.H.A.; Salgado, H.R.N. Gallic acid: Review of the methods of determination and quantification. Crit. Rev. Anal. Chem. 2016, 46, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Nicacio, A.E.; Rotta, E.M.; Boeing, J.S.; Barizao, E.O.; Kimura, E.; Visentainer, J.V.; Maldaner, L. Antioxidant activity and determination of phenolic compounds from Eugenia involucrata DC. Fruits by UHPLC-MS/MS. Food Anal. Methods 2017, 10, 2718–2728. [Google Scholar] [CrossRef]
- Cipriani, A.; Sousa, A.L.D.; Tenfen, A.; Siebert, D.A.; Gasper, A.L.D.; Vitali, L.; Micke, G.A.; Alberton, M.D. Phenolic compounds of eugenia involucrata (myrtaceae) extracts and associated antioxidant and inhibitory effects on acetylcholinesterase and α-glucosidase. Nat. Prod. Res. 2020, 36, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Silvério, M.R.S.; Espindola, L.S.; Lopes, N.P.; Vieira, P.C. Plant natural products for the control of Aedes aegypti: The main vector of important arboviruses. Molecules 2020, 25, 3484. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Chang, H.T.; Chang, S.T.; Tsai, K.H.; Chen, W.J. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour. Technol. 2003, 89, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.N.; Alves, L.P.L.; Rodrigues, K.A.F.; Brito, M.C.A.; Rosa, C.S.; Amaral, F.M.M.; Monteiro, O.S.; Andrade, E.H.A.; Maia, J.G.S.; Moraes, D.F.C. Chemical composition and larvicidal activity of essential oils extracted from Brazilian legal Amazon plants against Aedes aegypti L.(Diptera: Culicidae). Evid.-Based Complement. Altern. Med. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Chagas, A.C.D.S.; Passos, W.M.; Prates, H.T.; Leite, R.C.; Furlong, J.; Fortes, I.C.P. Acaricide effect of Eucalyptus spp. essential oils and concentrated emulsion on Boophilus microplus. Braz. J. Vet. Res. Anim. Sci. 2002, 39, 247–253. [Google Scholar] [CrossRef]
- Silva, R.C.S.; Milet-pinheiro, P.; Bezerra da Silva, P.C.; Silva, A.G.; Silva, M.V.; Navarro, D.M.A.F.; Silva, N.H. (E)-Caryophyllene and α-Humulene: Aedes aegypti oviposition deterrents elucidated by gas chromatography-electrophysiological assay of commiphora leptophloeos leaf oil. PLoS ONE 2015, 10, 144586. [Google Scholar] [CrossRef] [PubMed]
- García-díaz, J.; Souto, R.N.P.; Escalona-arranz, J.C.; Ferreira, R.M.d.A.; Costa, T.S.; González-fernández, R.; Heredia-díaz, Y.; Chil-nðñez, I.; Lavega, J.; Monzote, L. Larvicidal and Adulticidal Activity of Essential Oils from Four Cuban Plants against Three Mosquito Vector Species. Plants 2023, 12, 4009. [Google Scholar] [CrossRef] [PubMed]
- Guarda, C.; Lutinski, J.A.; Roman-Junior, W.A.; Busato, M.A. Atividade larvicida de produtos naturais e avaliação da susceptibilidade ao inseticida temefós no controle do Aedes aegypti (Diptera: Culicidae). Interciencia 2016, 41, 243–247. [Google Scholar]
- Silva, T.R.F.B.; Almeida, A.C.D.S.; Moura, T.D.L.; Silva, A.R.D.; Freitas, S.D.S.; Jesus, F.G. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Scientiarum. Agron. 2016, 2, 165–170. [Google Scholar] [CrossRef]
- Wang, L.; Xu, D.; Yang, Y.; Liu, W.; Cong, S.; Li, W.; Yang, N.; Yin, H.; Jin, L.; Wu, H.; et al. Impact of rutin on growth, development and oviposition of Bt-susceptible and Bt-resistant pink bollworm. Entomol. Res. 2024, 54, e12702. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.C.; de Oliveira, A.C.; Tavares, C.P.; Costa, M.L.L.; Roque, R.A. Essential oil from Piper tuberculatum Jacq.(Piperaceae) and its majority compound β-caryophyllene: Mechanism of larvicidal action against Aedes aegypti (Diptera: Culicidae) and selective toxicity. Environ. Sci. Pollut. Res. 2024, 31, 33454–33463. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar, J.C.R.D.O.F.; da Silva, A.C.; Santos, E.F.; Vieira, G.J.D.S.G.; Araújo, L.D.A.; de Andrade, J.J.A.; Anselmo, W.M.; da Rocha, S.K.L.; Dos Santos, F.H.G.; Arruda, C.C.L.; et al. Larvicidal and Oviposition Activity of Commercial Essential Oils of Abies sibirica Ledeb., Pogostemon cablin (Blanco) Benth., Juniperus communis L. and Their Combinations Against Aedes aegypti. Molecules 2024, 29, 5921. [Google Scholar] [CrossRef] [PubMed]
- Bezerra-Silva, P.C.; Dutra, K.A.; Santos, G.K.N.; Silva, R.C.S.; Iulek, J.; Milet-Pinheiro, P.; Navarro, D.M.A.F. Evaluation of the activity of the essential oil from an ornamental flower against Aedes aegypti: Electrophysiology, molecular dynamics and behavioral assays. PLoS ONE 2016, 11, 0150008. [Google Scholar] [CrossRef] [PubMed]
- Dool, H.V.D.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Kramer, V.C.; Schnell, D.J.; Nickerson, K.W. Relative toxicity of organic solvents to Aedes aegypti larvae. J. Invertebr. Pathol. 1983, 42, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Monte, Z.S.; Navarro, D.M.A.F.; Aguiar, J.C.; Nascimento, J.S.; Scotti, M.T.; Scotti, L.; Barros, R.P.C.; Santos, A.C.S.; Pereira, V.R.A.; Falcão, E.P.S.; et al. Pyrimidine Derivatives: Qsar studies of larvicidal activity against Aedes aegypti. J. Braz. Chem. Soc. 2020, 31, 1531–1540. [Google Scholar] [CrossRef]
Chemical Constituent a | RI-Calculated b | RI-Literature c | % e | SD d |
---|---|---|---|---|
α-Thujene | 923 | 924 | 0.17 | 0.01 |
α-Pinene | 929 | 932 | 2.30 | 0.17 |
Camphene | 943 | 946 | 0.37 | 0.02 |
β-Pinene | 972 | 974 | 0.14 | 0.01 |
Myrcene | 990 | 988 | 0.51 | 0.03 |
α-Phellandrene | 1001 | 1002 | 1.60 | 0.11 |
α-Terpinene | 1014 | 1014 | 0.19 | 0.02 |
ρ-Cymene | 1022 | 1020 | 0.17 | 0.02 |
1.8-Cineole | 1029 | 1026 | 11.25 | 0.89 |
(E)-β-Ocimene | 1048 | 1044 | 0.18 | 0.02 |
γ-Terpinene | 1057 | 1054 | 0.48 | 0.04 |
Terpinolene | 1086 | 1086 | 0.23 | 0.01 |
α-Cubebene | 1350 | 1348 | 0.78 | 0.04 |
α-Ylangene | 1372 | 1373 | 0.25 | 0.01 |
α-Copaene | 1376 | 1374 | 2.30 | 0.16 |
Sativene | 1390 | 1390 | 0.17 | 0.01 |
α-Gurjunene | 1410 | 1409 | 0.84 | 0.03 |
E-Caryophyllene | 1422 | 1417 | 27.35 | 0.56 |
β-Copaene | 1430 | 1430 | 1.77 | 0.13 |
Aromadendrene | 1440 | 1439 | 1.37 | 0.18 |
α-Humulene | 1455 | 1452 | 3.26 | 0.05 |
Allo-aromadendrene | 1462 | 1458 | 1.62 | 0.04 |
Trans -1(6).4-diene-cadina | 1475 | 1475 | 2.53 | 0.13 |
γ-Muurolene | 1478 | 1478 | 0.61 | 0.13 |
α-Amorphene | 1481 | 1483 | 2.34 | 0.04 |
β-Selinene | 1487 | 1489 | 4.92 | 0.17 |
δ-Selinene | 1492 | 1492 | 061 | 0.13 |
Viridiflorene | 1496 | 1496 | 2.34 | 0.04 |
α-Muurolene | 1501 | 1500 | 4.92 | 0.17 |
δ-Amorphene | 1509 | 1511 | 2.73 | 0.06 |
γ-Cadinene | 1512 | 1513 | 1.56 | 0.04 |
δ-Cadinene | 1526 | 1522 | 3.41 | 0.08 |
Zonarene | 1528 | 1528 | 1.34 | 0.08 |
Trans-cadina-1.4-diene | 1534 | 1533 | 0.48 | 0.00 |
α-Cadinene | 1539 | 1537 | 0.44 | 0.05 |
α-Calacorene | 1544 | 1544 | 1.23 | 0.08 |
Caryolan-8-ol | 1571 | 1571 | 0.43 | 0.07 |
Total identified | 87.20 | |||
Not identified | 12.8 | |||
Total monoterpenes | 17.59 | |||
Total sesquiterpenes | 69.61 |
Components Tested | N a | DF b | LC50 (95% CI) c,d (LLC-ULC) e | LC90 (95% CI) c,d (LLC-ULC) e | X2 e | Slope (SE) |
---|---|---|---|---|---|---|
Essential oil | 660 | 3 | 201.73 ± 8.73 ppm (172.84–230.62) | 604.78 ± 1.05 ppm (456.72–957.42) | 0.30 | 0.33 |
Aqueous extract | 400 | 3 | 15.85 ± 0.2 % (15.02–16.69) | 19.92 ± 1.05% (20.06–34.21) | 0.004 | 0.79 |
Rutin | 420 | 3 | 22.46 ± 0.99 ppm (19.17–25.75) | 43.55 ± 1.08 (38.52–53.60) | 0.44 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, E.F.; Anselmo, W.M.; de Lemos, E.E.P.; de Aguiar, J.C.R.d.O.F.; da Silva, A.C.; dos Santos, F.H.G.; Arruda, C.C.L.; Aguiar, J.V.C.; de Andrade, J.J.A.; da Rocha, S.K.L.; et al. Larvicidal Activity of Essential Oil, Hydrolate, and Aqueous Extract from Leaves of Myrciaria floribunda Against Aedes Aegypti. Molecules 2025, 30, 3116. https://doi.org/10.3390/molecules30153116
Santos EF, Anselmo WM, de Lemos EEP, de Aguiar JCRdOF, da Silva AC, dos Santos FHG, Arruda CCL, Aguiar JVC, de Andrade JJA, da Rocha SKL, et al. Larvicidal Activity of Essential Oil, Hydrolate, and Aqueous Extract from Leaves of Myrciaria floribunda Against Aedes Aegypti. Molecules. 2025; 30(15):3116. https://doi.org/10.3390/molecules30153116
Chicago/Turabian StyleSantos, Eduarda Florencio, Wevertton Marllon Anselmo, Eurico Eduardo Pinto de Lemos, Júlio César Ribeiro de Oliveira Farias de Aguiar, Ana Carla da Silva, Fábio Henrique Galdino dos Santos, Camila Caroline Lopes Arruda, João Vitor Castro Aguiar, José Jorge Almeida de Andrade, Suyana Karolyne Lino da Rocha, and et al. 2025. "Larvicidal Activity of Essential Oil, Hydrolate, and Aqueous Extract from Leaves of Myrciaria floribunda Against Aedes Aegypti" Molecules 30, no. 15: 3116. https://doi.org/10.3390/molecules30153116
APA StyleSantos, E. F., Anselmo, W. M., de Lemos, E. E. P., de Aguiar, J. C. R. d. O. F., da Silva, A. C., dos Santos, F. H. G., Arruda, C. C. L., Aguiar, J. V. C., de Andrade, J. J. A., da Rocha, S. K. L., Araújo, L. d. A., Pereira Júnior, P. G., Albuquerque, C. F. d. O., Sousa, E. d. S., dos Santos, G. L., da Conceição, T. Z., de Andrade, L. A., Soares, L. A. L., Ferreira, M. R. A., & Navarro, D. M. d. A. F. (2025). Larvicidal Activity of Essential Oil, Hydrolate, and Aqueous Extract from Leaves of Myrciaria floribunda Against Aedes Aegypti. Molecules, 30(15), 3116. https://doi.org/10.3390/molecules30153116