Evaluation of Chemical Composition, Acaricidal, and Repellent Activities of Artemisia vulgaris L. (Asteraceae) Essential Oil Against Gall Mite Aceria pongamiae Keifer (Acarina: Eriophyidae)
Abstract
1. Introduction
2. Results
2.1. Percentage Yield and Analysis of Chemical Composition of AVEO by GC-MS/MS
2.2. Evaluation of the Toxicity of AVEO Against A. pongamiae
2.2.1. Fumigant Toxicity
2.2.2. Contact Toxicity
2.2.3. Repellent Activity
3. Discussion
4. Materials and Methods
4.1. Collection and Stock Culture of Test Mite
4.2. Plant Material and Isolation of EO
4.3. GC-MS/MS Analysis of Chemical Constituents Present in AVEO
4.4. Toxicity Tests
4.4.1. Fumigant Toxicity Test
4.4.2. Contact Toxicity Test
4.4.3. Repellent Activity Assay
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EO | Essential oil |
AVEO | Artemisia vulgaris essential oil |
DMSO | Dimethyl sulfoxide |
GC-MS/MS | Gas Chromatography and Mass Spectrometry |
PR | Percentage of repellence |
References
- Amrine, J.W., Jr.; Stasny, T.A.H.; Flechtmann, C.H.W. Revised Keys to World Genera of Eriophyoidea (Acari: Prostigmata); Indira Publishing House: West Bloomfield, MI, USA, 2003; p. 244. [Google Scholar]
- de Lillo, E.; Craemer, C.; Amrine, J.W.; Nuzzaci, G. Recommended Procedures and Techniques for Morphological Studies of Eriophyoidea (Acari: Prostigmata). Exp. Appl. Acarol. 2010, 51, 283–307. [Google Scholar] [CrossRef]
- Lindquist, E.E.; Sabelis, M.W.; Bruin, J. (Eds.) Eriophyoid Mites. Their Biology, Natural Enemies and Control; World Crop Pests; Elsevier Science Publishing: Amsterdam, The Netherlands, 1996; p. 787. [Google Scholar]
- Sabelis, M.W.; Bruin, J. Evolutionary Ecology: Life History Patterns, Food Plant Choice and Dispersal. In Eriophyoid Mites: Their Biology, Natural Enemies and Control; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; Elsevier Science, B.V.: Amsterdam, The Netherlands, 1996; Volume 6, pp. 329–366. [Google Scholar]
- Li, N.; Sun, J.T.; Yin, Y.; Hong, X.Y.; Xue, X.F. Global Patterns and Drivers of Herbivorous Eriophyoid Mite Species Diversity. J. Biogeogr. 2023, 50, 330–340. [Google Scholar] [CrossRef]
- Skoracka, A.; Smith, L.; Oldfield, G.; Cristofaro, M.; Amrine, J.W. Host-Plant Specificity and Specialization in Eriophyoid Mites and Their Importance for the Use of Eriophyoid Mites as Biocontrol Agents of Weeds. Exp. Appl. Acarol. 2010, 51, 93–113. [Google Scholar] [CrossRef] [PubMed]
- De Lillo, E.; Pozzebon, A.; Valenzano, D.; Duso, C. An Intimate Relationship Between Eriophyoid Mites and Their Host Plants. Front. Plant Sci. 2018, 9, 1786. [Google Scholar] [CrossRef]
- Nasareen, P.N.M.; Vardhanan, Y.S.; Ramani, N. Damage Assessment of the Gall Mite Aceria pongamiae Keifer 1966 (Acari: Eriophyidae) on Pongamia pinnata (L.) Pierre. In Prospects in Bioscience: Addressing the Issues; Springer: New Delhi, India, 2012; pp. 325–333. [Google Scholar] [CrossRef]
- Rani, M.S.; Dayanand, C.D.; Shetty, J.; Vegi, P.K.; Kutty, A.M. Evaluation of Antibacterial Activity of Pongamia pinnata Linn on Pathogens of Clinical Isolates. Am. J. Phytomed. Clin. Ther. 2013, 1, 645–651. [Google Scholar]
- Hartwell, J.L. Plants used against cancer. A Survey. Lloydia 1971, 34, 30–34. [Google Scholar]
- Satyavati, G.V.; Gupta, A.K.; Neeraj, T. Medicinal Plants of India; ICMR: New Delhi, India, 1987; Volume 2, p. 490. [Google Scholar]
- Kapadnis, C.A.; Kothawade, H.B. Therapeutic Potential of Pongamia pinnata in Various Disorder. World J. Pharm. Res. 2023, 12, 458–468. [Google Scholar] [CrossRef]
- Fugare, A.G.; Shete, R.V.; Adak, V.S.; Murthy, G.K. A Review on Pongamia pinnata (L.): Traditional Uses, Phytochemistry and Pharmacological Properties. J. Drug Deliv. Ther. 2021, 11, 207–211. [Google Scholar] [CrossRef]
- Shoba, F.G.; Thomas, M. Study of Antidiarrhoeal Activity of Four Medicinal Plants in Castor-Oil Induced Diarrhea. J. Ethnopharmacol. 2001, 76, 73–76. [Google Scholar] [CrossRef]
- Chithra, B.K.; Anand, P.P.; Pushpalatha, E.; Vardhanan, Y.S.; Mohammed Shareef, K.P. Bio-Augmentative Antibacterial Activity of Pongamia pinnata (L.) Gall Extract with Lemongrass Oil Formulation Against Selected Gram-Negative Bacteria. Curr. Sci. 2024, 127, 00113891. [Google Scholar] [CrossRef]
- Vishnupriya, R. Biochemical Changes Induced in Pungam Leaves by Eriophyid Mite, Aceria pongamiae. Int. J. Curr. Res. 2016, 8, 43497–43500. [Google Scholar]
- Duso, C.; Castagnoli, M.; Simoni, S.; Angeli, G. The Impact of Eriophyoids on Crops: New and Old Case Studies. In Integrative Acarology, Proceedings of the 6th European Congress, 21–25 July 2008; Bertrand, M., Kreiter, S., McCoy, K.D., Migeon, A., Navajas, M., Tixier, M.S., Vial, L., Eds.; European Association of Acarologists: Montpellier, France, 2008. [Google Scholar]
- Castagnoli, M.; Simoni, S.; Liguori, M. Evaluation of Neoseiulus californicus (Mcgregor) (Acari: Phytoseiidae) as a Candidate for the Control of Aculops lycopersici (Tyron) (Acari Eriophyoidea): A Preliminary Study. Redia 2003, 86, 97–100. [Google Scholar]
- Lesna, I.; Conijn, C.G.M.; Sabelis, M. From Biological Control to Biological Insight: Rust-Mite Induced Change in Bulb Morphology, A New Mode of Indirect Plant Defence. Phytophaga 2004, 14, 285–291. [Google Scholar]
- Kumar, P.S.; Singh, L. Development of ‘Mycohit’, The First Mycoacaricide Based Exclusively on Hirsutella thompsonii, for Suppressing the Coconut Mite in India. In Proceedings of the National Symposium on Bioinoculants for Sustainable Agriculture and Forestry, Karnataka, India, 16–18 February 2001; Reddy, S.M., Redy, S.R., Singarachary, M.A., Girisham, S., Eds.; Scientific Publishers: Jodhpur, India; pp. 209–213. [Google Scholar]
- Sreerema Kumar, P.S.; Singh, L. Enabling Mycelia Application of Hirsutella thompsonii for Managing the Coconut Mite. In Diseases of Mites and Ticks; Bruin, J., van der Geest, L.P.S., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 46, pp. 169–182. [Google Scholar] [CrossRef]
- Motazedian, N.; Ravan, S.; Bandani, A.R. Toxicity and Repellency Effects of Three Essential Oils Against Tetranychus urticae Koch (Acari: Tetranychidae). J. Agric. Sci. Technol. 2012, 14, 275–284. [Google Scholar]
- Pimentel, D.; Aquary, H.; Biltonen, M.; Rice, P.; Silva, M.; Nelson, J.; Lipner, V.; Giordano, S.; Horowitz, A.; D’amore, M. Environmental and Economic Costs of Pesticide Use. Bioscience 1992, 42, 750–760. [Google Scholar] [CrossRef]
- Isman, M.B. Plant Essential Oils for Pest and Disease Management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Khater, H.F. Prospects of Botanical Biopesticides in Insect Pest Management. Pharmacologia 2012, 3, 641–656. [Google Scholar] [CrossRef]
- Guleria, S.; Tiku, A. Botanicals in Pest Management: Current Status and Future Perspectives. In Integrated Pest Management: Innovation-Development Process; Peshin, R., Dhawan, A.K., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 1, pp. 317–329. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical Insecticides, Deterrents and Repellents in Modern Agriculture and Increasingly Regulated World. Annu. Rev. Entomol. 2006, 51, 45–56. [Google Scholar] [CrossRef]
- Puvača, N.; Petrović, A.; Nikolova, N.; Popović, A.; Čabarkapa, I.; Bursić, V.; Popović, S.; Đuragić, O.; Shtylla Kika, T. Influence of Selected Essential Oils as a Natural Repellent of Poultry Red Mites: In Vitro Study. Maced. J. Anim. Sci. 2018, 8, 55–59. [Google Scholar] [CrossRef]
- Devrnja, N.; Milutinović, M.; Savić, J. When Scent Becomes a Weapon—Plant Essential Oils as Potent Bioinsecticides. Sustainability 2022, 14, 6847. [Google Scholar] [CrossRef]
- Mossa, A.T.H.; Mohafrash, S.M.; Chandrasekaran, N. Safety of Natural Insecticides: Toxic Effects on Experimental Animals. BioMed Res. Int. 2018, 1, 4308054. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential Oils as Eco-Friendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Rozman, V.; Kalinovic, I.; Korunic, Z. Toxicity of Naturally Occurring Compounds of Lamiaceae and Lauraceae to Three Stored-Product Insects. J. Stored Prod. Res. 2007, 43, 349–355. [Google Scholar] [CrossRef]
- Yeom, H.J.; Jung, C.S.; Kang, J.S.; Kim, J.; Lee, J.H.; Kim, D.S.; Kim, H.S.; Park, P.S.; Kang, K.S.; Park, I.K. Insecticidal and acetylcholine esterase inhibition activity of Asteraceae plant essential oils and their constituents against adults of the German cockroach (Blattella germanica). J. Agric. Food Chem. 2015, 63, 2241–2248. [Google Scholar] [CrossRef]
- Park, I.K. Fumigant toxicity of oriental sweetgum (Liquidambar orientalis) and valerian (Valeriana wallichii) essential oils and their components, including their acetylcholinesterase inhibitory activity, against Japanese Termites (Reticulitermes speratus). Molecules 2014, 19, 12547–12558. [Google Scholar] [CrossRef] [PubMed]
- Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-Arami, S.A.A. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol. 2009, 35, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.C.; Turcotte, C.M.; Betts, B.A.; Yeung, W.Y.; Agyeman, A.S.; Burk, L.A. Modulation of human GABAA and glycine receptor currents by menthol and related monoterpenoids. Eur. J. Pharmacol. 2004, 506, 9–16. [Google Scholar] [CrossRef]
- Aoshima, H.; Hamamoto, K. Potentiation of GABAA receptors expressed in Xenopus oocytes by perfume and phytoncid. Biosci. Biotechnol. Biochem. 1999, 63, 743–748. [Google Scholar] [CrossRef]
- Enan, E.E. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem. Mol. Biol. 2005, 35, 309–321. [Google Scholar] [CrossRef]
- Enan, E.E. Insecticidal activity of essenial oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Tong, F.; Coats, J.R. Quantitative structure–activity relationships of monoterpenoid binding activities to the housefly GABA receptor. Pest Manag. Sci. 2012, 68, 1122–1129. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: Prospects and retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- Liao, M.; Xiao, J.J.; Zhou, L.J.; Liu, Y.; Wu, X.W.; Hua, R.M.; Wang, G.R.; Cao, H.Q. Insecticidal activity of Melaleuca alternifolia essential oil and RNA-Seq analysis of Sitophilus zeamais transcriptome in response to oil fumigation. PLoS ONE 2016, 11, e0167748. [Google Scholar] [CrossRef]
- Gao, S.S.; Zhang, K.P.; Wei, L.T.; Wei, G.Y.; Xiong, W.F.; Lu, Y.; Zhang, Y.; Gao, A.; Li, B. Insecticidal Activity of Artemisia vulgaris Essential Oil and Transcriptome Analysis of Tribolium castaneum in Response to Oil Exposure. Front. Genet. 2020, 11, 589. [Google Scholar] [CrossRef]
- Ke, K.; Wu, S.; Hu, K.; Liao, X.; Li, M.; Li, R. NlugOBP1 in Nilaparvata lugens Involved in the Perception of Repellent Agent Geraniol. Sci. Rep. 2025, 15, 22368. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Tak, J.H. Gustatory Habituation to Essential Oil Induces Reduced Feeding Deterrence and Neuronal Desensitization in Spodoptera litura. J. Pest Sci. 2025, 98, 321–336. [Google Scholar] [CrossRef]
- Achimón, F.; Peschiutta, M.L.; Brito, V.D.; Beato, M.; Pizzolitto, R.P.; Zygadlo, J.A.; Zunino, M.P. Exploring Contact Toxicity of Essential Oils against Sitophilus zeamais through a Meta-Analysis Approach. Plants 2022, 11, 3070. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.K.; Appel, A.G.; Sims, S.R. Topical Toxicity of Essential Oils to the German Cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 2010, 103, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and Cytotoxic Activities of Sixty Commercially-Available Essential Oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; El Gendy, A.E.N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharthi, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic Effects of Plant Essential Oils: A Systematic Review and Structure-Activity Relationship Based on Chemometric Analyses. Plants 2021, 10, 36. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Ribeiro, V.L.S.; Avancini, C.; Gonçalves, K.; Toigo, E.; von Poser, G. Acaricidal Activity of Calea serrata (Asteraceae) on Boophilus microplus and Rhipicephalus sanguineus. Vet. Parasitol. 2008, 151, 351–354. [Google Scholar] [CrossRef]
- Dobetsberger, C.; Buchbauer, G. Actions of Essential Oils on the Central Nervous System: An Updated Review. Flavour Fragr. J. 2011, 26, 300–316. [Google Scholar] [CrossRef]
- Fahmy, M.A.; Farghaly, A.A.; Hassan, E.E.; Hassan, E.M.; Hassan, Z.M.; Mahmoud, K.; Omara, E.A. Evaluation of the Anti-cancer/anti-mutagenic Efficiency of Lavandula officinalis Essential oil. Asian Pac. J. Cancer Prev. 2022, 23, 1215–1222. [Google Scholar] [CrossRef]
- Asif, Z.; Shaheedi, M.H. Cytotoxic and Genotoxic Effects of Eucalyptus globulus on Vero Cell line. JEPIBIO 2024, 1, 22–25. [Google Scholar]
- Burt, S. Essential oils: Their Antibacterial Properties and Potential Applications in Foods. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Cal, K. Skin penetration of terpenes from essential oils and topical vehicles. Planta Medica 2006, 72, 311–316. [Google Scholar] [CrossRef]
- Stepanycheva, E.; Petrova, M.; Chermenskaya, T.; Pavela, R. Fumigant Effect of Essential Oils on Mortality and Fertility of Thrips Frankliniella occidentalis Perg. Environ. Sci. Pollut. Res. 2019, 26, 30885–30892. [Google Scholar] [CrossRef] [PubMed]
- Visakh, N.U.; Pathrose, B.; Chellappan, M.; Ranjith, M.T.; Sindhu, P.V.; Mathew, D. Chemical Characterisation, Insecticidal and Antioxidant Activities of Essential Oils from Four Citrus Spp. Fruit Peel Waste. Food Biosci. 2022, 50, 102163. [Google Scholar] [CrossRef]
- Visakh, N.U.; Pathrose, B.; Narayanankutty, A.; Alfarhan, A.; Ramesh, V. Utilization of Pomelo (Citrus maxima) Peel Waste into Bioactive Essential Oils: Chemical Composition and Insecticidal Properties. Insects 2022, 13, 480. [Google Scholar] [CrossRef]
- Umpiérrez, M.L.; Lagreca, M.E.; Cabrera, R.; Grille, G.; Rossini, C. Essential Oils from Asteraceae as Potential Biocontrol Tools for Tomato Pests and Diseases. Phytochem. Rev. 2012, 11, 339–350. [Google Scholar] [CrossRef]
- Costa, A.V.; Pinheiro, P.F.; de Queiroz, V.T.; Rondelli, V.M.; Marins, A.K.; Valbon, W.R.; Pratissoli, D. Chemical Composition of Essential Oil from Eucalyptus citriodora Leaves and Insecticidal Activity Against Myzus persicae and Frankliniella schultzei. J. Essent. Oil Bear. Plants 2015, 18, 374–381. [Google Scholar] [CrossRef]
- Tkachenko, K.; Varfolomeeva, E. Prospects for the Use of Essential Oils as Repellants and/or Insecticides. Trop. J. Nat. Prod. Res. 2022, 6, 831. [Google Scholar] [CrossRef]
- Visakh, N.U.; Pathrose, B.; Chellappan, M.; Ranjith, M.T.; Sindhu, P.V.; Mathew, D. Extraction and Chemical Characterisation of Agro-Waste from Turmeric Leaves as a Source of Bioactive Essential Oils with Insecticidal and Antioxidant Activities. Waste Manag. 2023, 169, 1–10. [Google Scholar] [CrossRef]
- Danna, C.; Malaspina, P.; Cornara, L.; Smeriglio, A.; Trombetta, D.; De Feo, V.; Vanin, S. Eucalyptus Essential Oils in Pest Control: A Review of Chemical Composition and Applications Against Insects and Mites. Crop Prot. 2024, 176, 106319. [Google Scholar] [CrossRef]
- Sulhath, T.A.; Visakh, N.U.; Pathrose, B.; George, S.B. Investigating the Insecticidal Properties of Essential Oils Extracted from Wild Turmeric (Curcuma aromatica Salisb) Leaves Waste Against Three Key Stored Product Pests. Sustain. Chem. Pharm. 2024, 38, 101482. [Google Scholar] [CrossRef]
- Aisha, K.; Visakh, N.U.; Pathrose, B.; Mori, N.R.; Baeshen, S.; Shawer, R. Extraction, Chemical Composition and Insecticidal Activities of Lantana camara Linn. Leaf Essential Oils Against Tribolium castaneum, Lasioderma serricorne and Callosobruchus chinensis. Molecules 2024, 29, 344. [Google Scholar] [CrossRef] [PubMed]
- Anuranj, P.R.; Visakh, N.U.; Pathrose, B.; George, S.B. Exploring Chemical Composition and Insecticidal Activities of Alpinia calcarata Rhizome Essential Oil Against Three Major Storage Insects. Nat. Pestic. Res. 2024, 10, 100088. [Google Scholar] [CrossRef]
- Chiasson, H.; Bostanian, N.J.; Vincent, C. Acaricidal properties of a Chenopodium-based botanical. J. Econ. Entomol. 2004, 97, 1373–1377. [Google Scholar] [CrossRef]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential Oils as Green Pesticides: Potential and Constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Momen, F.M.; Amer, S.A.A.; Refaat, A.M. Repellent and Oviposition-Deterring Activity of Rosemary and Sweet Marjoram on the Spider Mites Tetranychus urticae and Eutetranychus orientalis (Acari: Tetranychidae). Acta Phytopathol. Entomol. Hung. 2001, 36, 155–164. [Google Scholar] [CrossRef]
- Kim, E.H.; Kim, H.K.; Choi, D.H.; Ahn, Y.J. Acaricidal Activity of Clove Bud Oil Compounds Against Tyrophagus putrescentiae (Acari: Acaridae). Appl. Entomol. Zool. 2003, 38, 261–266. [Google Scholar] [CrossRef]
- Aslan, I.; Ozbek, H.; Calmasur, O.; Sahin, F. Toxicity of Essential Oil Vapours to Two Greenhouse Pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Ind. Crops Prod. 2004, 19, 167–173. [Google Scholar] [CrossRef]
- Choi, W.I.; Lee, S.G.; Park, H.M.; Ahn, Y.J. Toxicity of Plant Essential Oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). J. Econ. Entomol. 2004, 97, 553–558. [Google Scholar] [CrossRef]
- Han, J.; Choi, B.R.; Lee, S.G.; Kim, S., II; Ahn, Y.J. Toxicity of Plant Essential Oils to Acaricide-Susceptible and Resistant Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae). J. Econ. Entomol. 2010, 103, 1293–1298. [Google Scholar] [CrossRef]
- Patnaik, S.; Rout, K.; Pal, S.; Panda, P.K.; Mukherjee, P.S.; Sahoo, S. Essential Oils of Aromatic and Medicinal Plants as Botanical Biocide for Management of Coconut Eriophyid Mite (Aceria guerreronis Keifer). Psyche J. Entomol. 2011, 2011, 710929. [Google Scholar] [CrossRef]
- Roh, H.S.; Lee, B.H.; Park, C.G. Acaricidal and Repellent Effects of Myrtacean Essential Oils and their Major Constituents Against Tetranychus urticae (Tetranychidae). J. Asia Pac. Entomol. 2013, 16, 245–249. [Google Scholar] [CrossRef]
- Al-Assiuty, B.A.; Nenaah, G.E.; Ageba, M.E. Chemical Profile, Characterization and Acaricidal Activity of Essential Oils of Three Plant Species and their Nanoemulsions Against Tyrophagus putrescentiae, A Stored-Food Mite. Exp. Appl. Acarol. 2019, 79, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Hýbl, M.; Bohatá, A.; Rádsetoulalová, I.; Kopecký, M.; Hoštičková, I.; Vaníčková, A.; Mráz, P. Evaluating the Efficacy of 30 Different Essential Oils Against Varroa destructor and Honey Bee Workers (Apis mellifera). Insects 2021, 12, 1045. [Google Scholar] [CrossRef]
- Teng, Q.; Zou, M.; Xue, Q.; Zhang, Q.; Liu, T.; Guo, J.; Li, Y.; Zhao, J. Lemongrass (Cymbopogon citratus) Essential Oil: An Eco-Friendly and Fast-Acting Acaricide Against the Grain Pest Mite Aleuroglyphus ovatus. Int. J. Acarol. 2024, 50, 658–667. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Abdelwines, M.A. Toxicological and Physiological Activity of Lemongrass and Peppermint Essential Oils as Acaricidal Agents on Life-Table Parameters of Oligonychus mangiferus (Rahman & Sapra) and its Predatory Mite, Cydnoseius negevi (Swirskii & Amitai). Phytoparasitica 2024, 52, 71. [Google Scholar] [CrossRef]
- Kunnathattil, M.; Narayanankutty, A.; Visakh, N.U.; Pathrose, B.; Punathil, T.; Kaimal, S.G. Phytochemical Characterization, Fumigant and Contact Toxicity Activities of Four Essential Oils Against Eriophyid Gall Mite, Aceria pongamiae Keifer (Acarina: Eriophyidae). Chem. Biodiversity. 2024, 21, e202401535. [Google Scholar] [CrossRef] [PubMed]
- Zeshan, A.; Cagáň, Ľ.; Abbas, A.; Eisa, M.A.S.; Jabran, A. Efficacy of Different Essential Oils Against the Two Spotted Spider Mites Tetranychus utricae (Acari: Tetraychidae) Under Laboratory Conditions. Ukr. J. Ecol. 2024, 14, 8–15. [Google Scholar]
- Alizadeh, M.; Aghaei, M.; Sharifian, I.; Saadatian, M. Chemical Composition of Essential Oil of Artemisia vulgaris from West Azerbaijan, Iran. Electron. J. Environ. Agric. Food Chem. 2012, 11, 493–496. [Google Scholar]
- Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A. Secondary Metabolites from Artemisia Genus as Biopesticides and Innovative Nano-Based Application Strategies. Molecules 2021, 26, 3061. [Google Scholar] [CrossRef] [PubMed]
- Gazim, Z.C.; Rezende, C.M.; Fraga, S.R.; Svidzinski, T.I.E.; Cortez, D.A.G. Antifungal activity of the essential oil from Calendula officinalis L.(Asteraceae) growing in Brazil. Braz. J. Microbiol. 2008, 39, 61–63. [Google Scholar] [CrossRef]
- Boussaada, O.; Kamel, M.B.H.; Ammar, S.; Haouas, D.; Mighri, Z.; Helal, A.N. Insecticidal Activity of Some Asteraceae Plant Extracts Against Tribolium confusum. Bull. Insectology 2008, 61, 283–289. [Google Scholar]
- Reidel, B.R.V.; Nardoni, S.; Mancianti, F.; Anedda, C.; El Gendy, A.E.N.G.; Omer, E.A.; Pistelli, L. Chemical Composition and Antifungal Activity of Essential Oils from Four Asteraceae Plants Grown in Egypt. Z. Naturforsch. C 2018, 73, 313–318. [Google Scholar] [CrossRef]
- Garcia, M.V.; Matias, J.; Barros, J.C.; Lima, D.P.D.; Lopes, R.D.S.; Andreotti, R. Chemical Identification of Tagetes minuta Linnaeus (Asteraceae) Essential Oil and its Acaricidal effect on Ticks. Rev. Bras. Parasitol. Vet. 2012, 21, 405–411. [Google Scholar] [CrossRef]
- Tabanca, N.; Bernier, U.R.; Tsikolia, M.; Becnel, J.J.; Sampson, B.; Werle, C.; Demirci, B.; Başer, K.H.C.; Blythe, E.K.; Pounders, C.; et al. Eupatorium capillifolium Essential Oil: Chemical Composition, Antifungal Activity and Insecticidal Activity. Nat. Prod. Commun. 2010, 5, 1934578X1000500913. [Google Scholar] [CrossRef]
- Politi, F.A.; Queiroz-Fernandes, G.M.; Rodrigues, E.R.; Freitas, J.A.; Pietro, R.C. Antifungal, Antiradical and Cytotoxic Activities of Extractives Obtained from Tagetes patula L. (Asteraceae), a Potential Acaricide Plant Species. Microb. Pathog. 2016, 95, 15–20. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Sytykiewicz, H.; Chrzanowski, G. The Effect of Essential Oils from Asteraceae Plants on Behavior and Selected Physiological Parameters of the Bird Cherry-Oat Aphid. Molecules 2024, 29, 1673. [Google Scholar] [CrossRef]
- Chouikhi, S.; Assadi, B.H.; Tlahig, S.; Triki, T.; Secrafi, M.; Zaidi, S.; Nagaz, K.; Lebdi, K.G.; Belkadhi, M.S. Insecticidal and Acaricidal Potency of Essential Oils Against Major Pests in Geothermal Greenhouses. Euro Mediterr. J. Environ. Integr. 2024, 10, 1861–1876. [Google Scholar] [CrossRef]
- Hazam, S.; Touati, S.; Touati, L.; Saher, L.; Khedidji, H.; Ait Kaki, S.; Chemat, S. Promising Algerian Essential Oils as Natural Acaricides Against the Honey Bee Mite Varroa destructor (Acari: Varroidae). Exp. Appl. Acarol. 2024, 92, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Elmhalli, F.; Garboui, S.S.; Karlson, A.K.B.; Mozūraitis, R.; Baldauf, S.L.; Grandi, G. Acaricidal Activity Against Ixodes ricinus Nymphs of Essential Oils from the Libyan Plants Artemisia herba alba, Origanum majorana and Juniperus phoenicea. Vet. Parasitol. Reg. Stud. Rep. 2021, 24, 100575. [Google Scholar] [CrossRef] [PubMed]
- Pirali-Kheirabadi, K.H.; da Silva, J.T. In-vitro Assessment of the Acaricidal Properties of Artemisia annua and Zataria multiflora Essential Oils to Control Cattle Ticks. Iran. J. Parasitol. 2011, 6, 58. [Google Scholar]
- Chiasson, H.; Bélanger, A.; Bostanian, N.; Vincent, C.; Poliquin, A. Acaricidal Properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) Essential Oils Obtained by Three Methods of Extraction. J. Econ. Entomol. 2001, 94, 167–171. [Google Scholar] [CrossRef]
- Soares, L.B.; Tucci, E.C.; Gonçalez, E.; Felicio, R.C.; Felicio, J.D. Acaricide and Fungicide Effects of the Artemisia vulgaris Essential Oil. Annu. Res. Rev. Biol. 2014, 5, 285–292. [Google Scholar] [CrossRef]
- Tabari, M.A.; Youssefi, M.R.; Benelli, G. Eco-friendly Control of the Poultry Red Mite, Dermanyssus gallinae (Dermanyssidae), Using the α-Thujone-Rich Essential Oil of Artemisia sieberi (Asteraceae): Toxic and Repellent Potential. Parasitol. Res. 2017, 116, 1545–1551. [Google Scholar] [CrossRef]
- Bhat, S.K.; Kempraj, V. Evaluation of Acaricidal Potential of Essential Oils of Plants Against Coconut Mite. Indian Coconut J. 2008, 5, 6–10. [Google Scholar]
- Mossa, A.H.; Afia, S.I.; Mohafrash, S.M.M.; Abou-Awad, B.A. Formulation and Characterization of Garlic (Allium sativum L.) Essential Oil Nanoemulsion and its Acaricidal Activity on Eriophyid Olive Mites (Acari: Eriophyidae). Environ. Sci. Pollut. Res. 2018, 25, 10526–10537. [Google Scholar] [CrossRef]
- Abo-Shnaf, R.; Allam, S.F.M.; El-Sobky, M.L.; Abdul-Shafc, A.F.; El-Tony, A.G. Biodiversity of Mites in Mango Orchards (Mangifera indica L.) and Evaluation of Some Mineral and Essential Oils Against Cisaberoptus kenyae Keifer (Acari: Eriophyidae) Management. Acarologia 2022, 62, 130–142. [Google Scholar] [CrossRef]
- Singh, N.B.; Devi, M.L.; Biona, T.; Sharma, N.; Das, S.; Chakravorty, J.; Mukherjee, P.K.; Rajashekar, Y. Phytochemical Composition and Antimicrobial Activity of Essential Oil from the Leaves of Artemisia vulgaris L. Molecules 2023, 28, 2279. [Google Scholar] [CrossRef]
- Trinh, P.T.N.; Tien, L.X.; Danh, T.T.; Le Hang, D.T.; Hoa, N.V.; Yen, T.T.B.; Dung, L.T. Antioxidant, Anti-Inflammatory and Anti-Bacterial Activities of Artemisia vulgaris L. Essential Oil in Vietnam. Nat. Prod. Commun. 2024, 19, 1934578X241275782. [Google Scholar] [CrossRef]
- Malik, S.; de Mesquita, L.S.S.; Silva, C.R.; de Mesquita, J.W.C.; de Sá Rocha, E.; Bose, J.; Abiri, R.; de Maria Silva Figueiredo, P.; Costa-Júnior, L.M. Chemical Profile and Biological Activities of Essential Oil from Artemisia vulgaris L. Cultivated in Brazil. Pharmaceutical 2019, 12, 49. [Google Scholar] [CrossRef]
- Han, C.; Zhang, G.; Mei, Y.; Shan, Z.; Shi, K.; Zhou, S.; Shao, H. Chemical Profile of Artemisia Vulgaris L. Essential Oil and Its Phytotoxic, Insecticidal and Antimicrobial Activities. S. Afr. J. Bot. 2023, 162, 20–28. [Google Scholar] [CrossRef]
- Sharma, K.R.; Adhikari, S. Phytochemical Analysis and Biological Activities of Artemisia Vulgaris Grown in Different Altitudes of Nepal. Int. J. Food Prop. 2023, 26, 414–427. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors Affecting Secondary Metabolite Production in Plants: Volatile Components and Essential Oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Munda, S.; Pandey, S.K.; Dutta, S.; Baruah, J.; Lal, M. Antioxidant Activity, Antibacterial Activity and Chemical Composition of Essential Oil of Artemisia vulgaris L. Leaves from Northeast India. J. Essent. Oil Bear. Plants. 2019, 22, 368–379. [Google Scholar] [CrossRef]
- Houti, H.; Ghanmi, M.; Satrani, B.; Mansouri, F.E.; Cacciola, F.; Sadiki, M.; Boukir, A. Moroccan Endemic Artemisia herba-alba Essential Oil: GC-MS Analysis and Antibacterial and Antifungal Investigation. Separations 2023, 10, 59. [Google Scholar] [CrossRef]
- Sharifian, I.; Hashemi, S.M.; Darvishzadeh, A. Fumigant Toxicity of Essential Oil of Mugwort (Artemisia vulgaris L.) Against Three Major Stored Product Beetles. Arch. Phytopathol. Plant Prot. 2012, 46, 445–450. [Google Scholar] [CrossRef]
- Kesdek, M.; Bozhüyük, A.U.; Kordalı, Ş. Toxicities of Different Essential Oils to Tetranychus urticae Koch, 1836 (Acari: Tetranychidae) and Acanthoscelides obtectus (Say, 1831) (Coleoptera: Bruchidae) Adults. Turk. J. Entomol. 2020, 44, 39–47. [Google Scholar] [CrossRef]
- Ismahane, L.; Khaoula, B.; Rahim, A.; Ibrahim, M.; Seghir, M.; Ayoub, H.; Laid, O. Effect of Two Essential Oils from the Asteraceae Family Against Ectomyelois ceratoniae Zell. (Lepidoptera, Pyralidae): Case of Artemisia herba-alba Asso. and Artemisia compestris L. J. Biosci. 2021, 29, 9–17. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Mahmoud, M.S.; Khattab, M.M. Toxicity, Joint Action Effect, and Enzymatic Assays of Abamectin, Chlorfenapyr, and Pyridaben Against the Two-Spotted Spider Mite Tetranychus urticae. J. Basic Appl. Zool. 2022, 83, 22. [Google Scholar] [CrossRef]
- Azevedo, L.H.; Moraes, G.D.; Yamamoto, P.T.; Zanardi, O.Z. Development of a Methodology and Evaluation of Pesticides Against Aceria litchii and Its Predator Phytoseius intermedius (Acari: Eriophyidae, Phytoseiidae). J. Econ. Entomol. 2013, 106, 2183–2189. [Google Scholar] [CrossRef]
- Bergh, J.C.; Rugg, D.; Jansson, R.K.; McCoy, C.W.; Robertson, J.L. Monitoring the susceptibility of citrus rust mite (Acari: Eriophyidae) populations to abamectin. J. Econ. Entomol. 1999, 92, 781–787. [Google Scholar] [CrossRef]
- Cabrera, J.A.; Menjivar, R.D.; Dababat, A.E.F.A.; Sikora, R.A. Properties and Nematicide Performance of Avermectins. J. Phytopathol. 2013, 161, 65–69. [Google Scholar] [CrossRef]
- Lima, B.S.A.; Rocha, F.A.D.; Plata-Rueda, A.; Zanuncio, J.C.; Cossolin, J.F.S.; Martínez, L.C.; Serrão, J.E. Abamectin Induces Mortality, Inhibits Food Consumption, and Causes Histological Changes in the Midgut of the Velvetbean Caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). J. Pest Sci. 2024, 97, 213–227. [Google Scholar] [CrossRef]
- Ghazawy, N.A.R.; Afify, A.; Radwan, I.T.; Ghabban, H.; Alkhaibari, A.M.; Gattan, H.S.; Alruhaili, M.H.; Selim, A.; Saad, M.M.A. The Effect of Abamectin on Locusta migratoria Neurosecretory Cells and Mid Gut, Using Ultrastructure Examination, Oxidative Stress Study, and In-Silico Molecular Docking. Molecules 2023, 28, 6956. [Google Scholar] [CrossRef]
- Aslan, I.; Kordali, S.; Calmasur, O. Toxicity of the Vapours of Artemisia absinthium Essential Oils to Tetranychus urticae Koch and Bemisia tabaci (Genn.). Fresenius Environ. Bull. 2005, 14, 413–417. [Google Scholar]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, F.; Zhou, X.M.; Niu, C.Y.; Lei, C.L. Repellent and Fumigant Activity of Essential Oil from Artemisia vulgaris to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2006, 42, 339–347. [Google Scholar] [CrossRef]
- Al-Hayali, T.S.A.; Al-Anbaki, H.A.M.; Alhadithy, O.T.H.A. The Repellent and Attractive Effect of Two Volatile Oils as Eco-Friendly Substances Against Tribolium castaneum. IOP Conf. Ser. Earth Environ. Sci. 2025, 1487, 012008. [Google Scholar] [CrossRef]
- Abbott, W.S. The Value of the Dry Substitutes for Liquid Lime. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Miresmailli, S.; Bradbury, R.; Isman, M.B. Comparative Toxicity of Rosmarinus officinalis L. Essential Oil and Blends of Its Major Constituents Against Tetranychus urticae Koch (Acari: Tetranychidae) on Two Different Host Plants. Pest Manag. Sci. 2006, 62, 366–371. [Google Scholar] [CrossRef] [PubMed]
Sl. No. | RT a | Compound Name | Chemical Formula | RI b | RI c | Area % |
---|---|---|---|---|---|---|
1. | 5.30 | Tricyclene | C10H16 | 903 | 906 | 0.77 |
2. | 5.36 | β-Thujene | C10H16 | 921 | 920 | 0.68 |
3. | 5.48 | α-Pinene | C10H16 | 932 | 939 | 6.61 |
4. | 5.72 | Camphene | C10H16 | 960 | 959 | 5.43 |
5. | 6.09 | α-Phellandrene | C10H16 | 984 | 985 | 2.36 |
6. | 6.16 | β-Terpinen | C10H16 | 985 | 988 | 1.90 |
7. | 6.89 | o-Cymene | C10H14 | 1024 | 1022 | 2.09 |
8. | 6.97 | D-Sylvestrene | C10H16 | 1029 | 1027 | 2.32 |
9. | 7.02 | Eucalyptol | C10H18O | 1033 | 1035 | 6.39 |
10. | 7.43 | γ-Terpinene | C10H16 | 1065 | 1062 | 1.22 |
11. | 8.19 | Thujone | C10H16O | 1073 | 1079 | 3.84 |
12. | 8.34 | Fenchol | C10H18O | 1087 | 1090 | 6.03 |
13. | 8.88 | Camphor | C10H16O | 1140 | 1145 | 28.94 |
14. | 9.39 | L-Terpinen-4-ol | C10H18O | 1185 | 1182 | 3.33 |
15. | 9.75 | 4-Tert-butylaniline | C10H15N | 1279 | 1270 | 19.79 |
16. | 13.21 | α-Copaene | C15H24 | 1376 | 1378 | 2.40 |
17. | 14.16 | Caryophyllene | C15H24 | 1414 | 1411 | 1.30 |
18. | 14.49 | α-Guaiene | C15H24 | 1426 | 1424 | 0.67 |
19. | 15.80 | α-Muurolene | C15H24 | 1495 | 1499 | 0.48 |
20. | 15.95 | δ-Guaijene | C15H24 | 1508 | 1506 | 0.65 |
21. | 16.29 | δ-Cadinene | C15H24 | 1520 | 1522 | 0.99 |
22. | 17.39 | Hexyl benzoate | C13H18O2 | 1580 | 1581 | 0.45 |
23. | 17.95 | Carotol | C15H26O | 1595 | 1593 | 0.44 |
24. | 18.09 | Cedrol | C15H26O | 1604 | 1609 | 0.49 |
Monoterpene hydrocarbons (%) | 21.29 | |||||
Oxygenated monoterpenes (%) | 45.20 | |||||
Sesquiterpene hydrocarbons (%) | 6.49 | |||||
Oxygenated Sequiterpene (%) | 0.93 | |||||
Aromatics (%) | 21.88 | |||||
Others (%) | 3.78 | |||||
Total compounds (%) | 99.57 |
Time | Concentration (µL/mL Air) | Mean Mortality ± SD | %Mean Mortality ± SD | LC50 * (µL/mL) | Slope | F Value | p Value |
---|---|---|---|---|---|---|---|
24 h | Control | 0.33 ± 0.58 | 24.94 ± 17.29 a | 1.29 (0.96–2.4) | 1.41 | 95.29 | <0.01 |
0.25 | 5.00 ± 1.00 S | ||||||
0.50 | 7.33 ± 1.15 S | ||||||
0.75 | 10.00 ± 1.00 S | ||||||
1.00 | 13.67 ± 0.58 S | ||||||
48 h | Control | 1.67 ± 1.53 | 32.92 ± 20.37 a | 0.84 (0.68–1.17) | 1.50 | 105.40 | <0.01 |
0.25 | 7.00 ± 1.00 S | ||||||
0.50 | 9.67 ± 0.58 S | ||||||
0.75 | 12.00 ± 1.00 S | ||||||
1.00 | 17.67 ± 0.58 S | ||||||
72 h | Control | 2.67 ± 0.58 | 46.38 ± 24.53 a | 0.43 (0.32–0.53) | 1.39 | 108.52 | <0.01 |
0.25 | 12.00 ± 1.00 S | ||||||
0.50 | 14.33 ± 1.53 S | ||||||
0.75 | 16.67 ± 0.57 S | ||||||
1.00 | 22.00 ± 1.73 S | ||||||
F = 1.339; p = 0.29 |
Time | Concentration (µL/mL) | Mean Mortality ± SD | %Mean Mortality ± SD | LC50 * (µL/mL) | Slope | F Value | p Value |
---|---|---|---|---|---|---|---|
24 h | Negative control | 0.67 ± 0.58 | 10.22 ± 7.47 b | 37.37 (19.38–337.69) | 1.45 | 22.60 | <0.01 |
2.50 | 1.33 ± 1.15 NS | ||||||
5.00 | 2.67 ± 0.58 S | ||||||
7.50 | 4.67 ± 0.58 S | ||||||
10.00 | 6.00 ± 1.00 S | ||||||
Positive control | 20 ± 4.32 S | LD50 = 5.59 (3.50–7.10) µL/cm2 | 1.51 | ||||
48 h | Negative control | 2.00 ± 1.73 | 27.33 ± 16.30 b,c | 12.14 (9.13–22.35) | 1.36 | 24.67 | <0.01 |
2.50 | 5.67 ± 1.58 S | ||||||
5.00 | 8.00 ± 2.00 S | ||||||
7.50 | 10.33 ± 1.53 S | ||||||
10.00 | 15.00 ± 1.73 S | ||||||
Positive control | 27 ± 3.83 S | LD50 = 2.23 (0.8–3.51) µL/cm2 | 1.84 | ||||
72 h | Negative control | 3.00 ± 0.00 | 45.66 ± 23.51 c | 4.56 (3.47–5.59) | 1.42 | 186.04 | <0.01 |
2.50 | 10.67 ± 1.53 S | ||||||
5.00 | 15.33 ± 0.58 S | ||||||
7.50 | 19.00 ± 1.00 S | ||||||
10.00 | 20.33 ± 0.58 S | ||||||
Positive control | 29.75 ± 0.5 S | LD50 = 1.26 (0.14–2.51) µL/cm2 | 1.58 | ||||
F = 5.391; p = 0.021 |
Concentration (µL/mL) | Repellence Percentage of the Treatment After | Mean Repellence Percent ± SD | Class | ||
---|---|---|---|---|---|
24 h | 48 h | 72 h | |||
0.025 | 33.33 ± 0.00 d | 20 ± 0.00 e | 38.21 ± 4.76 g | 30.51 ± 9.43 i | II |
0.05 | 26.67 ± 23.09 d | 46.10 ± 3.62 e | 50 ± 0.00 g | 40.92 ± 12.50 i | III |
0.075 | 42.06 ± 8.36 d | 77.14 ± 20.20 f | 81.48 ± 16.97 h | 66.90 ± 21.62 j | IV |
0.1 | 75.56 ± 21.43 d | 82.22 ± 16.78 f | 86.11 ± 12.72 h | 81.30 ± 5.34 j | V |
F value | 5.32 | 14.06 | 14.00 | 8.81 | |
p value | 0.026 | 0.001 | 0.002 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunnathattil, M.; Visakh, N.U.; Pathrose, B.; Punathil, T.; Ravindran, A.E.; Narayanankutty, A.; Kaimal, S.G. Evaluation of Chemical Composition, Acaricidal, and Repellent Activities of Artemisia vulgaris L. (Asteraceae) Essential Oil Against Gall Mite Aceria pongamiae Keifer (Acarina: Eriophyidae). Molecules 2025, 30, 3326. https://doi.org/10.3390/molecules30163326
Kunnathattil M, Visakh NU, Pathrose B, Punathil T, Ravindran AE, Narayanankutty A, Kaimal SG. Evaluation of Chemical Composition, Acaricidal, and Repellent Activities of Artemisia vulgaris L. (Asteraceae) Essential Oil Against Gall Mite Aceria pongamiae Keifer (Acarina: Eriophyidae). Molecules. 2025; 30(16):3326. https://doi.org/10.3390/molecules30163326
Chicago/Turabian StyleKunnathattil, Maneesha, Naduvilthara U. Visakh, Berin Pathrose, Thejass Punathil, Archana Elamkulam Ravindran, Arunaksharan Narayanankutty, and Sangeetha G. Kaimal. 2025. "Evaluation of Chemical Composition, Acaricidal, and Repellent Activities of Artemisia vulgaris L. (Asteraceae) Essential Oil Against Gall Mite Aceria pongamiae Keifer (Acarina: Eriophyidae)" Molecules 30, no. 16: 3326. https://doi.org/10.3390/molecules30163326
APA StyleKunnathattil, M., Visakh, N. U., Pathrose, B., Punathil, T., Ravindran, A. E., Narayanankutty, A., & Kaimal, S. G. (2025). Evaluation of Chemical Composition, Acaricidal, and Repellent Activities of Artemisia vulgaris L. (Asteraceae) Essential Oil Against Gall Mite Aceria pongamiae Keifer (Acarina: Eriophyidae). Molecules, 30(16), 3326. https://doi.org/10.3390/molecules30163326