Molecular Dynamics Simulation of Nano-Defects on Fused Silica Surface Induced by Low-Temperature Plasma Cleaning
Abstract
1. Introduction
2. Results Analysis
2.1. Microscopic Process of Surface Damage to Fused Silica by Plasma Cleaning
2.2. Interaction Process Between Plasma and Fused Silica Surfaces
2.3. Influence of Plasma Energy on Surface Damage to Fused Silica
2.4. Influence of Plasma Flux and Ambient Temperature on Surface Damage to Fused Silica
3. Simulation Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spaeth, M.L.; Manes, K.R.; Honig, J. Cleanliness for the NIF 1ω laser amplifiers. Fusion Sci. Technol. 2016, 69, 250–264. [Google Scholar] [CrossRef]
- Yang, L.; Xiang, X.; Miao, X.; Li, Z.; Zhou, G.; Yan, Z.; Yuan, X.; Zheng, W.; Zu, X. Influence of outgassing organic contamination on the transmittance and laser-induced damage of SiO2 sol-gel antireflection coating. Opt. Eng. 2015, 54, 126101. [Google Scholar] [CrossRef]
- Shen, R.; Li, Y.; Wang, Z.; Sun, L.; Yuan, X.; Dong, X.; Xiang, X.; Li, B.; Liu, X.; Xu, X.; et al. Experimental study on the damage characteristics of sol-gel antireflection coatings on large-aperture optical components by in-situ plasma cleaning. Nucl. Fusion 2025, 65, 036002. [Google Scholar] [CrossRef]
- Li, Y.; Bai, Q.; Guan, Y.; Zhang, P.; Shen, R.; Lu, L.; Liu, H.; Yuan, X.; Miao, X.; Han, W.; et al. In situ plasma cleaning of large-aperture optical components in ICF. Nucl. Fusion 2022, 62, 076023. [Google Scholar] [CrossRef]
- Fraxedas, J.; Schütte, M.; Sauthier, G.; Tallarida, M.; Ferrer, S.; Carlino, V.; Pellegrin, E. In-situ XPS analysis of the electronic structure of silicon and titanium thin coatings exposed to low-pressure inductively-coupled RF plasma. Appl. Surf. Sci. 2021, 542, 148684. [Google Scholar] [CrossRef]
- Shen, R.; Wang, H.; Wang, Y.; Li, Y.; Lu, T.; Li, W.; Lu, J.; Lu, Y.; Wang, F.; Zhang, Z.; et al. Experimental and numerical simulation study on nanosecond laser damage of fused silica optical components induced by fused silica particles. Opt. Laser Technol. 2025, 192, 113530. [Google Scholar] [CrossRef]
- Sanchez, F.; Marot, L.; Steiner, R.; Mathys, D.; Hiret, P.; Soni, K.; Antunes, R.; Kisiel, M.; Romero-Muniz, C.; Moser, L.; et al. Surface modification of ITER-like mirrors after one hundred cleaning cycles using radio-frequency plasma. J. Nucl. Mater. 2023, 581, 154382. [Google Scholar] [CrossRef]
- Spaeth, M.L.; Wegner, P.J.; Suratwala, T.I.; Nostrand, M.C.; Bude, J.D.; Conder, A.D.; Folta, J.A.; Heebner, J.E.; Kegelmeyer, L.M.; MacGowan, B.J. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold. Fusion Sci. Technol. 2016, 69, 265–294. [Google Scholar] [CrossRef]
- Stolz, C.J.; Qiu, S.R.; Negres, R.A.; Bass, I.L.; Miller, P.E.; Cross, D.A.; Davis, J.A.; Sommer, S.; Widmayer, C.C.; MacGowan, B.J.; et al. Transport mirror laser damage mitigation technologies on the National Ignition Facility. In Proceedings of the Advances in Optical Thin Coatings VI, Frankfurt, Germany, 5 June 2018. [Google Scholar]
- Fu, T.; Lin, X.; Li, J.; Luo, G.; Zheng, H.; Ji, Z.; Wang, D.; Yuan, X.; Li, Y.; Geng, Y. Dual-Wavelength Differential Diffractive Network for All-Optical Object Classification. Laser Photonics Rev. 2025, e00433. [Google Scholar] [CrossRef]
- Baisden, P.A.; Atherton, L.J.; Hawley, R.A.; Land, T.A.; Menapace, J.A.; Miller, P.E.; Runkel, M.J.; Spaeth, M.L.; Stolze, C.J.; Suratwala, T.I.; et al. Large optics for the National Ignition Facility. Fusion Sci. Technol. 2016, 69, 295–351. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, B.; Li, G.; Xie, N.; Zhou, K.; Yuan, Q.; Yuan, X.; Wang, F.; Sun, L.; Lu, L.; et al. Analysis of grating surface organic contamination in chirped pulse amplification system. In Proceedings of the Fifth International Symposium on High Power Laser Science and Engineering, Suzhou, China, 22 December 2023. [Google Scholar]
- Cheng, X.; Miao, X.; Wang, H.; Qin, L.; Ye, Y.; He, Q.; Ma, Z.; Zhao, L.; He, S. Surface contaminant control technologies to improve laser damage resistance of optics. Adv. Cond. Matter Phys. 2014, 2014, 974245. [Google Scholar] [CrossRef]
- Pryatel, J.A.; Gourdin, W.H.; Frieders, S.C.; Ruble, G.S.; Monticelli, M.V. Cleaning practices and facilities for the National Ignition Facility (NIF). In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 31 October 2014. [Google Scholar]
- Jitsuno, T.; Murakami, H.; Motokoshi, S.; Mikami, K.; Mikami, T.; Kawasaki, T.; Kawanaka, J.; Miyanaga, N. Source of contamination in damage-test sample and vacuum. In Proceedings of the Pacific Rim Laser Damage: Optical Materials for High-Power Lasers, Yokohama, Japan, 9 August 2016. [Google Scholar]
- Hubka, Z.; Novák, J.; Majerová, I.; Green, J.T.; Velpula, P.T.; Boge, R.; Antipenkov, R.; Sobr, V.; Kramer, D.; Majer, K.; et al. Mitigation of laser-induced contamination in vacuum in high-repetition-rate high-power laser systems. Appl. Optics 2021, 60, 533–538. [Google Scholar] [CrossRef]
- Dey, T.; Naughton, D. Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: A review from materials science perspective. J. Sol-Gel Sci. Technol. 2016, 77, 1–27. [Google Scholar] [CrossRef]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Reuter, S.; Graves, D.B.; Ostrikov, K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016, 630, 1–84. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Jiang, Y.; Zhou, G.; Yuan, Q.; Yuan, X.; Wang, F.; Sun, L.; Lu, L.; Zhang, P.; et al. Elucidating the surface damage behavior of sol-gel silica anti-reflective films during low-pressure plasma cleaning. In Proceedings of the Pacific-Rim Laser Damage 2023: Optical Materials for High-Power Lasers, Shanghai, China, 22 December 2023. [Google Scholar]
- Li, Y.; Bai, Q.; Guan, Y.; Liu, H.; Zhang, P.; Batelibieke, B.; Shen, R.; Lu, L.; Yuan, X.; Miao, X. The mechanism study of low-pressure air plasma cleaning on large-aperture optical surface unraveled by experiment and reactive molecular dynamics simulation. Plasma Sci. Technol. 2022, 24, 064012. [Google Scholar] [CrossRef]
- Maffini, A.; Moser, L.; Marot, L.; Steiner, R.; Dellasega, D.; Uccello, A.; Meyer, E.; Passoni, M. In situ cleaning of diagnostic first mirrors: An experimental comparison between plasma and laser cleaning in ITER-relevant conditions. Nucl. Fusion 2017, 57, 046014. [Google Scholar] [CrossRef]
- Srinivasan, S.G.; Van Duin, A.C.T. Direction dependent etching of diamond surfaces by hyperthermal atomic oxygen: A ReaxFF based molecular dynamics study. Carbon 2015, 82, 314–326. [Google Scholar] [CrossRef]
- Xu, J.; Lu, K.; Fan, D.; Wang, Y.; Xu, S.; Kubo, M. Different etching mechanisms of diamond by oxygen and hydrogen plasma: A reactive molecular dynamics study. J. Phys. Chem. C 2021, 125, 16711–16718. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Ye, Y.; Yuan, X.; Miao, X.; Yao, C.; Shen, R.; Bai, Q.; Lu, L.; Zhang, P. Microscopic investigation for the evaluation of atmospheric pressure non-equilibrium plasma technique used to remove contaminants from ancient Chinese murals. J. Cult. Herit. 2022, 57, 205–212. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Liu, X.; Bai, Q.; Liu, H.; Wang, J.; Zhang, P.; Lu, L.; Yuan, X. Influence of reactive oxygen species concentration and ambient temperature on the evolution of chemical bonds during plasma cleaning: A molecular dynamics simulation. RSC Adv. 2022, 12, 30754–30763. [Google Scholar] [CrossRef]
- Shen, R.; Bai, Q.; Li, Y.; Zhang, F. Molecular dynamics simulation of phase transformation of fused silica under nanoparticle impact: The influence of temperature and impact velocity. Comp. Mater. Sci. 2019, 170, 109169. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Li, W.; Lan, Y.; Khudoley, A.; Zhang, Q.; Yao, C.; Wang, Z. Molecular dynamics simulation and experimental study of the material machinability characteristics and crack propagation mechanisms for fused silica double nanoscratches. Tribol. Int. 2024, 199, 109982. [Google Scholar] [CrossRef]
- Guo, X.; Huang, J.; Yuan, S.; Kang, R.; Guo, D. Study using ReaxFF-MD on the CMP process of fused glass in pure H2O/aqueous H2O2. Appl. Surf. Sci. 2021, 556, 149756. [Google Scholar] [CrossRef]
- Munetoh, S.; Motooka, T.; Moriguchi, K.; Shintani, A. Interatomic potential for Si–O systems using Tersoff parameterization. Comp. Mater. Sci. 2007, 39, 334–339. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, L.; Nan, H.; Shen, Z.; Zhang, G.; Chen, D.; He, L.; Xu, W.; Chen, M.; Jiao, Y.; et al. Disordered hyperuniformity in two-dimensional amorphous silica. Sci. Adv. 2020, 6, eaba0826. [Google Scholar] [CrossRef] [PubMed]
- Lejeune, C.; Grandchamp, J.P.; Gilles, J.P.; Collard, E.; Scheiblin, P. Reactive ion beam etching of silicon with a new plasma ion source operated with CF4: SiO2 over Si selectivity and Si surface modification. Rev. Phys. Appl. 1989, 24, 295–308. [Google Scholar] [CrossRef]
- Mizutani, T. Compositional and structural modifications of amorphous SiO2 by low-energy ion and neutral beam irradiation. J. Non-Cryst. Solids 1995, 181, 123–134. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Jiang, Y.; Sun, L.; Yuan, Q.; Zhang, P.; Bai, Q.; Yuan, X. Molecular Dynamics Simulation of Nano-Defects on Fused Silica Surface Induced by Low-Temperature Plasma Cleaning. Molecules 2025, 30, 3418. https://doi.org/10.3390/molecules30163418
Li Y, Jiang Y, Sun L, Yuan Q, Zhang P, Bai Q, Yuan X. Molecular Dynamics Simulation of Nano-Defects on Fused Silica Surface Induced by Low-Temperature Plasma Cleaning. Molecules. 2025; 30(16):3418. https://doi.org/10.3390/molecules30163418
Chicago/Turabian StyleLi, Yuhai, Yilan Jiang, Laixi Sun, Qiang Yuan, Peng Zhang, Qingshun Bai, and Xiaodong Yuan. 2025. "Molecular Dynamics Simulation of Nano-Defects on Fused Silica Surface Induced by Low-Temperature Plasma Cleaning" Molecules 30, no. 16: 3418. https://doi.org/10.3390/molecules30163418
APA StyleLi, Y., Jiang, Y., Sun, L., Yuan, Q., Zhang, P., Bai, Q., & Yuan, X. (2025). Molecular Dynamics Simulation of Nano-Defects on Fused Silica Surface Induced by Low-Temperature Plasma Cleaning. Molecules, 30(16), 3418. https://doi.org/10.3390/molecules30163418