From Analytical Profiling to Liposomal Delivery: Cannabinol as a Model for Antioxidant Encapsulation and Diffusion Enhancement
Abstract
1. Introduction
2. Results and Discussion
2.1. GC–MS Purity and Thermal Behavior of Cannabinoid Standards
2.2. NMR Data
2.3. Antiradical Activity of Free Cannabinoid Compounds
2.4. Physicochemical Characterization of Liposomes by DLS
2.5. Spin Labeling EPR Analysis of Liposome Membrane Fluidity
2.6. Antiradical Activity of CBN-Loaded Liposomes
2.7. Diffusion of CBN-Loaded Liposomes in a Hydrogel-like Environment
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Synthesis of CBD Diacetate
3.3. Sample Preparation
3.4. GC–MS Analysis
3.5. Nuclear Magnetic Resonance (NMR) Analysis
3.6. Assessment of Radical Scavenging Activity Against DPPH Radicals
3.7. Evaluation of Hydroxyl Radical Scavenging Capacity
3.8. Determination of Superoxide Anion Scavenging Activity
3.9. Preparation of CBN-Loaded Soy Lecithin Liposomes
3.10. Size and Zeta Potential Characterization of Liposomes
3.11. Spin Labeling of Liposomes for EPR Analysis
3.12. Evaluation of Radical Scavenging Activity of Liposomes
3.13. Experimental Design for Investigating Liposomal Mobility in a Semi-Solid Environment
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1H NMR | Proton Nuclear Magnetic Resonance |
13C NMR | Carbon-13 Nuclear Magnetic Resonance |
3CP | 3-Carbamoyl-PROXYL (hydrophilic spin probe) |
CBD | Cannabidiol |
CBD-DOAc | Cannabidiol Diacetate |
CBDA | Cannabidiolic Acid |
CBG | Cannabigerol |
CBN | Cannabinol |
CDCl3 | Deuterated Chloroform |
DCM | Dichloromethane |
DEPMPO | 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (spin trapping agent) |
DLS | Dynamic Light Scattering |
DMAP | 4-Dimethylaminopyridine |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
EPR | Electron Paramagnetic Resonance |
EPRI | Electron Paramagnetic Resonance Imaging |
Et3N | Triethylamine |
GC–MS | Gas Chromatography–Mass Spectrometry |
IL | Interleukin |
log P | Octanol–Water Partition Coefficient (indicator of lipophilicity) |
MS | Mass Spectrometry |
NIST | National Institute of Standards and Technology |
NMR | Nuclear Magnetic Resonance |
O2•− | Superoxide Anion Radical |
ROS | Reactive Oxygen Species |
RT | Retention Time |
SD | Standard Deviation |
SWGDRUG | Scientific Working Group for the Analysis of Seized Drugs |
THC | Δ9-Tetrahydrocannabinol |
TIC | Total Ion Chromatogram |
UV | Ultraviolet |
References
- Farhan, M. The Promising Role of Polyphenols in Skin Disorders. Molecules 2024, 29, 865. [Google Scholar] [CrossRef]
- Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative Stress, Mitochondrial Dysfunction and Neurodegenerative Diseases; a Mechanistic Insight. Biomed. Pharmacother. 2015, 74, 101–110. [Google Scholar] [CrossRef]
- He, X.; Wan, F.; Su, W.; Xie, W. Research Progress on Skin Aging and Active Ingredients. Molecules 2023, 28, 5556. [Google Scholar] [CrossRef]
- Hallan, S.S.; Ferrara, F.; Cortesi, R.; Sguizzato, M. Potential of the Nano-Encapsulation of Antioxidant Molecules in Wound Healing Applications: An Innovative Strategy to Enhance the Bio-Profile. Molecules 2025, 30, 641. [Google Scholar] [CrossRef]
- Ndhlala, A.R.; Moyo, M.; Van Staden, J. Natural Antioxidants: Fascinating or Mythical Biomolecules? Molecules 2010, 15, 6905–6930. [Google Scholar] [CrossRef]
- Charlton, N.C.; Mastyugin, M.; Török, B.; Török, M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023, 28, 1057. [Google Scholar] [CrossRef]
- Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and Human Diseases. Clin. Chim. Acta 2014, 436, 332–347. [Google Scholar] [CrossRef]
- Jardim, F.R.; De Rossi, F.T.; Nascimento, M.X.; Da Silva Barros, R.G.; Borges, P.A.; Prescilio, I.C.; De Oliveira, M.R. Resveratrol and Brain Mitochondria: A Review. Mol. Neurobiol. 2018, 55, 2085–2101. [Google Scholar] [CrossRef]
- Go, Y.K.; Leal, C. Polymer–Lipid Hybrid Materials. Chem. Rev. 2021, 121, 13996–14030. [Google Scholar] [CrossRef]
- Jangde, R.; Elhassan, G.O.; Khute, S.; Singh, D.; Singh, M.; Sahu, R.K.; Khan, J. Hesperidin-Loaded Lipid Polymer Hybrid Nanoparticles for Topical Delivery of Bioactive Drugs. Pharmaceuticals 2022, 15, 211. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Ziemlewska, A.; Bujak, T.; Nizioł-Łukaszewska, Z.; Hordyjewicz-Baran, Z. Cosmetic and Dermatological Properties of Selected Ayurvedic Plant Extracts. Molecules 2021, 26, 614. [Google Scholar] [CrossRef]
- Duczmal, D.; Bazan-Wozniak, A.; Niedzielska, K.; Pietrzak, R. Cannabinoids—Multifunctional Compounds, Applications and Challenges—Mini Review. Molecules 2024, 29, 4923. [Google Scholar] [CrossRef]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2019, 9, 21. [Google Scholar] [CrossRef]
- Hampson, A.J.; Grimaldi, M.; Axelrod, J.; Wink, D. Cannabidiol and (−)Δ9-Tetrahydrocannabinol Are Neuroprotective Antioxidants. Proc. Natl. Acad. Sci. USA 1998, 95, 8268–8273. [Google Scholar] [CrossRef]
- Brierley, D.I.; Samuels, J.; Duncan, M.; Whalley, B.J.; Williams, C.M. Cannabigerol Is a Novel, Well-Tolerated Appetite Stimulant in Pre-Satiated Rats. Psychopharmacology 2016, 233, 3603–3613. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy-Tomczyk, M.; Typek, R. CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as Antioxidant Agents and Their Intervention Abilities in Antioxidant Action. Fitoterapia 2021, 152, 104915. [Google Scholar] [CrossRef]
- Wilkinson, J.D.; Williamson, E.M. Cannabinoids Inhibit Human Keratinocyte Proliferation through a Non-CB1/CB2 Mechanism and Have a Potential Therapeutic Value in the Treatment of Psoriasis. J. Dermatol. Sci. 2007, 45, 87–92. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Liu, Y.; Xu, Y.; Yang, B.; Li, H.; Chen, L. An Overview on Synthetic and Biological Activities of Cannabidiol (CBD) and Its Derivatives. Bioorg. Chem. 2023, 140, 106810. [Google Scholar] [CrossRef]
- Mahmoudinoodezh, H.; Telukutla, S.R.; Bhangu, S.K.; Bachari, A.; Cavalieri, F.; Mantri, N. The Transdermal Delivery of Therapeutic Cannabinoids. Pharmaceutics 2022, 14, 438. [Google Scholar] [CrossRef]
- Ferreira, B.P.; Costa, G.; Mascarenhas-Melo, F.; Pires, P.C.; Heidarizadeh, F.; Giram, P.S.; Mazzola, P.G.; Cabral, C.; Veiga, F.; Paiva-Santos, A.C. Skin Applications of Cannabidiol: Sources, Effects, Delivery Systems, Marketed Formulations and Safety. Phytochem. Rev. 2023, 22, 781–828. [Google Scholar] [CrossRef]
- Filipiuc, S.-I.; Neagu, A.-N.; Uritu, C.M.; Tamba, B.-I.; Filipiuc, L.-E.; Tudorancea, I.M.; Boca, A.N.; Hâncu, M.F.; Porumb, V.; Bild, W. The Skin and Natural Cannabinoids–Topical and Transdermal Applications. Pharmaceuticals 2023, 16, 1049. [Google Scholar] [CrossRef]
- Lefebvre, È.; Tawil, N.; Yahia, L. Transdermal Delivery of Cannabidiol for the Management of Acute Inflammatory Pain: A Comprehensive Review of the Literature. Int. J. Mol. Sci. 2024, 25, 5858. [Google Scholar] [CrossRef]
- Calienni, M.N.; Scavone, M.A.; Sanguinetti, A.P.; Corleto, M.; Di Meglio, M.R.; Raies, P.; Cristos, D.S.; Maffia, P.C.; Montanari, J. Lipid Nanoparticle Formulations for the Skin Delivery of Cannabidiol. Pharmaceutics 2024, 16, 1490. [Google Scholar] [CrossRef]
- Musielak, E.; Krajka-Kuźniak, V. Liposomes and Ethosomes: Comparative Potential in Enhancing Skin Permeability for Therapeutic and Cosmetic Applications. Cosmetics 2024, 11, 191. [Google Scholar] [CrossRef]
- Holt, A.K.; Poklis, J.L.; Peace, M.R. Δ8-THC, THC-O-Acetates and CBD-di-O-Acetate: Emerging Synthetic Cannabinoids Found in Commercially Sold Plant Material and Gummy Edibles. J. Anal. Toxicol. 2022, 46, 940–948. [Google Scholar] [CrossRef]
- Munger, K.; Jensen, R.; Strongin, R.M. Vaping Cannabinoid Acetates Leads to Ketene Formation. Chem. Res. Toxicol. 2022, 35, 1892–1901. [Google Scholar] [CrossRef]
- Dussy, F.E.; Hamberg, C.; Luginbühl, M.; Schwerzmann, T.; Briellmann, T.A. Isolation of Delta9-THCA-A from Hemp and Analytical Aspects Concerning the Determination of Delta9-THC in Cannabis Products. Forensic Sci. Int. 2005, 149, 3–10. [Google Scholar] [CrossRef]
- Franzin, M.; Di Lenardo, R.; Ruoso, R.; Addobbati, R. Incomplete Decarboxylation of Acidic Cannabinoids in GC–MS Leads to Underestimation of the Total Cannabinoid Content in Cannabis Oils Without Derivatization. Pharmaceutics 2025, 17, 334. [Google Scholar] [CrossRef]
- Seo, C.; Jeong, M.; Lee, S.; Kim, E.J.; Rho, S.; Cho, M.; Lee, Y.S.; Hong, J. Thermal Decarboxylation of Acidic Cannabinoids in Cannabis Species: Identification of Transformed Cannabinoids by UHPLC-Q/TOF–MS. J. Anal. Sci. Technol. 2022, 13, 42. [Google Scholar] [CrossRef]
- Choi, Y.H.; Hazekamp, A.; Peltenburg-Looman, A.M.G.; Frédérich, M.; Erkelens, C.; Lefeber, A.W.M.; Verpoorte, R. NMR Assignments of the Major Cannabinoids and Cannabiflavonoids Isolated from Flowers of Cannabis sativa. Phytochem. Anal. 2004, 15, 345–354. [Google Scholar] [CrossRef]
- Hazekamp, A.; Choi, Y.H.; Verpoorte, R. Quantitative Analysis of Cannabinoids from Cannabis sativa Using ^1H NMR. Chem. Pharm. Bull. 2004, 52, 718–721. [Google Scholar] [CrossRef]
- Barthlott, I.; Scharinger, A.; Golombek, P.; Kuballa, T.; Lachenmeier, D.W. A Quantitative 1H NMR Method for Screening Cannabinoids in CBD Oils. Toxics 2021, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, D.; Tessaro, D.; Sangalli, F.; Nobbio, C.; Nebuloni, M.; Vezzini, M.; Brenna, E.; Parmeggiani, F. Valorisation of the Industrial Hemp Residue from Essential Oil Production by Recovery of Cannabidiol and Chemo Enzymatic Conversion to Cannabielsoin. Green Chem. 2024, 26, 5211–5220. [Google Scholar] [CrossRef]
- Pellati, F.; Brighenti, V.; Sperlea, J.; Marchetti, L.; Bertelli, D.; Benvenuti, S. (–)-Cannabidiolic Acid, a Still Overlooked Bioactive Compound—An Introductory Review and Preliminary Research. Molecules 2020, 25, 2638. [Google Scholar] [CrossRef]
- Colella, M.F.; Salvino, R.A.; Gaglianò, M.; Litrenta, F.; Oliviero Rossi, C.; Le Pera, A.; De Luca, G. NMR Spectroscopy Applied to the Metabolic Analysis of Natural Extracts of Cannabis sativa. Molecules 2022, 27, 3509. [Google Scholar] [CrossRef]
- Buczek, A.; Rzepiela, K.; Kupka, T.; Broda, M.A. Impact of OH•••π Hydrogen Bond on IR and NMR Parameters of Cannabidiol: Theoretical and Experimental Study. Molecules 2025, 30, 2591. [Google Scholar] [CrossRef]
- Codd, L.S.; Durrant, S.J. (Eds.) Magnetic Resonance Microscopy: Spatially Resolved NMR Techniques and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Berliner, L.J. Spin Labeling Theory and Applications, 1st ed.; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Cevc, G. Lipid Vesicles and Other Colloids as Drug Carriers on the Skin. Adv. Drug Deliv. Rev. 2004, 56, 675–711. [Google Scholar] [CrossRef]
- Nasab, M.E.; Takzaree, N.; Mirzaee Saffari, P.; Partoazar, A. In vitro antioxidant activity and in vivo wound-healing effect of lecithin liposomes: A comparative study. J. Comp. Eff. Res. 2019, 8, 633–643. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of Curcumin-Loaded Liposomes and Evaluation of Their Skin Permeation and Pharmacodynamics. Molecules 2012, 17, 5972–5987. [Google Scholar] [CrossRef]
- Ricci, A.; Stefanuto, L.; Gasperi, T.; Bruni, F.; Tofani, D. Lipid Nanovesicles for Antioxidant Delivery in Skin: Liposomes, Ufasomes, Ethosomes, and Niosomes. Antioxidants 2024, 13, 1516. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, X.; Wu, Y.; Xu, W.; Xia, H.; Jia, R.; Liu, Y.; Shen, S.; Xu, Y.; Cheng, Z. Antioxidant Activity of Quercetin-Containing Liposomes-in-Gel and Its Effect on Prevention and Treatment of Cutaneous Eczema. Pharmaceutics 2023, 16, 1184. [Google Scholar] [CrossRef]
- Prevete, G.; Simonis, B.; Mazzonna, M.; Mariani, F.; Donati, E.; Sennato, S.; Ceccacci, F.; Bombelli, C. Resveratrol and Resveratrol-Loaded Galactosylated Liposomes: Anti-Adherence and Cell Wall Damage Effects on Staphylococcus aureus and MRSA. Biomolecules 2023, 13, 1794. [Google Scholar] [CrossRef]
- Kasprzak-Drozd, K.; Niziński, P.; Hawrył, A.; Gancarz, M.; Hawrył, D.; Oliwa, W.; Pałka, M.; Markowska, J.; Oniszczuk, A. Potential of Curcumin in the Management of Skin Diseases. Int. J. Mol. Sci. 2024, 25, 3617. [Google Scholar] [CrossRef]
- Franzè, S.; Angelo, L.; Casiraghi, A.; Minghetti, P.; Cilurzo, F. Design of Liposomal Lidocaine/Cannabidiol Fixed Combinations for Local Neuropathic Pain Treatment. Pharmaceutics 2022, 14, 1915. [Google Scholar] [CrossRef]
- Lapteva, M.; Faro Barros, J.; Kalia, Y.N. Cutaneous Delivery and Biodistribution of Cannabidiol in Human Skin after Topical Application of Colloidal Formulations. Pharmaceutics 2024, 16, 202. [Google Scholar] [CrossRef] [PubMed]
- Lodzki, M.; Godin, B.; Rakou, L.; Mechoulam, R.; Gallily, R.; Touitou, E. Cannabidiol—Transdermal Delivery and Anti-Inflammatory Effect in a Murine Model. J. Control. Release 2003, 93, 377–387. [Google Scholar] [CrossRef]
- Zapata, K.; Rosales, S.; Rios, A.; Rojano, B.; Toro-Mendoza, J.; Riazi, M.; Franco, C.A.; Cortés, F.B. Nanoliposomes for Controlled Release of Cannabinodiol at Relevant Gastrointestinal Conditions. ACS Omega 2023, 8, 43698–43707. [Google Scholar] [CrossRef]
- Nakarada, Đ.; Marković, S.; Popović, M.; Dimitrijević, M.; Rakić, A.; Mojović, M. Redox Properties of Grape Wine Skin Extracts from the Šumadija Region: An Electron Paramagnetic Resonance Study. Hosp. Pharmacol. Int. Multidiscip. J. 2021, 8, 1004–1013. [Google Scholar] [CrossRef]
- Sanna, D.; Delogu, G.; Mulas, M.; Schirra, M.; Fadda, A. Determination of Free Radical Scavenging Activity of Plant Extracts Through DPPH Assay: An EPR and UV-Vis Study. Food Anal. Methods 2012, 5, 759–766. [Google Scholar] [CrossRef]
- Savić, J.; Nakarada, Đ.; Stupar, S.; Tubić, L.; Milutinović, M.; Mojović, M.; Devrnja, N. Glutathione Involvement in Potato Response to French Marigold Volatile Organic Compounds. Antioxidants 2024, 13, 1565. [Google Scholar] [CrossRef]
- Dikalov, S.; Kirilyuk, I.; Grigor’ev, I. Spin Trapping of O-, C-, and S-Centered Radicals and Peroxynitrite by 2H-Imidazole-1-Oxides. Biochem. Biophys. Res. Commun. 1996, 218, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Glavinić, U.; Nakarada, Đ.; Stevanović, J.; Gašić, U.; Ristanić, M.; Mojović, M.; Stanimirović, Z. Chemical Composition and Antioxidant Activity of Prokupac Grape Pomace Extract: Implications for Redox Modulation in Honey Bee Cells. Antioxidants 2025, 14, 751. [Google Scholar] [CrossRef]
- Nakarada, Đ.; Pejin, B.; Tommonaro, G.; Mojović, M. Liposomal Integration Method for Assessing Antioxidative Activity of Water Insoluble Compounds Towards Biologically Relevant Free Radicals: Example of Avarol. J. Liposome Res. 2020, 30, 218–226. [Google Scholar] [CrossRef]
- Stojković, T.; Mitrović, A.; Kastratović, D.; Nakarada, Đ.; Mojović, M. EPRI Approach on Studying Deep Skin Penetration of Tretinoin-Containing Liposomes. Hosp. Pharmacol. Int. Multidiscip. J. 2023, 10, 1343–1348. [Google Scholar] [CrossRef]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering with Applications to Chemistry, Biology and Physics; John Wiley & Sons: New York, NY, USA, 1976. [Google Scholar]
- Yuann, J.M.P.; Morse, R. Determination by Photoreduction of Flip-Flop Kinetics of Spin-Labeled Stearic Acids across Phospholipid Bilayers. Biochim. Biophys. Acta Biomembr. 1999, 1416, 135–144. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Standards and Technology (NIST). NIST Chemistry WebBook, SRD 69; Gaithersburg, MD, USA. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C521357&Mask=200#Mass-Spec (accessed on 17 July 2025).
- Cayman Chemical. GC–MS Spectral Data Sheet for Cannabidiol Diacetate (CAS 58452-86-9). Available online: https://cdn.caymanchem.com/cdn/gcms/36424-0646266-GCMS.pdf (accessed on 17 July 2025).
- PubChem. Cannabidiolic Acid (CBDA); CID: 6440999. Spectral Information (Wiley Registry of Mass Spectral Data). Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cannabidiolic-acid#section=Spectral-Information (accessed on 17 July 2025).
- Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG). Monograph: Cannabigerol (CBG). Available online: https://www.swgdrug.org/Monographs/Cannabigerol.pdf (accessed on 17 July 2025).
- National Institute of Standards and Technology (NIST). NIST Chemistry WebBook, SRD 69; Gaithersburg, MD, USA. Cannabidiol (CAS 13956-29-1). Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C13956291&Mask=200#Mass-Spec (accessed on 17 July 2025).
Compound | RT (min) | Area % TIC | Other Peaks > 0.5% TIC? | Purity Reported |
---|---|---|---|---|
CBN | 16.364 | 100 | No | >99% |
CBD-DOAc | 15.832 | 100 | No | >99% |
CBDA 1 | 15.458 | 100 | No | >99% |
CBG | 16.236 | 100 | No | >99% |
CBD | 15.458 | 100 | No | >99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinković, A.; Nakarada, Đ.; Marinković, M.; Waisi, H.; Živanić, V.; Vazquez, A.; Mojović, M. From Analytical Profiling to Liposomal Delivery: Cannabinol as a Model for Antioxidant Encapsulation and Diffusion Enhancement. Molecules 2025, 30, 3433. https://doi.org/10.3390/molecules30163433
Marinković A, Nakarada Đ, Marinković M, Waisi H, Živanić V, Vazquez A, Mojović M. From Analytical Profiling to Liposomal Delivery: Cannabinol as a Model for Antioxidant Encapsulation and Diffusion Enhancement. Molecules. 2025; 30(16):3433. https://doi.org/10.3390/molecules30163433
Chicago/Turabian StyleMarinković, Aleksandar, Đura Nakarada, Miloš Marinković, Hadi Waisi, Vladislav Živanić, Arcadio Vazquez, and Miloš Mojović. 2025. "From Analytical Profiling to Liposomal Delivery: Cannabinol as a Model for Antioxidant Encapsulation and Diffusion Enhancement" Molecules 30, no. 16: 3433. https://doi.org/10.3390/molecules30163433
APA StyleMarinković, A., Nakarada, Đ., Marinković, M., Waisi, H., Živanić, V., Vazquez, A., & Mojović, M. (2025). From Analytical Profiling to Liposomal Delivery: Cannabinol as a Model for Antioxidant Encapsulation and Diffusion Enhancement. Molecules, 30(16), 3433. https://doi.org/10.3390/molecules30163433