CO2 Solubility in Aqueous Solutions of Amine–Ionic Liquid Blends: Experimental Data for Mixtures with AMP and MAPA and Modeling with the Modified Kent–Eisenberg Model
Abstract
1. Introduction
CATIONS | ANIONS | ||
---|---|---|---|
Br−, Cl−, I− | |||
Imidazolium | Pyridinium | Bromide, chloride, iodide | |
Ammonium | Phosphonium | ||
Sulfonium | Cholinium | [Pf6]− |
IONIC LIQUIDS | |
---|---|
Choline glycine, [Ch+][Gly−] | ] |
AMINES | |
2-amino-2-methyl-1-propanol, AMP | 3-(methylamino)propylamine, MAPA |
2. Materials and Methods
2.1. Materials
2.2. Experimental Apparatus and Procedure
IL + Amine | Amine/IL (Molar Ratio) | IL ( wt.%) | Amine ( wt.%) |
---|---|---|---|
+ AMP | 5.32 | 9.93 | 19.94 |
+ AMP | 1.33 | 19.74 | 9.92 |
+ MAPA | 5.36 | 10.01 | 20.00 |
+ AMP | 4.00 | 10.03 | 20.04 |
+ AMP | 1.00 | 20.05 | 10.08 |
3. The Modified Kent–Eisenberg Model
4. Results and Discussion
4.1. Experimental Solubility Results
Temperature a, T/K | Total Pressure b, P/kPa | kPa | αd/mol CO2 Per mol IL + Amine |
---|---|---|---|
298.15 | 57 | 54 | 0.66 ± 0.03 |
384 | 381 | 0.70 ± 0.03 | |
819 | 816 | 0.73 ± 0.04 | |
1527 | 1524 | 0.78 ± 0.05 | |
313.15 | 85 | 79 | 0.64 ± 0.03 |
430 | 424 | 0.68 ± 0.03 | |
896 | 890 | 0.70 ± 0.04 | |
1654 | 1648 | 0.75 ± 0.05 | |
323.15 | 112 | 101 | 0.62 ± 0.03 |
455 | 444 | 0.68 ± 0.03 | |
934 | 923 | 0.69 ± 0.04 | |
1726 | 1715 | 0.75 ± 0.05 | |
333.15 | 147 | 129 | 0.60 ± 0.03 |
494 | 476 | 0.66 ± 0.03 | |
979 | 961 | 0.69 ± 0.04 | |
1802 | 1784 | 0.74 ± 0.05 |
Temperature a, T/K | Total Pressure b, P/kPa | kPa | αd/mol CO2 Per mol IL + Amine |
---|---|---|---|
298.15 | 704 | 701 | 0.61 ± 0.06 |
954 | 951 | 0.69 ± 0.06 | |
1518 | 1515 | 0.73 ± 0.07 | |
313.15 | 757 | 750 | 0.59 ± 0.06 |
1024 | 1017 | 0.67 ± 0.06 | |
1627 | 1620 | 0.72 ± 0.07 | |
323.15 | 786 | 775 | 0.59 ± 0.06 |
1073 | 1061 | 0.66 ± 0.06 | |
1703 | 1692 | 0.70 ± 0.07 | |
333.15 | 825 | 806 | 0.58 ± 0.06 |
1123 | 1105 | 0.65 ± 0.06 | |
1779 | 1761 | 0.69 ± 0.07 |
Temperature a, T/K | Total Pressure b, P/kPa | kPa | αd/mol CO2 Per mol IL + Amine |
---|---|---|---|
313.15 | 287 | 281 | 1.10 ± 0.03 |
610 | 604 | 1.16 ± 0.04 | |
849 | 843 | 1.31 ± 0.04 | |
323.15 | 333 | 322 | 1.07 ± 0.03 |
675 | 665 | 1.11 ± 0.04 | |
333.15 | 364 | 347 | 1.05 ± 0.03 |
721 | 704 | 1.10 ± 0.04 |
Temperature, T/K a | Total Pressure, P/kPa b | kPa | αd/mol CO2 Per mol IL + amine |
---|---|---|---|
298.15 | 175 | 172 | 0.80 ± 0.08 |
364 | 362 | 0.90 ± 0.08 | |
1152 | 1150 | 1.01 ± 0.11 | |
1677 | 1675 | 1.05 ± 0.14 | |
2016 | 2014 | 1.03 ± 0.18 | |
313.15 | 193 | 187 | 0.79 ± 0.08 |
398 | 392 | 0.87 ± 0.08 | |
1232 | 1226 | 0.99 ± 0.11 | |
1784 | 1778 | 1.05 ± 0.14 | |
2166 | 2160 | 0.98 ± 0.18 | |
323.15 | 214 | 203 | 0.76 ± 0.08 |
429 | 418 | 0.84 ± 0.08 | |
1292 | 1281 | 0.96 ± 0.11 | |
1860 | 1850 | 1.04 ± 0.14 | |
2249 | 2239 | 1.00 ± 0.18 | |
333.15 | 239 | 222 | 0.73 ± 0.08 |
454 | 437 | 0.83 ± 0.08 | |
1345 | 1328 | 0.95 ± 0.11 | |
1943 | 1926 | 1.01 ± 0.14 | |
2349 | 2331 | 0.97 ± 0.18 |
Temperature, T/K a | Total Pressure, P/kPa b | kPa | αd/mol CO2 Per mol IL + Amine |
---|---|---|---|
298.15 | 113 | 110 | 0.68 ± 0.08 |
255 | 252 | 0.73 ± 0.08 | |
437 | 434 | 0.73 ± 0.08 | |
831 | 828 | 0.75 ± 0.16 | |
1110 | 1107 | 0.74 ± 0.13 | |
313.15 | 135 | 129 | 0.65 ± 0.08 |
287 | 281 | 0.69 ± 0.09 | |
481 | 475 | 0.69 ± 0.09 | |
899 | 893 | 0.66 ± 0.17 | |
1186 | 1180 | 0.71 ± 0.13 | |
323.15 | 155 | 144 | 0.62 ± 0.08 |
313 | 302 | 0.66 ± 0.09 | |
509 | 498 | 0.67 ± 0.09 | |
937 | 926 | 0.65 ± 0.17 | |
1245 | 1234 | 0.67 ± 0.13 | |
333.15 | 179 | 161 | 0.59 ± 0.08 |
341 | 323 | 0.63 ± 0.09 | |
981 | 963 | 0.62 ± 0.17 | |
1304 | 1286 | 0.64 ± 0.13 |
4.1.1. Replacing Amine with
4.1.2. Replacing Amine with
4.1.3. Replacing Water with
4.2. Modeling Results
Parameter | Units | A | B | C | D | Regression Range (K) | Reference |
---|---|---|---|---|---|---|---|
−5936.63 | 0 | 0 | −3.1347 | 313–383 | [38] | ||
−6164.85 | 0 | 0 | −4.1080 | 313–383 | [38] | ||
−3534.70 | 0 | 0 | 7.4398 | 313–383 | [38] | ||
−5175.64 | 0 | 0 | −3.8531 | 298–333 | This work | ||
−8815.32 | 0 | 0 | 23.6100 | 298–333 | This work | ||
−12,092.10 | −36.7816 | 0 | 235.482 | 273–498 | [56] | ||
−12,431.70 | −35.4819 | 0 | 220.067 | 273–498 | [56] | ||
−13,445.90 | −22.4773 | 0 | 140.932 | 273–498 | [56] | ||
([Bmim+][HSO4−] + AMP, 9.93 + 19.94 wt.%) | −628.00 | 0 | 0 | 7.600 | 298–333 | This work | |
([Bmim+][HSO4−] + AMP, 19.74 + 9.92 wt.%) | −1037.00 | 0 | 0 | 7.000 | 298–333 | This work | |
([Bmim+][HSO4−] + MAPA) | −1785.86 | 0 | 0 | 10.33 | 313–333 | This work | |
[Ch+][Gly−] + AMP | −6789.04 | −11.4519 | −0.010454 | 94.4914 | 273–498 | [56] |
System | %AAD a |
---|---|
+ AMP, 9.93 + 19.94 wt.% | 10.0 |
+ AMP, 19.74 + 9.92 wt.% | 2.7 |
+ MAPA, 10.01 + 20.00 wt.% | 2.0 |
+ AMP, 10.03 + 20.04 wt.% | 5.5 |
+ AMP, 20.04 + 10.08 wt.% | 11.6 |
System | Free Amine (% of the Initial) | ||
---|---|---|---|
AMP | MAPA | ||
+ AMP, 9.93 + 19.94 wt.% | 55.3 | - | - |
+ AMP, 19.74 + 9.92 wt.% | 19.1 | - | - |
+ MAPA, 10.01 + 20.00 wt.% | - | 2.2 | - |
+ AMP, 10.03 + 20.04% wt | 23.6 | - | 0.7 |
+ AMP, 20.04 + 10.08 wt.% | 5.7 | - | 3.3 |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMP | 2-Amino-2-methyl-1-propanol |
Tetrafluoroborate anion | |
BASIL | Biphasic acid scavenging utilizing ionic liquids |
1-Butyl-3-methylimidazolium hydrogen sulfate | |
1-Butyl-3-methylimidazolium acetate | |
CO2 density | |
Solvent density | |
CCS | Carbon capture and storage |
Choline glycine | |
1-Ethyl-3-methylimidazolium hydrogen sulfate | |
Henry’s constant | |
1-Hexyl-3-methylimidazolium glycinate | |
ILs | Ionic liquids |
MAPA | 3-(Methylamino)propylamine |
Mass of CO2 absorbed in the liquid phase | |
Mass of the solvent | |
MDEA | N-methyl-diethanolamine |
n | Total moles of CO2 loaded in the equilibrium cell |
Moles of component A | |
Moles of CO2 absorbed in the liquid phase | |
NG | Natural gas |
Vapor phase CO2 partial pressure | |
Hexafluorophosphate anion | |
Carbamate-forming amine | |
Bis(trifluoromethylsulfonyl)imide anion | |
Trifluoroacetate anion | |
Trifluoromethanesulfonate anion | |
Volume of the cell | |
Volume of the solvent | |
VOCs | Volatile organic compounds |
References
- Kohl, A.L.; Nielsen, R. Gas Purification; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Rufford, T.E.; Smart, S.; Watson, G.C.; Graham, B.; Boxall, J.; Da Costa, J.D.; May, E. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Pet. Sci. Technol. 2012, 94, 123–154. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 1 January 2022).
- Younger, A. Natural gas processing principles and technology-part I. Gas Process. Assoc. Tulsa Okla. 2004. [Google Scholar]
- Astaria, G.; Savage, D.W.; Bisio, A. Gas Treating with Chemical Solvents; John Wiley and Sons: New York, NY, 1983. [Google Scholar]
- Vallero, D.A. Fundamentals of Air Pollution; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Nalley, S.; LaRose, A. Annual Energy Outlook 2022 (AEO2022); U.S. Energy Information Agency: Washington, DC, USA, 2022; p. 23.
- Haszeldine, R.S. Carbon capture and storage: How green can black be? Science 2009, 325, 1647–1652. [Google Scholar] [CrossRef]
- Davidson, R.M. Post-Combustion Carbon Capture from Coal Fired Plants-Solvent Scrubbing. 2007. Available online: https://ieaghg.org/publications/post-combustion-carbon-capture-from-coal-fired-plants-solvent-scrubbing/ (accessed on 1 January 2022).
- Veawab, A.; Tontiwachwuthikul, P.; Chakma, A. Influence of Process Parameters on Corrosion Behavior in a Sterically Hindered Amine−CO2 System. Ind. Eng. Chem. Res. 1999, 38, 310–315. [Google Scholar] [CrossRef]
- Seddon, K.R.; Stark, A.; Torres, M.-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 2000, 72, 2275–2287. [Google Scholar] [CrossRef]
- Kirk, R.E.; Othmer, D.F. Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 26. [Google Scholar]
- Brennecke, J.F.; Maginn, E.J. Ionic liquids: Innovative fluids for chemical processing. Am. Inst. Chem. Eng. AIChE J. 2001, 47, 2384. [Google Scholar] [CrossRef]
- Endres, F.; Abbott, A.P.; MacFarlane, D.R. Electrodeposition from Ionic Liquids; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, UK, 2008. [Google Scholar]
- Earle, M.J.; Esperança, J.M.; Gilea, M.A.; Canongia Lopes, J.N.; Rebelo, L.P.; Magee, J.W.; Seddon, K.R.; Widegren, J.A. The distillation and volatility of ionic liquids. Nature 2006, 439, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Liew, C.-W.; Arifin, K.; Kawamura, J.; Iwai, Y.; Ramesh, S.; Arof, A. Electrical and structural studies of ionic liquid-based poly (vinyl alcohol) proton conductors. J. Non-Cryst. Solids 2015, 425, 163–172. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, H.-J.; Stafford, C.M. Thermoplastic elastomers based on ionic liquid and poly (vinyl alcohol). Macromolecules 2011, 44, 2170–2178. [Google Scholar] [CrossRef]
- Kosmulski, M.; Gustafsson, J.; Rosenholm, J.B. Thermal stability of low temperature ionic liquids revisited. Thermochim. Acta 2004, 412, 47–53. [Google Scholar] [CrossRef]
- Ramdin, M.; de Loos, T.W.; Vlugt, T.J. State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 2012, 51, 8149–8177. [Google Scholar] [CrossRef]
- Rogers, R.D.; Seddon, K.R. Ionic liquids--solvents of the future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Gu, Z.; Brennecke, J.F. High-pressure phase behavior of ionic liquid/CO2 systems. J. Phys. Chem. B 2001, 105, 2437–2444. [Google Scholar] [CrossRef]
- Crosthwaite, J.M.; Muldoon, M.J.; Dixon, J.K.; Anderson, J.L.; Brennecke, J.F. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 2005, 37, 559–568. [Google Scholar] [CrossRef]
- Zhao, D.; Liao, Y.; Zhang, Z. Toxicity of ionic liquids. Clean–Soil Air Water 2007, 35, 42–48. [Google Scholar] [CrossRef]
- Wells, A.S.; Coombe, V.T. On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org. Process Res. Dev. 2006, 10, 794–798. [Google Scholar] [CrossRef]
- Ahmady, A.; Hashim, M.A.; Aroua, M.K. Kinetics of Carbon Dioxide absorption into aqueous MDEA+[bmim][BF4] solutions from 303 to 333 K. Chem. Eng. J. 2012, 200, 317–328. [Google Scholar] [CrossRef]
- Zhou, Z.; Jing, G.; Zhou, L. Characterization and absorption of carbon dioxide into aqueous solution of amino acid ionic liquid [N1111][Gly] and 2-amino-2-methyl-1-propanol. Chem. Eng. J. 2012, 204, 235–243. [Google Scholar] [CrossRef]
- Feng, Z.; Yuan, G.; Xian-Kun, W.; Jing-Wen, M.; You-Ting, W.; Zhi-Bing, Z. Regeneration performance of amino acid ionic liquid (AAIL) activated MDEA solutions for CO2 capture. Chem. Eng. J. 2013, 223, 371–378. [Google Scholar] [CrossRef]
- Yuan, S.; Yang, Z.; Ji, X.; Chen, Y.; Sun, Y.; Lu, X. CO2 absorption in mixed aqueous solution of MDEA and cholinium glycinate. Energy Fuels 2017, 31, 7325–7333. [Google Scholar] [CrossRef]
- Hailegiorgis, S.M.; Khan, S.N.; Abdolah, N.H.H.; Ayoub, M.; Tesfamichael, A. Carbon dioxide capture via aqueous N-methyldiethanolamine (MDEA)-1-butyl-3-methylimidazolium acetate ([bmim][Ac]) hybrid solvent. AIP Conf. Proc. 2017, 1891, 020046. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, B.; Lv, B.; Guo, H.; Jing, G. Performance and reaction kinetics of CO2 absorption into AMP solution with [Hmim][Gly] activator. Int. J. Greenh. Gas. Control 2016, 44, 115–123. [Google Scholar] [CrossRef]
- Anderson, J.L.; Dixon, J.K.; Brennecke, J.F. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis (trifluoromethylsulfonyl) imide: Comparison to Other Ionic Liquids. Acc. Chem. Res. 2007, 40, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Mejía, I.; Stanley, K.; Canales, R.; Brennecke, J.F. On the high-pressure solubilities of carbon dioxide in several ionic liquids. J. Chem. Eng. Data 2013, 58, 2642–2653. [Google Scholar] [CrossRef]
- Raveendran, P.; Wallen, S.L. Cooperative C− H∙∙∙O Hydrogen Bonding in CO2− Lewis Base Complexes: Implications for Solvation in Supercritical CO2. J. Am. Chem. Soc. 2002, 124, 12590–12599. [Google Scholar] [CrossRef]
- Saravanamurugan, S.; Kunov-Kruse, A.J.; Fehrmann, R.; Riisager, A. Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO2. ChemSusChem 2014, 7, 897–902. [Google Scholar] [CrossRef]
- Blusztajn, J.K. Choline, a vital amine. Science 1998, 281, 794–795. [Google Scholar] [CrossRef]
- Bernot, R.J.; Brueseke, M.A.; Evans-White, M.A.; Lamberti, G.A. Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ. Toxicol. Chem. 2005, 24, 87–92. [Google Scholar] [CrossRef]
- Dash, S.K.; Samanta, A.N.; Bandyopadhyay, S.S. Experimental and theoretical investigation of solubility of carbon dioxide in concentrated aqueous solution of 2-amino-2-methyl-1-propanol and piperazine. J. Chem. Thermodyn. 2012, 51, 120–125. [Google Scholar] [CrossRef]
- Kontos, G.; Soldatou, M.A.; Tzimpilis, E.; Tsivintzelis, I. Solubility of CO2 in 2-Amino-2-methyl-1-propanol (AMP) and 3-(Methylamino) propylamine (MAPA): Experimental Investigation and Modeling with the Cubic-Plus-Association and the Modified Kent-Eisenberg Models. Separations 2022, 9, 338. [Google Scholar] [CrossRef]
- Voice, A.K.; Vevelstad, S.J.; Chen, X.; Nguyen, T.; Rochelle, G.T. Aqueous 3-(methylamino) propylamine for CO2 capture. Int. J. Greenh. Gas. Control 2013, 15, 70–77. [Google Scholar] [CrossRef]
- Kontos, G.; Tsioptsias, C.; Tsivintzelis, I. Cellulose Acetate–Ionic Liquid Blends as Potential Polymers for Efficient CO2 Separation Membranes. Polymers 2024, 16, 554. [Google Scholar] [CrossRef]
- Leontiadis, K.; Tzimpilis, E.; Aslanidou, D.; Tsivintzelis, I. Solubility of CO2 in 3-amino-1-propanol and in N-methyldiethanolamine aqueous solutions: Experimental investigation and correlation using the CPA equation of state. Fluid. Phase Equilib. 2019, 500, 112254. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. Isothermal Properties for Carbon Dioxide. Available online: https://webbook.nist.gov/chemistry/ (accessed on 1 August 2023).
- Jou, F.Y.; Mather, A.E.; Otto, F.D. The solubility of CO2 in a 30 mass percent monoethanolamine solution. Can. J. Chem. Eng. 1995, 73, 140–147. [Google Scholar] [CrossRef]
- Kontos, G.; Leontiadis, K.; Tsivintzelis, I. CO2 solubility in aqueous solutions of blended amines: Experimental data for mixtures with MDEA, AMP and MPA and modeling with the modified Kent-Eisenberg model. Fluid. Phase Equilib. 2023, 570, 113800. [Google Scholar] [CrossRef]
- Haghtalab, A.; Ghahremani, E. The solubility measurement and modeling of CO2 in aqueous solution of N-methyldiethanolaminen+ 2-amino-2-methyl-1-propanol+ piperazine at high pressures. Fluid. Phase Equilib. 2015, 400, 62–75. [Google Scholar] [CrossRef]
- Caplow, M. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 1968, 90, 6795–6803. [Google Scholar] [CrossRef]
- Danckwerts, P. The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 1979, 34, 443–446. [Google Scholar] [CrossRef]
- Haji-Sulaiman, M.; Aroua, M.K.; Benamor, A. Analysis of equilibrium data of CO2 in aqueous solutions of diethanolamine (DEA), methyldiethanolamine (MDEA) and their mixtures using the modified Kent Eisenberg model. Chem. Eng. Res. Des. 1998, 76, 961–968. [Google Scholar] [CrossRef]
- Suleman, H.; Maulud, A.S.; Fosbøl, P.L.; Nasir, Q.; Nasir, R.; Shahid, M.Z.; Nawaz, M.; Abunowara, M. A review of semi-empirical equilibrium models for CO2-alkanolamine-H2O solutions and their mixtures at high pressure. J. Environ. Chem. Eng. 2021, 9, 104713. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, K.B.; Hyun, J.C.; Kim, S.H. Correlation and prediction of the solubility of carbon dioxide in aqueous alkanolamine and mixed alkanolamine solutions. Ind. Eng. Chem. Res. 2002, 41, 1658–1665. [Google Scholar] [CrossRef]
- Tong, D.; Trusler, J.M.; Maitland, G.C.; Gibbins, J.; Fennell, P.S. Solubility of carbon dioxide in aqueous solution of monoethanolamine or 2-amino-2-methyl-1-propanol: Experimental measurements and modelling. Int. J. Greenh. Gas. Control 2012, 6, 37–47. [Google Scholar] [CrossRef]
- Arshad, M.W.; Svendsen, H.F.; Fosbøl, P.L.; von Solms, N.; Thomsen, K. Equilibrium total pressure and CO2 solubility in binary and ternary aqueous solutions of 2-(diethylamino) ethanol (DEEA) and 3-(methylamino) propylamine (MAPA). J. Chem. Eng. Data 2014, 59, 764–774. [Google Scholar] [CrossRef]
- Datta, S.; Grzybowski, A. The second acid dissociations of glycine, sarcosine and N-dimethylglycine. Part 1.—Thermodynamic dissociation constants. Trans. Faraday Soc. 1958, 54, 1179–1187. [Google Scholar] [CrossRef]
- Evans, W.; Monk, C. Electrolytes in solutions of amino acids. Part 6.—Dissociation constants of some triglycinates by emf and pH measurements. Trans. Faraday Soc. 1955, 51, 1244–1250. [Google Scholar] [CrossRef]
- Kontos, G.; Soldatou, M.A.; Tsivintzelis, I. CO2 solubility in amine based deep eutectic solvents: Review of literature data, experimental measurements for choline chloride plus 3-amino-1-propanol or 3-(methylamino) propylamine aqueous solutions and modeling with the modified Kent-Eisenberg model. J. Chem. Thermodyn. 2024, 197, 107327. [Google Scholar] [CrossRef]
- Edwards, T.; Maurer, G.; Newman, J.; Prausnitz, J. Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AlChE J. 1978, 24, 966–976. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontos, G.; Tsivintzelis, I. CO2 Solubility in Aqueous Solutions of Amine–Ionic Liquid Blends: Experimental Data for Mixtures with AMP and MAPA and Modeling with the Modified Kent–Eisenberg Model. Molecules 2025, 30, 3832. https://doi.org/10.3390/molecules30183832
Kontos G, Tsivintzelis I. CO2 Solubility in Aqueous Solutions of Amine–Ionic Liquid Blends: Experimental Data for Mixtures with AMP and MAPA and Modeling with the Modified Kent–Eisenberg Model. Molecules. 2025; 30(18):3832. https://doi.org/10.3390/molecules30183832
Chicago/Turabian StyleKontos, Giannis, and Ioannis Tsivintzelis. 2025. "CO2 Solubility in Aqueous Solutions of Amine–Ionic Liquid Blends: Experimental Data for Mixtures with AMP and MAPA and Modeling with the Modified Kent–Eisenberg Model" Molecules 30, no. 18: 3832. https://doi.org/10.3390/molecules30183832
APA StyleKontos, G., & Tsivintzelis, I. (2025). CO2 Solubility in Aqueous Solutions of Amine–Ionic Liquid Blends: Experimental Data for Mixtures with AMP and MAPA and Modeling with the Modified Kent–Eisenberg Model. Molecules, 30(18), 3832. https://doi.org/10.3390/molecules30183832