Eu-Substituents-Induced Modifications in the Thermoelectric Properties of the Zintl Phase Ba1-xEuxZn2Sb2 System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure Analysis
2.2. Electronic Structure Analysis
2.3. TE Properties Measurements
3. Materials and Methods
3.1. Synthesis
3.2. X-Ray Diffraction Analysis
3.3. Electronic Structure Calculations
3.4. Thermogravimetric (TGA) Analysis
3.5. EDS Analysis
3.6. Electrical Transport Property Measurement
3.7. Thermal Conductivity Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tritt, T.M. Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.M. Thermoelectrics Handbook—Macro to Nano; CRC-Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Fernández-Yáñez, P.; Romero, V.; Armas, O.; Cerretti, G. Thermal management of thermoelectric generators for waste energy recovery. Appl. Therm. Eng. 2021, 196, 117291. [Google Scholar] [CrossRef]
- Tritt, T.M.; Subramanian, M. Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 2006, 31, 188–198. [Google Scholar] [CrossRef]
- Kauzlarich, S.M.; Brown, S.R.; Snyder, G.J. Zintl phases for thermoelectric devices. Dalton Trans. 2007, 21, 2099–2107. [Google Scholar] [CrossRef]
- Khatun, M.; Stoyko, S.S.; Mar, A. Quaternary Arsenides ACdGeAs2 (A = K, Rb) Built of Ethane-Like Ge2As6 Units. Inorg. Chem. 2014, 53, 7756–7762. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.M.; Mar, A. Layered Rare-Earth Gallium Antimonides RE GaSb2 (RE = La − Nd, Sm). J. Am. Chem. Soc. 2001, 123, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.I.; Zevalkink, A.; Snyder, G.J. Improved thermoelectric properties in Zn-doped Ca5Ga2Sb6. J. Mater. Chem. A 2013, 1, 4244–4249. [Google Scholar] [CrossRef]
- Aydemir, U.; Candolfi, C.; Borrmann, H.; Baitinger, M.; Ormeci, A.; Carrillo-Cabrera, W.; Chubilleau, C.; Lenoir, B.; Dauscher, A.; Oeschler, N. Crystal structure and transport properties of Ba8Ge43□ 3. Dalton Trans. 2010, 39, 1078–1088. [Google Scholar] [CrossRef]
- Aydemir, U.; Candolfi, C.; Ormeci, A.; Borrmann, H.; Burkhardt, U.; Oztan, Y.; Oeschler, N.; Baitinger, M.; Steglich, F.; Grin, Y. Synthesis, Crystal Structure, and Physical Properties of the Type-I Clathrate Ba8− δNix□ ySi46–x–y. Inorg. Chem. 2012, 51, 4730–4741. [Google Scholar] [CrossRef]
- Pomrehn, G.S.; Zevalkink, A.; Zeier, W.G.; Van De Walle, A.; Snyder, G.J. Defect-Controlled Electronic Properties in AZn2Sb2 Zintl Phases. Angew. Chem. Int. Ed. 2014, 53, 3422–3426. [Google Scholar] [CrossRef]
- Brown, S.R.; Kauzlarich, S.M.; Gascoin, F.; Snyder, G.J. Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 2006, 18, 1873–1877. [Google Scholar] [CrossRef]
- Gascoin, F.; Ottensmann, S.; Stark, D.; Haïle, S.M.; Snyder, G.J. Zintl phases as thermoelectric materials: Tuned transport properties of the compounds CaxYb1–xZn2Sb2. Adv. Funct. Mater. 2005, 15, 1860–1864. [Google Scholar] [CrossRef]
- Wartenberg, F.; Kranenberg, C.; Pocha, R.; Johrendt, D.; Mewis, A.; Hoffmann, R.-D.; Mosel, B.D.; Pöttgen, R. Neue Pnictide im CaAl2Si2-Typ und dessen Existenzgebiet. Z. Naturforsch. 2002, 57b, 1270–1276. [Google Scholar] [CrossRef]
- Pandey, T.; Singh, A.K. High thermopower and ultra low thermal conductivity in Cd-based Zintl phase compounds. Phys. Chem. Chem. Phys. 2015, 17, 16917–16926. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Chanakian, S.; Zevalkink, A. Crystal chemistry and thermoelectric transport of layered AM2X 2 compounds. Inorg. Chem. Frontiers 2018, 5, 1744–1759. [Google Scholar] [CrossRef]
- Wang, Z.-C.; Been, E.; Gaudet, J.; Alqasseri, G.M.A.; Fruhling, K.; Yao, X.; Stuhr, U.; Zhu, Q.; Ren, Z.; Cui, Y. Anisotropy of the magnetic and transport properties of EuZn2As2. Phys. Rev. B 2022, 105, 165122. [Google Scholar] [CrossRef]
- Wang, X.-J.; Tang, M.-B.; Chen, H.-H.; Yang, X.-X.; Zhao, J.-T.; Burkhardt, U.; Grin, Y. Synthesis and high thermoelectric efficiency of Zintl phase YbCd2− xZnxSb2. Appl. Phys. Lett. 2009, 94, 092106. [Google Scholar] [CrossRef]
- Zhang, H.; Baitinger, M.; Tang, M.-B.; Man, Z.-Y.; Chen, H.-H.; Yang, X.-X.; Liu, Y.; Chen, L.; Grin, Y.; Zhao, J.-T. Thermoelectric properties of Eu(Zn1− xCdx)2Sb2. Dalton Trans. 2010, 39, 1101–1104. [Google Scholar] [CrossRef]
- Balvanz, A.; Baranets, S.; Ogunbunmi, M.O.; Bobev, S. Two polymorphs of BaZn2P2: Crystal structures, phase transition, and transport properties. Inorg. Chem. 2021, 60, 14426–14435. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Guo, K.; Yang, X.; Xing, J.; Wang, K.; Luo, J.; Zhao, J.-T. Realizing high thermoelectric performance in BaCu2–xAgxTe2 through enhanced carrier effective mass and point-defect scattering. ACS Appl. Energy Mater. 2018, 2, 889–895. [Google Scholar] [CrossRef]
- Wang, X.-J.; Tang, M.-B.; Zhao, J.-T.; Chen, H.-H.; Yang, X.-X. Thermoelectric properties and electronic structure of Zintl compound BaZn2Sb2. Appl. Phys. Lett. 2007, 90, 232107. [Google Scholar] [CrossRef]
- Jeong, J.; Shim, D.; Yox, P.; Choi, M.-H.; Ok, K.M.; Kovnir, K.; Miller, G.J.; You, T.-S. Tuning the Radius Ratio to Enhance Thermoelectric Properties in the Zintl Compounds AM2Sb2 (A = Ba, Sr; M = Zn, Cd). Chem. Mater. 2023, 35, 3985–3997. [Google Scholar] [CrossRef]
- Jeong, J.; Shim, D.; Choi, M.H.; Ok, K.M.; You, T.S. Effect of co-substitution on complex thermoelectric compounds: The Zintl phase Ba1-xSrxZn2-yCuySb2 system. Bull. Korean Chem. Soc. 2024, 45, 165–170. [Google Scholar] [CrossRef]
- Jeong, J.; Shim, D.; Choi, M.-H.; Yunxiu, Z.; Kim, D.-H.; Ok, K.M.; You, T.-S. Golden ratio of the r+/r- for the structure-selectivity in the thermoelectric BaZn2-xCdxSb2 system. J. Alloys Compd. 2024, 1002, 175272. [Google Scholar] [CrossRef]
- Hong, Y.; Yeon, S.; Yox, P.; Yunxiu, Z.; Choi, M.-H.; Moon, D.; Ok, K.M.; Kim, D.-H.; Kovnir, K.; Miller, G.J.; et al. Role of Eu-Doping in the Electron Transport Behavior in the Zintl Thermoelectric Ca5–x–yYbxEuyAl2Sb6 System. Chem. Mater. 2022, 34, 9903–9914. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Andersen, O.K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060. [Google Scholar] [CrossRef]
- Andersen, O.K.; Jepsen, O. Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 1984, 53, 2571. [Google Scholar] [CrossRef]
- Lambrecht, W.R.; Andersen, O.K. Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. Phys. Rev. B 1986, 34, 2439. [Google Scholar] [CrossRef]
- Jepsen, O.; Burkhardt, A. The TB-LMTO-ASA Program, version 4.7; Max-Plank-Institut fur Festkorperforschung: Shuttgart, Germany, 1999. [Google Scholar]
- Madsen, G.K.H. Automated Search for New Thermoelectric Materials: The Case of LiZnSb. J. Am. Chem. Soc. 2006, 128, 12140–12146. [Google Scholar] [CrossRef] [PubMed]
- Hamidani, A.; Bennecer, B.; Zanat, K. Effect of Sr substitution on the structural, electronic and thermoelectric properties of the Zintl-phase compound BaZn2Sb2. Phys. Scr. 2023, 98, 065910. [Google Scholar] [CrossRef]
- Chen, C.; Xue, W.; Li, S.; Zhang, Z.; Li, X.; Wang, X.; Liu, Y.; Sui, J.; Liu, X.; Cao, F. Zintl-phase Eu2ZnSb2: A promising thermoelectric material with ultralow thermal conductivity. Proc. Nat. Acad. Sci. 2019, 116, 2831–2836. [Google Scholar] [CrossRef]
- Chen, C.; Xue, W.; Li, X.; Lan, Y.; Zhang, Z.; Wang, X.; Zhang, F.; Yao, H.; Li, S.; Sui, J. Enhanced Thermoelectric Performance of Zintl Phase Ca9Zn4+xSb9 by Beneficial Disorder on the Selective Cationic Site. ACS Appl. Mater. Interfaces. 2019, 11, 37741–37747. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, P.; Balasubramanian, G. Engineering phonon transport through cation disorder in dimensionally constricted high entropy MXen. Carbon 2024, 223, 119015. [Google Scholar] [CrossRef]
- Toberer, E.S.; May, A.F.; Snyder, G.J. Zintl Chemistry for Designing High Efficiency Thermoelectric Materials. Chem. Mater. 2010, 22, 624–634. [Google Scholar] [CrossRef]
- Yang, S.; Lin, C.; He, X.; Huang, J.; Snyder, G.J.; Lin, Y.; Luo, M. Unlocking Ultralow Thermal Conductivity in α-CuTeI via Specific Symmetry Breaking in Cu Sublattice. Adv. Funct. Mater. 2024, 2419776. [Google Scholar] [CrossRef]
- Borgsmiller, L.; Snyder, G.J. Thermoelectric properties and low thermal conductivity of Zintl compound Yb10MnSb9. J. Mater. Chem. A 2022, 10, 15127–15135. [Google Scholar] [CrossRef]
- Kim, H.-S.; Gibbs, Z.M.; Tang, Y.; Wang, H.; Snyder, G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015, 3, 041506. [Google Scholar] [CrossRef]
- Lim, S.-J.; Nam, G.; Shin, S.; Ahn, K.; Lee, Y.; You, T.-S. Anionic Doping and Cationic Site Preference in CaYb4Al2Sb6–xGex (x = 0.2, 0.5, 0.7): Origin of the Enhanced Seebeck Coefficient and the Structural Transformation. Inorg. Chem. 2019, 58, 5827–5836. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Misra, D. Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework. RSC Adv. 2014, 4, 34552–34560. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, C.; He, J.; Zhang, S.; Zhao, X.; Tritt, T.M. Thermoelectric properties of Zintl compound YbZn2Sb2 with Mn substitution in anionic framework. J. Electron. Mater. 2009, 38, 1068–1071. [Google Scholar] [CrossRef]
- Bruker AXS Inc. APEX3, version 2019.1-0; Bruker AXS Inc.: Madison, WI, USA, 2006. [Google Scholar]
- Bruker AXS Inc. SAINT Program, version 8.40A; Bruker AXS Inc.: Madison, WI, USA, 2002. [Google Scholar]
- Sheldrick, G.M. SADABS, version 2016/2; University of Göttingen: Göttingen, Germany, 2003. [Google Scholar]
- Shin, J.W.; Eom, K.; Moon, D. BL2D-SMC, the supramolecular crystallography beamline at the Pohang Light Source II, Korea. J. Synchrotron Radiat. 2016, 23, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar]
- Gelato, L.; Parthé, E. STRUCTURE TIDY—A computer program to standardize crystal structure data. J. Appl. Crystallogr. 1987, 20, 139–143. [Google Scholar] [CrossRef]
- Andersen, O.K.; Jepsen, O.; Glötzel, D. Canonical Description of the Band Structures of Metals. In Highlights of Condensed Matter Theory; Bassani, F., Fumi, F., Tosi, M., Eds.; Elsevier North Holland: New York, NY, USA, 1985; pp. 65–72. [Google Scholar]
- Jepsen, O.; Andersen, O. Calculated electronic structure of the sandwich d1 metals LaI2 and CeI2: Application of new LMTO techniques. Z. Phys. B Condens. Matter. 1995, 97, 35–47. [Google Scholar] [CrossRef]
- Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223. [Google Scholar] [CrossRef]
- Borup, K.A.; De Boor, J.; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.; Fedorov, M.I.; Müller, E.; Iversen, B.B. Measuring thermoelectric transport properties of materials. Energy Environ. Sci. 2015, 8, 423–435. [Google Scholar] [CrossRef]
Empirical Formula | Ba0.98(1)Eu0.02Zn2Sb2 | Ba0.96(1)Eu0.04Zn2Sb2 | Ba0.92(1)Eu0.08Zn2Sb2 | Ba0.85(1)Eu0.15Zn2Sb2 |
---|---|---|---|---|
Crystal system | orthorhombic | |||
Space group | Pnma (No. 62) | |||
Unit cell dimensions (Å) | a = 10.547(2) | a = 10.5449 (3) | a = 10.535(2) | a = 10.524(2) |
b = 4.4990(9) | b = 4.4973 (2) | b = 4.4920(9) | b = 4.4820(9) | |
c = 11.640(2) | c = 11.6391 (4) | c = 11.632(2) | c = 11.626(2) | |
Volume (Å3) | 552.33(19) | 551.97(3) | 550.46(19) | 548.38(19) |
dcalcd (g/cm3) | 6.155 | 6.163 | 6.187 | 6.223 |
Data/restraints/parameters | 904/0/32 | 1163/0/33 | 973/0/32 | 977/0/32 |
R indices a (I > 2σ(I)) | R1 = 0.0245 | R1 = 0.0238 | R1 = 0.0231 | R1 = 0.0213 |
wR2 = 0.0627 | wR2 = 0.0418 | wR2 = 0.0612 | wR2 = 0.0507 | |
R indices a (all data) | R1 = 0.0274 | R1 = 0.0331 | R1 = 0.0246 | R1 = 0.0233 |
wR2 = 0.0639 | wR2 = 0.0432 | wR2 = 0.0619 | wR2 = 0.0515 | |
Goodness of fit on F2 | 0.990 | 1.283 | 1.031 | 1.028 |
Largest diff. peak/hole (e/Å3) | 1.943/−1.628 | 1.243/−1.630 | 1.913/−1.427 | 1.178/−1.458 |
Atom | Wyckoff Site | Occupation | x | y | z | Ueq a (Å2) |
---|---|---|---|---|---|---|
Ba0.98(1)Eu0.02Zn2Sb2 | ||||||
Ba/Eu | 4c | 0.98(1)/0.02 | 0.2457(1) | 1/4 | 0.3206(1) | 0.0082(2) |
Zn1 | 4c | 1 | 0.0541(1) | 1/4 | 0.6170(1) | 0.0096(2) |
Zn2 | 4c | 1 | 0.0938(1) | 1/4 | 0.0479(1) | 0.0093(2) |
Sb1 | 4c | 1 | 0.3466(1) | 1/4 | 0.0352(1) | 0.0047(2) |
Sb2 | 4c | 1 | 0.4763(1) | 1/4 | 0.6644(1) | 0.0056(2) |
Ba0.96(1)Eu0.04Zn2Sb2 | ||||||
Ba/Eu | 4c | 0.96(1)/0.04 | 0.2458(1) | 1/4 | 0.3203(1) | 0.0151(2) |
Zn1 | 4c | 1 | 0.0545(1) | 1/4 | 0.6169(1) | 0.0160(2) |
Zn2 | 4c | 1 | 0.0936(2) | 1/4 | 0.0480(1) | 0.0156(2) |
Sb1 | 4c | 1 | 0.3463(1) | 1/4 | 0.0350(1) | 0.0111(1) |
Sb2 | 4c | 1 | 0.4762(1) | 1/4 | 0.6647(1) | 0.0119(1) |
Ba0.92(1)Eu0.08Zn2Sb2 | ||||||
Ba/Eu | 4c | 0.92(2)/0.08 | 0.2461(1) | 1/4 | 0.3197(1) | 0.0065(2) |
Zn1 | 4c | 1 | 0.0549(1) | 1/4 | 0.6165(2) | 0.0072(2) |
Zn2 | 4c | 1 | 0.0930(1) | 1/4 | 0.0478(1) | 0.0069(2) |
Sb1 | 4c | 1 | 0.3457(1) | 1/4 | 0.0344(1) | 0.0028(2) |
Sb2 | 4c | 1 | 0.4761(1) | 1/4 | 0.6651(1) | 0.0035(2) |
Ba0.85(1)Eu0.15Zn2Sb2 | ||||||
Ba/Eu | 4c | 0.85(1)/0.15 | 0.2467(1) | 1/4 | 0.3185(1) | 0.0071(1) |
Zn1 | 4c | 1 | 0.0560(1) | 1/4 | 0.6157(1) | 0.0079(2) |
Zn2 | 4c | 1 | 0.0917(1) | 1/4 | 0.0474(1) | 0.0073(2) |
Sb1 | 4c | 1 | 0.3445(1) | 1/4 | 0.0332(1) | 0.0034(1) |
Sb2 | 4c | 1 | 0.4757(1) | 1/4 | 0.6661(1) | 0.0039(1) |
Atomic Pair | Bond Distance (Å) | |||
---|---|---|---|---|
Ba0.98(1)Eu0.02Zn2Sb2 | Ba0.96(1)Eu0.04Zn2Sb2 | Ba0.92(1)Eu0.08Zn2Sb2 | Ba0.85(1)Eu0.15Zn2Sb2 | |
Ba/Eu–Zn1 (× 2) | 3.890(1) | 3.885(1) | 3.876(1) | 3.859(1) |
Ba/Eu–Zn2 | 3.554(2) | 3.553(1) | 3.550(1) | 3.548(1) |
Ba/Eu–Zn2 (× 2) | 3.864(1) | 3.866(1) | 3.868(1) | 3.873(1) |
Ba/Eu–Sb1 | 3.488(1) | 3.487(1) | 3.480(1) | 3.473(1) |
Ba/Eu–Sb1 (× 2) | 3.450(1) | 3.499(1) | 3.496(1) | 3.489(1) |
Ba/Eu–Sb2 (× 2) | 3.700(1) | 3.699(1) | 3.693(1) | 3.686(1) |
Ba/Eu–Sb2 (× 2) | 3.721(1) | 3.717(1) | 3.709(1) | 3.693(1) |
Zn1–Sb1 (× 2) | 2.658(1) | 2.657(1) | 2.656(1) | 2.653(1) |
Zn1–Sb1 | 2.816(1) | 2.819(1) | 2.818(1) | 2.673(1) |
Zn1–Sb2 | 2.674(1) | 2.673(1) | 2.672(1) | 2.820(1) |
Zn2–Sb1 | 2.671(2) | 2.669(1) | 2.667(1) | 2.666(1) |
Zn2–Sb2 (× 2) | 2.718(1) | 2.728(1) | 2.727(1) | 2.726(1) |
Zn2–Sb2 | 2.764(1) | 2.767(1) | 2.766(1) | 2.767(1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, D.; Lee, J.; Ahmed, A.; Pi, J.H.; Choi, M.-H.; Ok, K.M.; Lee, K.H.; You, T.-S. Eu-Substituents-Induced Modifications in the Thermoelectric Properties of the Zintl Phase Ba1-xEuxZn2Sb2 System. Molecules 2025, 30, 310. https://doi.org/10.3390/molecules30020310
Shim D, Lee J, Ahmed A, Pi JH, Choi M-H, Ok KM, Lee KH, You T-S. Eu-Substituents-Induced Modifications in the Thermoelectric Properties of the Zintl Phase Ba1-xEuxZn2Sb2 System. Molecules. 2025; 30(2):310. https://doi.org/10.3390/molecules30020310
Chicago/Turabian StyleShim, Daewon, Junsu Lee, Aziz Ahmed, Ji Hee Pi, Myung-Ho Choi, Kang Min Ok, Kyu Hyoung Lee, and Tae-Soo You. 2025. "Eu-Substituents-Induced Modifications in the Thermoelectric Properties of the Zintl Phase Ba1-xEuxZn2Sb2 System" Molecules 30, no. 2: 310. https://doi.org/10.3390/molecules30020310
APA StyleShim, D., Lee, J., Ahmed, A., Pi, J. H., Choi, M.-H., Ok, K. M., Lee, K. H., & You, T.-S. (2025). Eu-Substituents-Induced Modifications in the Thermoelectric Properties of the Zintl Phase Ba1-xEuxZn2Sb2 System. Molecules, 30(2), 310. https://doi.org/10.3390/molecules30020310