Current Advances in the Use of Mushrooms as Therapeutics for Lung Cancer: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
3. Results
3.1. Uses of Mushrooms in Lung Cancer Therapy
3.2. Agaricaceae
3.2.1. Agaricus lanipes
3.2.2. Calvatia gigantea
3.2.3. Macrolepiota procera
3.3. Amanitaceae
Amanita spissacea
3.4. Cordycipitaceae
3.4.1. Cordyceps militaris
3.4.2. Cordyceps taii
3.5. Ganodermataceae
Ganoderma lucidum
3.6. Hericiaceae
Hericium erinaceus
3.7. Hymenochaetaceae
Phellinus linteus
3.8. Lyophyllaceae
Termitomyces clypeatus
3.9. Meripilaceae
Grifola frondosa
3.10. Omphalotaceae
Lentinula edodes
3.11. Pleurotaceae
Pleurotus eryngii
3.12. Polyporaceae
3.12.1. Antrodia cinnamomea
3.12.2. Coriolus versicolor
3.12.3. Lentinus squarrosulus
3.12.4. Lignosus rhinocerus
3.12.5. Lignosus tigris
3.12.6. Trametes gibbosa/hirsuta
3.13. Pseudoclitocybaceae
Clitocybe alexandri
3.14. Suillaceae
Suillus granulatus/luteus
3.15. Thelephoraceae
Thelephora ganbajun
3.16. Tricholomataceae
Lepista inversa
3.17. Xylariaceae
Xylaria hill
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minna, J.D.; A Roth, J.; Gazdar, A.F. Focus on lung cancer. Cancer Cell 2002, 1, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Liang, S.; Liu, Z.; Xu, C. A review of natural products targeting tumor immune microenvironments for the treatment of lung cancer. Front. Immunol. 2024, 15, 1343316. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1563–1579. [Google Scholar] [CrossRef]
- Lv, B.; Wang, Y.; Ma, D.; Cheng, W.; Liu, J.; Yong, T.; Chen, H.; Wang, C. Immunotherapy: Reshape the Tumor Immune Microenvironment. Front. Immunol. 2022, 13, 844142. [Google Scholar] [CrossRef]
- Joseph, T.P.; Chanda, W.; Padhiar, A.A.; Batool, S.; LiQun, S.; Zhong, M.; Huang, M. A Preclinical Evaluation of the Antitumor Activities of Edible and Medicinal Mushrooms: A Molecular Insight. Integr. Cancer Ther. 2017, 17, 200–209. [Google Scholar] [CrossRef]
- Twardowski, P.; Kanaya, N.; Frankel, P.; Synold, T.; Ruel, C.; Pal, S.K.; Junqueira, M.; Prajapati, M.; Moore, T.; Tryon, P.; et al. A phase I trial of mushroom powder in patients with biochemically recurrent prostate cancer: Roles of cytokines and myeloid-derived suppressor cells for Agaricus bisporus–induced prostate-specific antigen responses. Cancer 2015, 121, 2942–2950. [Google Scholar] [CrossRef]
- Park, H.-J. Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. Int. J. Mol. Sci. 2022, 23, 10502. [Google Scholar] [CrossRef]
- Dan, A.; Swain, R.; Jacobs, R.J.; Belonce, S.E. Therapeutic Effects of Medicinal Mushrooms on Gastric, Breast, and Colorectal Cancer: A Scoping Review. Cureus 2023, 15, e37574. [Google Scholar] [CrossRef]
- Blagodatski, A.; Yatsunskaya, M.; Mikhailova, V.; Tiasto, V.; Kagansky, A.; Katanaev, V.L. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018, 9, 29259–29274. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Zhang, L.; Tian, Q. Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in China. Prog. Mol. Biol. Transl. Sci. 2019, 163, 297–328. [Google Scholar] [CrossRef] [PubMed]
- Mushroom. Wikipedia, The Free Encyclopedia. 2024. Available online: https://en.wikipedia.org/w/index.php?title=Mushroom&oldid=1231212199 (accessed on 16 August 2024).
- Kaygusuz, O.; Kaygusuz, M.; Dodurga, Y.; Seçme, M.; Herken, E.N.; Gezer, K. Assessment of the antimicrobial, antioxidant and cytotoxic activities of the wild edible mushroom Agaricus lanipes (F.H. Møller & Jul. Schäff.) Hlaváček. Cytotechnology 2017, 69, 135–144. [Google Scholar] [CrossRef] [PubMed]
- So, H.M.; Lee, S.; Baek, K.-H.; Roh, H.-S.; Kim, S.; Jo, M.S.; Baek, S.C.; Seok, S.; Ryoo, R.; Kim, K.H. Bioactivity-based analysis and chemical characterization of cytotoxic compounds from a poisonous mushroom, Amanita spissacea, in human lung cancer cells in vitro. Nat. Prod. Res. 2019, 35, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Y.; Liu, F.-C.; Chou, P.-Y.; Chien, Y.-C.; Chang, W.-S.W.; Huang, G.-J.; Wu, C.-H.; Sheu, M.-J. Ethanol Extracts of Fruiting Bodies of Antrodia cinnamomea Suppress CL1-5 Human Lung Adenocarcinoma Cells Migration by Inhibiting Matrix Metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt Signaling Pathways. Evid. Based Complement. Altern. Med. 2012, 2012, 378415, Erratum in Evid. Based Complement. Altern. Med. 2013, 2013, 423987. [Google Scholar] [CrossRef]
- Huang, T.-T.; Lan, Y.-W.; Chen, C.-M.; Ko, Y.-F.; Ojcius, D.M.; Martel, J.; Young, J.D.; Chong, K.-Y. Antrodia cinnamomea induces anti-tumor activity by inhibiting the STAT3 signaling pathway in lung cancer cells. Sci. Rep. 2019, 9, 5145. [Google Scholar] [CrossRef]
- Eroğlu, C.; Seçme, M.; Atmaca, P.; Kaygusuz, O.; Gezer, K.; Bağcı, G.; Dodurga, Y. Extract of Calvatia gigantea inhibits proliferation of A549 human lung cancer cells. Cytotechnology 2016, 68, 2075–2081. [Google Scholar] [CrossRef]
- Vaz, J.A.; Almeida, G.M.; Ferreira, I.C.; Martins, A.; Vasconcelos, M.H. Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: Identification of phenolic acids with cytotoxic potential. Food Chem. 2012, 132, 482–486. [Google Scholar] [CrossRef]
- Vaz, J.A.; Heleno, S.A.; Martins, A.; Almeida, G.M.; Vasconcelos, M.H.; Ferreira, I.C. Wild mushrooms Clitocybe alexandri and Lepista inversa: In vitro antioxidant activity and growth inhibition of human tumour cell lines. Food Chem. Toxicol. 2010, 48, 2881–2884. [Google Scholar] [CrossRef]
- Park, S.E.; Yoo, H.S.; Jin, C.-Y.; Hong, S.H.; Lee, Y.-W.; Kim, B.W.; Lee, S.H.; Kim, W.-J.; Cho, C.K.; Choi, Y.H. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food Chem. Toxicol. 2009, 47, 1667–1675. [Google Scholar] [CrossRef]
- Liu, R.-M.; Zhang, X.-J.; Liang, G.-Y.; Yang, Y.-F.; Zhong, J.-J.; Xiao, J.-H. Antitumor and antimetastatic activities of chloroform extract of medicinal mushroom Cordyceps taii in mouse models. BMC Complement. Altern. Med. 2015, 15, 216, Correction in BMC Complement. Altern. Med. 2015, 15, 284. [Google Scholar] [CrossRef]
- Fritz, H.; Kennedy, D.A.; Ishii, M.; Fergusson, D.; Fernandes, R.; Cooley, K.; Seely, D. Polysaccharide K and Coriolus versicolor Extracts for Lung Cancer. Integr. Cancer Ther. 2015, 14, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Medina, E.; Berruguilla, E.; Romero, I.; Algarra, I.; Collado, A.; Garrido, F.; Garcia-Lora, A. The immunomodulator PSK induces in vitro cytotoxic activity in tumour cell lines via arrest of cell cycle and induction of apoptosis. BMC Cancer 2008, 8, 78. [Google Scholar] [CrossRef]
- Hsu, W.-H.; Qiu, W.-L.; Tsao, S.-M.; Tseng, A.-J.; Lu, M.-K.; Hua, W.-J.; Cheng, H.-C.; Hsu, H.-Y.; Lin, T.-Y. Effects of WSG, a polysaccharide from Ganoderma lucidum, on suppressing cell growth and mobility of lung cancer. Int. J. Biol. Macromol. 2020, 165, 1604–1613. [Google Scholar] [CrossRef] [PubMed]
- Kodama, N.; Komuta, K.; Nanba, H. Effect of Maitake (Grifola frondosa) D-Fraction on the Activation of NK Cells in Cancer Patients. J. Med. Food 2003, 6, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Sangtitanu, T.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Karnchanatat, A. Peptides obtained from edible mushrooms: Hericium erinaceus offers the ability to scavenge free radicals and induce apoptosis in lung cancer cells in humans. Food Funct. 2020, 11, 4927–4939. [Google Scholar] [CrossRef]
- Liu, B.; Zhong, M.; Lun, Y.; Wang, X.; Sun, W.; Li, X.; Ning, A.; Cao, J.; Zhang, W.; Liu, L.; et al. A Novel Apoptosis Correlated Molecule: Expression and Characterization of Protein Latcripin-1 from Lentinula edodes C91–3. Int. J. Mol. Sci. 2012, 13, 6246–6265. [Google Scholar] [CrossRef]
- Prateep, A.; Sumkhemthong, S.; Suksomtip, M.; Chanvorachote, P.; Chaotham, C. Peptides extracted from edible mushroom: Lentinus squarrosulus induces apoptosis in human lung cancer cells. Pharm. Biol. 2017, 55, 1792–1799. [Google Scholar] [CrossRef]
- Bézivin, C.; Lohézic, F.; Sauleau, P.; Amoros, M.; Boustie, J. Cytotoxic Activity of Tricholomatales determined with Murine and Human Cancer Cell Lines. Pharm. Biol. 2002, 40, 196–199. [Google Scholar] [CrossRef]
- Lee, M.L.; Tan, N.H.; Fung, S.Y.; Tan, C.S.; Ng, S.T. The Antiproliferative Activity of Sclerotia of Lignosus rhinocerus(Tiger Milk Mushroom). Evidence-Based Complement. Altern. Med. 2012, 2012, 1–5. [Google Scholar] [CrossRef]
- Kong, B.H.; Teoh, K.H.; Tan, N.H.; Tan, C.S.; Ng, S.T.; Fung, S.Y. Proteins from Lignosus tigris with selective apoptotic cytotoxicity towards MCF7 cell line and suppresses MCF7-xenograft tumor growth. PeerJ 2020, 8, e9650. [Google Scholar] [CrossRef]
- Zara, R.; Rasul, A.; Sultana, T.; Jabeen, F.; Selamoglu, Z. Identification of Macrolepiota procera extract as a novel G6PD inhibitor for the treatment of lung cancer. Saudi J. Biol. Sci. 2022, 29, 3372–3379. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhu, T.; Collins, L.; Xiao, Z.J.; Kim, S.; Chen, C. Modulation of lung cancer growth arrest and apoptosis by Phellinus Linteus. Mol. Carcinog. 2006, 46, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Mariga, A.M.; Yang, W.; Mugambi, D.K.; Pei, F.; Zhao, L.; Shao, Y.; Hu, Q. Antiproliferative and immunostimulatory activity of a protein from Pleurotus eryngii. J. Sci. Food Agric. 2014, 94, 3152–3162. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, S.; Lohézic-Le Dévéhat, F.; Sauleau, P.; Bézivin, C.; Boustie, J. Cytotoxic activity of methanol extracts from Basidiomycete mushrooms on murine cancer cell lines. Pharmazie 2004, 59, 290–293. [Google Scholar]
- Mondal, A.; Banerjee, D.; Majumder, R.; Maity, T.K.; Khowala, S. Evaluation of in vitro antioxidant, anticancer and in vivo antitumour activity of Termitomyces clypeatus MTCC 5091. Pharm. Biol. 2016, 54, 2536–2546. [Google Scholar] [CrossRef]
- Xu, D.-P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.-B. Extraction of Natural Antioxidants from the Thelephora ganbajun Mushroom by an Ultrasound-Assisted Extraction Technique and Evaluation of Antiproliferative Activity of the Extract against Human Cancer Cells. Int. J. Mol. Sci. 2016, 17, 1664. [Google Scholar] [CrossRef]
- Knežević, A.; Stajić, M.; Sofrenić, I.; Stanojković, T.; Milovanović, I.; Tešević, V.; Vukojević, J. Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLoS ONE 2018, 13, e0203064. [Google Scholar] [CrossRef]
- Ramesh, V.; Santosh, K.; Anand, T.D.; Shanmugaiah, V.; Kotamraju, S.; Karunakaran, C.; Rajendran, A. Novel Bioactive Wild Medicinal Mushroom-Xylaria sp. R006 (Ascomycetes) against Multidrug Resistant Human Bacterial Pathogens and Human Cancer Cell Lines. Int. J. Med. Mushrooms 2015, 17, 1005–1017. [Google Scholar] [CrossRef]
- Wasser, S.P. Reishi or ling zhi (Ganoderma lucidum). Available online: https://www.imispain.com/blog/wp-content/uploads/2010/11/7_49_IMI.pdf (accessed on 19 October 2024).
- Nonaka, Y.; Ishibashi, H.; Nakai, M.; Shibata, H.; Kiso, Y.; Abe, S. Effects of the Antlered Form of Ganoderma lucidum on Tumor Growth and Metastasis in Cyclophosphamide-Treated Mice. Biosci. Biotechnol. Biochem. 2008, 72, 1399–1408. [Google Scholar] [CrossRef]
- Konno, S.; Chu, K.; Feuer, N.; Phillips, J.; Choudhury, M. Potent Anticancer Effects of Bioactive Mushroom Extracts (Phellinus linteus) on a Variety of Human Cancer Cells. J. Clin. Med. Res. 2015, 7, 76–82. [Google Scholar] [CrossRef]
- Maiti, S.; Bhutia, S.K.; Mallick, S.K.; Kumar, A.; Khadgi, N.; Maiti, T.K. Antiproliferative and immunostimulatory protein fraction from edible mushrooms. Environ. Toxicol. Pharmacol. 2008, 26, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.Y.; Zeng, F.; Guo, W.L.; Li, T.T.; Jia, R.B.; Huang, Z.R.; Lv, X.C.; Zhang, J.; Liu, B. Effect of Grifola frondosa 95% ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats. Food Funct. 2018, 9, 6268–6278. [Google Scholar] [CrossRef]
- Zhuang, C.; Wasser, S.P. Medicinal Value of Culinary-Medicinal Maitake Mushroom Grifola frondosa (Dicks.:Fr.) S.F. Gray (Aphyllophoromycetideae). Review. Int. J. Med. Mushrooms 2004, 6, 287–314. [Google Scholar] [CrossRef]
- Jayachandran, M.; Xiao, J.; Xu, B. A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. Int. J. Mol. Sci. 2017, 18, 1934. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, E.; Blundell, R.; Baral, B.; Karpiński, T.M.; Aruci, E.; Atrooz, O.M. Unveiling the full spectrum of maitake mushrooms: A comprehensive review of their medicinal, therapeutic, nutraceutical, and cosmetic potential. Heliyon 2024, 10, e30254. [Google Scholar] [CrossRef]
- Phillips, J.M.; Ooi, S.L.; Pak, S.C. Health-Promoting Properties of Medicinal Mushrooms and Their Bioactive Compounds for the COVID-19 Era—An Appraisal: Do the Pro-Health Claims Measure Up? Molecules 2022, 27, 2302. [Google Scholar] [CrossRef]
- Venturella, G.; Ferraro, V.; Cirlincione, F.; Gargano, M.L. Medicinal Mushrooms: Bioactive Compounds, Use, and Clinical Trials. Int. J. Mol. Sci. 2021, 22, 634. [Google Scholar] [CrossRef]
- Hishida, I.; Nanba, H.; Kuroda, H. Antitumor activity exhibited by orally administered extract from fruit body of Grifola frondosa (Maitake). Chem. Pharm. Bull. 1988, 36, 1819–1827. [Google Scholar] [CrossRef]
- Adachi, K.; Nanba, H.; Kuroda, H. Potentiation of host-mediated antitumor activity in mice by β-glucan obtained from Grifola frondosa (Maitake). Chem. Pharm. Bull. 1987, 35, 262–270. [Google Scholar] [CrossRef]
- Wu, H.; Pan, C.-L.; Yao, Y.-C.; Chang, S.-S.; Li, S.-L.; Wu, T.-F. Proteomic analysis of the effect of Antrodia camphorata extract on human lung cancer A549 cell. Proteomics 2006, 6, 826–835. [Google Scholar] [CrossRef]
- Lee, S.-J.; Kim, S.-K.; Choi, W.-S.; Kim, W.-J.; Moon, S.-K. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch. Biochem. Biophys. 2009, 490, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Goyal, A. Recent developments in mushrooms as anti-cancer therapeutics: A review. 3 Biotech 2011, 2, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kidd, P.M. The use of mushroom glucans and proteoglycans in cancer treatment. Altern. Med. Rev. 2000, 5, 4–27. [Google Scholar] [PubMed]
- Das, A.R.; Borthakur, M.; Saha, A.K.; Joshi, S.R.; Das, P. Molecular Characterization and Antioxidant Potential of Three Wild Culinary-Medicinal Mushrooms from Tripura, Northeast India. Int. J. Med. Mushrooms 2017, 19, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Riely, G.J. New pathologic classification of lung cancer: Relevance for clinical practice and clinical trials. J. Clin. Oncol. 2013, 31, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Apoptosis. Wikipedia, The Free Encyclopedia. 2025. Available online: https://en.wikipedia.org/w/index.php?title=Apoptosis&oldid=1275101390 (accessed on 25 February 2025).
- Twilley, D.; Rademan, S.; Lall, N. A review on traditionally used South African medicinal plants, their secondary metabolites and their potential development into anticancer agents. J. Ethnopharmacol. 2020, 261, 113101. [Google Scholar] [CrossRef] [PubMed]
- Pentose Phosphate Pathway. Wikipedia, The Free Encyclopedia. 2024. Available online: https://en.wikipedia.org/w/index.php?title=Pentose_phosphate_pathway&oldid=1250853542 (accessed on 25 February 2025).
- Nowakowski, P.; Markiewicz-Żukowska, R.; Bielecka, J.; Mielcarek, K.; Grabia, M.; Socha, K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed. Pharmacother. 2021, 143, 112106. [Google Scholar] [CrossRef]
Species | Family | Experimental Model | Solvent/Fraction | Mechanism/Results | Reference |
---|---|---|---|---|---|
Agaricus lanipes | Agaricaceae | In vitro (A549 cells) | Methanol extract | Strong pro-apoptotic and antiproliferative effects were demonstrated by the extract. | [13] |
Amanita spissacea | Amanitaceae | In vitro (A549, H1264, H1299 and Calu-6 cells cells) | Methanol extract | The cytotoxicity of the extracts was attributed to apoptosis, which was associated with the activation of caspase-3. | [14] |
Antrodia cinnamonea | Polyporaceae | In vivo (LLC and CL1-5 cells) In vitro (CL1-0 cells) | Ethanol extract | The treatment inhibited the growth of the tumor and triggered programmed cell death by obstructing the STAT3 signaling pathway. The extract reduced cell movement and mobility, lowered the activity of matrix metalloproteinases two and nine, and increased the levels of tissue inhibitors of matrix metalloproteinases. | [15,16] |
Calvatia gigantea | Agaricaceae | In vitro (A549 cells) | Methanol extract | The extract facilitated apoptosis and cell cycle arrest by enhancing the expression of caspase 3, caspase 9, BAX, and p53 and reducing the levels of Akt, BCL2, CCND1, CCND2, and CDK4. | [17] |
Clitocybe alexandri | Pseudoclitocybaceae | In vitro (NCI-H460 cells) | Ethanol extract and hot water extracts | The extract halted cell progression at the S-phase, which led to a rise in apoptotic cells. “The fraction triggered apoptosis by linking the p53 and caspase-3 pathways” with cell proliferation during the cell cycle. | [18,19] |
Cordyceps militaris | Cordycipitaceae | In vitro (A549 cells) | Water extract | The caspase pathway is mediated by mitochondria and the receptor-driven death signaling cascade. In addition, the extract inhibited the transcription of hTERT, which is activated by decreases in telomerase induced by apoptosis. | [20] |
Cordyceps taii | Cordycipitaceae | In vitro (A549 cells) | Chloroform extract | The extract demonstrated an inhibitory effect on tumor growth in the mouse model, resulting in a decrease in cell proliferation. Moreover, it caused the death of tumor tissue and increased the activity of the GSH-Px in different cancer tissues. | [21] |
Coriolus versicolor | Polyporaceae | In vitro (A549 cells) | Ethanol extract | The extract reduced the development of A549 cancer cells. | [22,23] |
Ganoderma lucidum | Ganodermataceae | In vitro (3LL cells). “In vivo mouse model (MDA-MB-231 cells)” | “Ethanol extract with 6% triterpenes and 13.5% polysaccharides”. | The fraction exhibited anti-cancer properties by inhibiting cell proliferation. Orally administering the extract inhibited tumor growth and suppressed cancer cell growth. | [24] |
Grifola frondosa | Meripilaceae | In vivo (human patients) | Water extract | The extract has been shown to enhance the function of immunocompetent cells, such as NK cells, helper T cells, cytotoxic T cells, and macrophages, without causing any adverse effects. This leads to a reduction in tumor diameter in mice. | [25] |
Hericium erinaceus | Hericiaceae | In vitro Chago-K1 cells | Ethanol extract and peptides | Apoptosis was induced by the in vitro antiproliferative activity in human lung cancer cell lines (Chago-K1). Additionally, the expression of caspases 3, 8, and 9 in Chago-K1 cells increased following treatment. | [26] |
Lentinula edodes | Marasmiaceae | In vitro (A549 cells) | Latcripin-1t protein | The protein had an inhibitory impact on the growth of cancerous cells. | [27] |
Lentinus squarrosulus | Polyporaceae | In vitro H460 cells | Water extract | The extracts induced apoptosis in lung tumor cells by reducing the levels of anti-apoptotic proteins Bcl-2 and c-FLIP, while increasing the levels of the pro-apoptotic protein Bax. | [28] |
Lepista inversa | Tricholomataceae | In vitro (NCI-H460 cells) | The extracts obtained are phenolic, derived from methanol and ethanol, and polysaccharidic, obtained by heating water. | The fraction demonstrated efficacy in inhibiting the growth of lung cancer cells. | [19,29] |
Lignosus rhinocerus | Polyporaceae | In vitro (A549 cells) | Cold water extract derived from sclerotia | The extract showed activity in reducing cancer cell proliferation. | [30] |
Lignosus tigris | Polyporaceae | “In vivo—mice model and in vitro (A549 cells)” | Cold water extract of sclerotia | Through both intrinsic and extrinsic signaling mechanisms, the extract induced cellular apoptosis and had tumor growth suppressive impact. Proapoptotic proteins BAX, caspase-8, and -9 were all expressed in response to apoptosis, but BCL2 expression was suppressed concurrently. | [31] |
Macrolepiota procera | Agaricaceae | In vitro (A549 cells) | Ethanol extract | The A549 cells’ viability was decreased by the extracts. It also inhibited the enzymatic activity of 6-phosphogluconate dehydrogenase (6PGD) and glucose 6 phosphate dehydrogenase (G6PD). | [32] |
Phellinus linteus | Hymenochaetaceae | The study utilized a mice model with LKR cells and conducted in vitro experiments using H5800 and A549cells. | Ethanol extract | The onset of oxidative stress and its lethal impact prevented cancer cells from proliferating. Furthermore, because caspase-3 and -9 were expressed more frequently in the extract, it caused apoptotic cell death. The primary mechanisms by which the extract induced apoptosis was DNA fragmentation, proapoptotic caspase activation, and clonogenicity loss. | [33] |
Pleurotus eryngii | Pleurotaceae | In vitro (A549) | Quel protein (PEQP) | The study showed that PEQP was cytotoxic to A549 non-small cell lung cancer cells, non-toxic to Chang cells, and able to activate macrophages. | [34] |
Suillus granulatus | Suillaceae | In vitro (3LL cells) | Methanol extract | The fraction had inhibitory effects on the proliferation of cancer cells. | [35] |
Suillus luteus | Suillaceae | In vitro (3LL cells) | Methanol extract | The extract exhibited anticancer cell proliferation inhibitory properties. | [35] |
Termitomyces clypeatus | Lyophyllaceae | In vitro (A549 cells) | Water-soluble extract | The therapy demonstrated an anticancer impact that can be attributed to its antioxidant property. The aqueous extract decreased lipid peroxidation and increased the lifespan of mice with EAC tumors. | [36] |
Thelephora ganbajun | Thelephoraceae | In vitro (A549 cells) | Ethanol extract | The extract exhibited anticancer cell proliferation inhibitory. | [37] |
Trametes gibbosa | Polyporaceae | In vitro (A549 cells) | Ethanol extract | The therapy effectively hindered the growth of cancer cells. | [38] |
Trametes hirsuta | Polyporaceae | In vitro (A549 cells) | Ethanol extract | The treatment showed antiproliferative efficacy on cancer cells. | [38] |
Xylaria Hill | Xylariaceae | In vitro (A549 cells) | “Hexane, ethyl acetate, and methanol extracts” | The extracts exhibited an inhibitory effect on cell growth, and there were also changes in the morphology of A549 cells. | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khunoana, E.T.; Nkadimeng, S.M. Current Advances in the Use of Mushrooms as Therapeutics for Lung Cancer: A Review. Molecules 2025, 30, 1322. https://doi.org/10.3390/molecules30061322
Khunoana ET, Nkadimeng SM. Current Advances in the Use of Mushrooms as Therapeutics for Lung Cancer: A Review. Molecules. 2025; 30(6):1322. https://doi.org/10.3390/molecules30061322
Chicago/Turabian StyleKhunoana, Edward Thato, and Sanah Malomile Nkadimeng. 2025. "Current Advances in the Use of Mushrooms as Therapeutics for Lung Cancer: A Review" Molecules 30, no. 6: 1322. https://doi.org/10.3390/molecules30061322
APA StyleKhunoana, E. T., & Nkadimeng, S. M. (2025). Current Advances in the Use of Mushrooms as Therapeutics for Lung Cancer: A Review. Molecules, 30(6), 1322. https://doi.org/10.3390/molecules30061322