HS-GC-IMS Analysis of Volatile Organic Compounds in Six Spicy Spices and Their Effects on Ulcerative Colitis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectral Analysis of Six Spices
2.2. Identification of Volatile Organic Compounds in Six Spices
2.3. Fingerprints of VOCs in Six Spices
2.4. Cluster Analysis of VOCs in Six Spices
2.4.1. Dynamic PCA of Six Spices
2.4.2. Analysis Based on Euclidean Distance
2.5. Improvement of Volatile Oils from Six Spices on Ulcerative Colitis in Zebrafish
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. HS-GC-IMS Analysis
3.2.2. Extraction of Volatile Oils
3.2.3. Animal Experiments
Animals Handling
TNBS-Induced Ulcerative Colitis in Zebrafish
Histopathological Observation of Zebrafish Intestinal
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spence, C. Cinnamon: The historic spice, medicinal uses, and flavour chemistry. Int. J. Gastron. Food Sci. 2024, 35, 100858. [Google Scholar] [CrossRef]
- Li, W.; Wu, Z.; Xia, Y.; Tan, J.; Zhao, H.; Chen, S.; Li, Y.; Tang, H.; Wang, G.; Zhang, Y. Antiviral and Antioxidant Components from the Fruits of Illicium verum Hook.f. (Chinese Star Anise). J. Agric. Food Chem. 2022, 70, 3697–3707. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Li, Y.; Lin, Z.; Yang, Z.; Chen, F.; Liu, S.; Li, C. Effect of different cooking methods on flavor compounds of Chinese traditional condiment Wuxiang powder. J. Food Process. Preserv. 2022, 46, e16358. [Google Scholar] [CrossRef]
- Sung, Y.Y.; Kim, S.H.; Kim, D.S.; Lee, J.E.; Kim, H.K. Illicium verum Extract and Trans-Anethole Attenuate Ovalbumin-Induced Airway Inflammation via Enhancement of Foxp3+ Regulatory T Cells and Inhibitison of Th2 Cytokines in Mice. Mediat. Inflamm. 2017, 2017, 7506808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res. PTR 2021, 35, 711–742. [Google Scholar] [CrossRef]
- Rubió, L.; Motilva, M.J.; Romero, M.P. Recent advances in biologically active compounds in herbs and spices: A review of the most effective antioxidant and anti-inflammatory active principles. Crit. Rev. Food Sci. Nutr. 2013, 53, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, P.; Giedrys-Kalemba, S.; Mizielińska, M.; Bartkowiak, A.J.H.P. Antibacterial activity of rosemary, caraway and fennel essential oils. Herba Pol. 2015, 61, 31–39. [Google Scholar] [CrossRef]
- Vázquez-Fresno, R.; Rosana, A.R.R.; Sajed, T.; Onookome-Okome, T.; Wishart, N.A.; Wishart, D.S. Herbs and Spices-Biomarkers of Intake Based on Human Intervention Studies–A Systematic Review. Genes Nutr. 2019, 14, 18. [Google Scholar] [CrossRef]
- Das, G.; Gonçalves, S.; Heredia, J.B.; Romano, A.; Jiménez-Ortega, L.A.; Gutiérrez-Grijalva, E.P.; Shin, H.S.; Patra, J.K. Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. J. Funct. Foods 2022, 97, 105045. [Google Scholar] [CrossRef]
- Newerli-Guz, J.; Śmiechowska, M. Health Benefits and Risks of Consuming Spices on the Example of Black Pepper and Cinnamon. Foods 2022, 11, 2746. [Google Scholar] [CrossRef]
- Khan, S.; Arif, M.; Laraib, H.; Naqvi, S.N.; Shah, O.A.; Farooq, U.; Sami-Ullah, M.; Khan, G.A. The effect of turmeric and black pepper powder incorporated in breakfast on postprandial glycemia, appetite, palatability, and gastrointestinal well-being in normal-weight adults. Food Sci. Nutr. 2024, 12, 2846–2854. [Google Scholar] [CrossRef]
- Huang, T.; Chen, X.; Chen, D.; Yu, B.; He, J.; Yan, H.; Luo, Y.; Zheng, P.; Chen, H.; Huang, Z. Eugenol promotes appetite through TRP channels mediated-CaMKK2/AMPK signaling pathway. Phytother. Res. PTR 2023, 37, 2759–2770. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.S.; Singh, M.K.; Hussain, S.; Dwivedi, P.; Khattri, S.; Singh, K. Therapeutic spectrum of piperine for clinical practice: A scoping review. Crit. Rev. Food Sci. Nutr. 2023, 63, 5813–5840. [Google Scholar] [CrossRef]
- Fu, M.; Liu, Y.; Cheng, H.; Xu, K.; Wang, G. Coptis chinensis and dried ginger herb combination inhibits gastric tumor growth by interfering with glucose metabolism via LDHA and SLC2A1. J. Ethnopharmacol. 2022, 284, 114771. [Google Scholar] [CrossRef]
- Zobeiri, M.; Parvizi, F.; Shahpiri, Z.; Heydarpour, F.; Pourfarzam, M.; Memarzadeh, M.R.; Rahimi, R.; Farzaei, M.H. Evaluation of the Effectiveness of Cinnamon Oil Soft Capsule in Patients with Functional Dyspepsia: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Evid. Based Complement. Altern. Med. 2021, 2021, 6634115. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Sang, S.; Shen, X.; Zhang, W.; Yan, J.; Chen, P.; Jiang, C.; Yuan, Y.; Zhu, W.; Yao, M. In vitro anti-Helicobacter pylori activity of Syzygium aromaticum and the preliminary mechanism of action. J. Ethnopharmacol. 2022, 288, 114995. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Rabalais, J.; Kozan, P.; Lu, T.; Durali, N.; Okamoto, K.; McGeough, M.D.; Lee, B.J.; Barrett, K.E.; Marchelletta, R.; et al. The effect of a fennel seed extract on the STAT signaling and intestinal barrier function. PLoS ONE 2022, 17, e0271045. [Google Scholar] [CrossRef]
- Mutinda, E.S.; Kimutai, F.; Mkala, E.M.; Waswa, E.N.; Odago, W.O.; Nanjala, C.; Ndungu, C.N.; Gichua, M.K.; Njire, M.M.; Gituru, R.W.; et al. Ethnobotanical uses, phytochemistry and pharmacology of pantropical genus Zanthoxylum L. (Rutaceae): An update. J. Ethnopharmacol. 2023, 303, 115895. [Google Scholar] [CrossRef]
- Kondapalli, N.B.; Hemalatha, R.; Uppala, S.; Yathapu, S.R.; Mohammed, S.; Venkata Surekha, M.; Rajendran, A.; Bharadwaj, D.K. Ocimum sanctum, Zingiber officinale, and Piper nigrum extracts and their effects on gut microbiota modulations (prebiotic potential), basal inflammatory markers and lipid levels: Oral supplementation study in healthy rats. Pharm. Biol. 2022, 60, 437–450. [Google Scholar] [CrossRef]
- Yan, S.; Bao, S.; Chen, T.; Chen, J.; Zhang, J.; Hu, X.; Liang, Y.; Zhou, X.; Li, J. Cinnamaldehyde alleviates aspirin-induced gastric mucosal injury by regulating pi3k/akt pathway-mediated apoptosis, autophagy and ferroptosis. PhytoMed. Int. J. Phytother. Phytopharm. 2024, 132, 155791. [Google Scholar] [CrossRef]
- Prabhu, T.; Shenbagavalli, S.; Shalini, K.; Sundraiah, S.; Ravindran, C.; Geethanjali, S.; Sangeetha, S. Role of Essential Oils of Spices and Herbs and Their Applications: A Review. Int. J. Plant Soil Sci. 2023, 35, 684–691. [Google Scholar] [CrossRef]
- Singh, N.; Rao, A.S.; Nandal, A.; Kumar, S.; Yadav, S.S.; Ganaie, S.A.; Narasimhan, B. Phytochemical and pharmacological review of Cinnamomum verum J. Presl-a versatile spice used in food and nutrition. Food Chem. 2021, 338, 127773. [Google Scholar] [CrossRef] [PubMed]
- Stevens, N.; Allred, K. Antidiabetic Potential of Volatile Cinnamon Oil: A Review and Exploration of Mechanisms Using In Silico Molecular Docking Simulations. Molecules 2022, 27, 853. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Zhou, Y.; Wang, D.; Yan, W. Differences in Volatile Organic Compounds in Rhizoma gastrodiae (Tian Ma) of Different Origins Determined by HS-GC-IMS. Molecules 2023, 28, 4883. [Google Scholar] [CrossRef]
- Gancarz, M.J.C. Performance Analysis of MAU-9 Electronic-Nose MOS Sensor Array Components and ANN Classification Methods for Discrimination of Herb and Fruit Essential Oils. Chemosensors 2021, 9, 243. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Jiaxin, Y.; Mengfan, W.; Ruimei, L.; Xiang, L.; Hui, D.; Lifeng, H.; Wenzhi, Y.; Xinbo, S.; Wenlong, L.; Haibin, Q.; et al. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem. J. 2021, 168, 106527. [Google Scholar]
- He, J.; Ye, L.; Li, J.; Huang, W.; Huo, Y.; Gao, J.; Liu, L.; Zhang, W. Identification of Ophiopogonis Radix from different producing areas by headspace-gas chromatography-ion mobility spectrometry analysis. J. Food Biochem. 2022, 46, e13850. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Hu, C.; Yu, B.; Wan, C.; Chen, B.; Lu, L.; Yuan, L.; Wu, Z.; Chen, H. The flavor substances changes in Fuliang green tea during storage monitoring by GC-MS and GC-IMS. Food Chem. X 2024, 21, 101047. [Google Scholar] [CrossRef]
- Bi, J.; Li, B.; Chen, Z.; Yang, Z.; Ping, C.; Gao, Y.; Zhang, Y.; Zhang, L. Comparative study of volatile flavor compounds in green onion (Allium fistulosum L.) processed with different cooking methods. Int. J. Gastron. Food Sci. 2024, 35, 100878. [Google Scholar] [CrossRef]
- Hindryckx, P.; Baert, F.; Hart, A.; Magro, F.; Armuzzi, A.; Peyrin-Biroulet, L. Clinical trials in ulcerative colitis: A historical perspective. J. Crohn’s Colitis 2015, 9, 580–588. [Google Scholar] [CrossRef]
- Wei, Y.; Du, X.; Guo, Y.; Chang, M.; Deng, B.; Liu, J.; Cao, J. Elucidation of physicochemical properties of polysaccharides extracted from Cordyceps militaris fruiting bodies with different drying treatments and their effects on ulcerative colitis in zebrafish. Front. Nutr. 2022, 9, 980357. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, S.A.; Ingale, J.M.; Pattan, S.R.; Bhawar, S.B. Amaranthus roxburghianus root extract in combination with piperine as a potential treatment of ulcerative colitis in mice. J. Integr. Med. 2013, 11, 206–212. [Google Scholar] [CrossRef]
- Saleh, H.; El-Shorbagy, H.M. Mechanism underlying methyl eugenol attenuation of intestinal ischemia/reperfusion injury. Appl. Physiol. Nutr. Metab. 2017, 42, 1097–1105. [Google Scholar] [CrossRef]
- Sana, N.; Tabussam, T.; Huma, B.U.A.; Godswill, A.C. Pharmacological, nutraceutical, functional and therapeutic properties of fennel (Foeniculum vulgare). Int. J. Food Prop. 2023, 26, 915–927. [Google Scholar]
- Earley, A.M.; Dixon, C.T.; Shiau, C.E. Genetic analysis of zebrafish homologs of human FOXQ1, foxq1a and foxq1b, in innate immune cell development and bacterial host response. PLoS ONE 2018, 13, e0194207. [Google Scholar] [CrossRef]
- Graves, C.L.; Chen, A.; Kwon, V.; Shiau, C.E. Zebrafish harbor diverse intestinal macrophage populations including a subset intimately associated with enteric neural processes. iScience 2021, 24, 102496. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Li, H.; Liu, M.; Xie, B.; Wei, W.; Wu, J.; Meng, F.; Wang, H.Y.; Chen, S. A Manganese-Superoxide Dismutase from Thermus thermophilus HB27 Suppresses Inflammatory Responses and Alleviates Experimentally Induced Colitis. Inflamm. Bowel Dis. 2019, 25, 1644–1655. [Google Scholar] [CrossRef]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.G.; Chen, F.L.; Guan, H.N.; Liu, L.L.; Zhang, C.Y.; Zhu, P.Y.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef]
- El-Mesallamy, A.M.D.; El-Gerby, M.; Azim, M.H.M.A.E.; Awad, A. Antioxidant, Antimicrobial Activities and Volatile Constituents of Clove Flower Buds Oil. J. Essent. Oil Bear. Plants 2012, 15, 900–907. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Satyal, P.; Barata, L.M.; da Silva, J.K.R.; Setzer, W.N. Volatiles of Black Pepper Fruits (Piper nigrum L.). Molecules 2019, 24, 4244. [Google Scholar] [CrossRef] [PubMed]
- Jinze, F.; Lifang, H.; Haobin, Z.; Maoying, L.; Yulin, L.; Qiuxiao, D.; Lili, J.; Dongmei, W.; Cheng, W. Combining with volatilomic profiling and chemometrics to explore the volatile characteristics in five different dried Zanthoxylum bungeanum maxim. Food Res. Int. 2024, 175, 113719. [Google Scholar]
- Yu, D.X.; Guo, S.; Wang, J.M.; Yan, H.; Zhang, Z.Y.; Yang, J.; Duan, J.A. Comparison of Different Drying Methods on the Volatile Components of Ginger (Zingiber officinale Roscoe) by HS-GC-MS Coupled with Fast GC E-Nose. Foods 2022, 11, 1611. [Google Scholar] [CrossRef]
- Yu, T.; Yao, H.; Qi, S.; Wang, J. GC-MS analysis of volatiles in cinnamon essential oil extracted by different methods. Grasas Y Aceites 2020, 71, e372. [Google Scholar] [CrossRef]
- Najdoska-Bogdanov, M.; Bogdanov, J.B.; Stefova, M. Changes in Volatile Compounds during Aging of Sweet Fennel Fruits-Comparison of Hydrodistillation and Static Headspace Sampling Methods. Nat. Prod. Commun. 2016, 11, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Afifi, S.M.; El-Mahis, A.; Heiss, A.G.; Farag, M.A. Gas Chromatography-Mass Spectrometry-Based Classification of 12 Fennel (Foeniculum vulgare Miller) Varieties Based on Their Aroma Profiles and Estragole Levels as Analyzed Using Chemometric Tools. ACS Omega 2021, 6, 5775–5785. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Chen, J.; Li, X.; Qi, Y.; Jiang, R. Flavor components detection and discrimination of isomers in Huaguo tea using headspace-gas chromatography-ion mobility spectrometry and multivariate statistical analysis. Anal. Chim. Acta 2023, 1243, 340842. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L. Multi-Megavariate Data Analysis, 3rd ed.; Umetrics Academy: Stockholm, Sweden, 2006. [Google Scholar]
- Guo, S.; Zhao, X.; Ma, Y.; Wang, Y.; Wang, D. Fingerprints and changes analysis of volatile compounds in fresh-cut yam during yellowing process by using HS-GC-IMS. Food Chem. 2022, 369, 130939. [Google Scholar] [CrossRef]
- Shi-Qi, Z.; Duo, F.; Ya-Xi, Z.; Jian, Z.; Jiang-Yan, Z.; Yu, G.; Wen-Jie, Y. HS-GC-IMS detection of volatile organic compounds in cistanche powders under different treatment methods. LWT 2022, 165, 113730. [Google Scholar]
- Muthas, D.; Reznichenko, A.; Balendran, C.A.; Böttcher, G.; Clausen, I.G.; Kärrman Mårdh, C.; Ottosson, T.; Uddin, M.; MacDonald, T.T.; Danese, S.; et al. Neutrophils in ulcerative colitis: A review of selected biomarkers and their potential therapeutic implications. Scand. J. Gastroenterol. 2017, 52, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Dhaneshwar, S.S.; Chail, M.; Patil, M.; Naqvi, S.; Vadnerkar, G. Colon-specific mutual amide prodrugs of 4-aminosalicylic acid for their mitigating effect on experimental colitis in rats. Eur. J. Med. Chem. 2009, 44, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yang, F.; Qiu, Y.; Wang, C.; Zou, Q.; Wang, L.; Li, X.; Jin, M.; Liu, K.; Zhang, S.; et al. The alleviative effect of C-phycocyanin peptides against TNBS-induced inflammatory bowel disease in zebrafish via the MAPK/Nrf2 signaling pathways. Fish. Shellfish. Immunol. 2024, 145, 109351. [Google Scholar] [CrossRef] [PubMed]
- Bucur, L. GC-MS Analysis and bioactive properties of Zingiberis Rhizoma essential oil. Farmacia 2020, 68, 280–287. [Google Scholar] [CrossRef]
- El-Ghorab, A.H.; Nauman, M.; Anjum, F.M.; Hussain, S.; Nadeem, M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem. 2010, 58, 8231–8237. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, L.; Zheng, S.; Hou, A.; Man, W.; Zhang, J.; Wang, S.; Wang, X.; Yu, H.; Jiang, H. A review: The botany, ethnopharmacology, phytochemistry, pharmacology of Cinnamomi cortex. RSC Adv. 2021, 11, 27461–27497. [Google Scholar] [CrossRef] [PubMed]
- Abdellaoui, M.; Bouhlali, E.d.T.; Derouich, M.; El-Rhaffari, L. Essential oil and chemical composition of wild and cultivated fennel (Foeniculum vulgare Mill.): A comparative study. South. Afr. J. Bot. 2020, 135, 93–100. [Google Scholar] [CrossRef]
- Korinek, M.; Handoussa, H.; Tsai, Y.H.; Chen, Y.Y.; Chen, M.H.; Chiou, Z.W.; Fang, Y.; Chang, F.R.; Yen, C.H.; Hsieh, C.F.; et al. Anti-Inflammatory and Antimicrobial Volatile Oils: Fennel and Cumin Inhibit Neutrophilic Inflammation via Regulating Calcium and MAPKs. Front. Pharmacol. 2021, 12, 674095. [Google Scholar] [CrossRef]
- Gautam, M.K.; Goel, S.; Ghatule, R.R.; Singh, A.; Nath, G.; Goel, R.K. Curative effect of Terminalia chebula extract on acetic acid-induced experimental colitis: Role of antioxidants, free radicals and acute inflammatory marker. Inflammopharmacology 2013, 21, 377–383. [Google Scholar] [CrossRef]
- Baker, J.; Brown, K.; Rajendiran, E.; Yip, A.; DeCoffe, D.; Dai, C.; Molcan, E.; Chittick, S.A.; Ghosh, S.; Mahmoud, S.; et al. Medicinal lavender modulates the enteric microbiota to protect against Citrobacter rodentium-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G825–G836. [Google Scholar] [CrossRef]
- Liu, C.; He, Y.X.; Zhang, J.N.; Yang, F.; Wang, S.Y.; Hu, J.L.; Yu, Y. Angelica oil restores the intestinal barrier function by suppressing S100A8/A9 signalling in mice with ulcerative colitis. PhytoMed. Int. J. Phytother. Phytopharm. 2023, 108, 154490. [Google Scholar] [CrossRef] [PubMed]
- Adakudugu, E.A.; Ameyaw, E.O.; Obese, E.; Biney, R.P.; Henneh, I.T.; Aidoo, D.B.; Oge, E.N.; Attah, I.Y.; Obiri, D.D. Protective effect of bergapten in acetic acid-induced colitis in rats. Heliyon 2020, 6, e04710. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | CAS | Formula | RI | Rt (s) | Dt (ms) | Odors | Assignment |
---|---|---|---|---|---|---|---|---|
1 | β-caryophyllene | 87-44-5 | C15H24 | 1942.2 | 1705.813 | 1.43896 | Wood, Spice | DX |
2 | Citral (M) | 5392-40-5 | C10H16O | 1352.0 | 857.086 | 1.05297 | Lemon | GJ |
3 | Citral (D) | 5392-40-5 | C10H16O | 1348.0 | 851.372 | 1.62057 | GJ | |
4 | Decanal | 112-31-2 | C10H20O | 1278.9 | 751.951 | 1.53787 | Soap, Orange Peel, Tallow | HJ |
5 | Ethyl phenylacetate (M) | 101-97-3 | C10H12O2 | 1233.6 | 686.854 | 1.29494 | Fruit, Sweet | HJ |
6 | Geraniol | 106-24-1 | C10H18O | 1418.8 | 953.16 | 1.72739 | Rose, Geranium | RG |
7 | α-terpineol | 98-55-5 | C10H18O | 1294.5 | 774.439 | 1.22775 | Oil, Anise, Mint | HJ |
8 | Methyl salicylate | 119-36-8 | C8H8O3 | 1236.5 | 691.092 | 1.20143 | Peppermint | DX |
9 | Nerol | 106-25-2 | C10H18O | 1250.1 | 710.566 | 1.22112 | Sweet | XHX |
10 | Estragole | 140-67-0 | C10H12O | 1249.8 | 710.126 | 1.2414 | Licorice, Anise | XHX |
11 | Anethole | 104-46-1 | C10H12O | 1453.6 | 1003.307 | 1.76643 | Licorice, Anise | XHX |
12 | γ-octalactone | 104-50-7 | C8H14O2 | 1331.9 | 828.267 | 1.33601 | Coconut | HJ |
13 | Ethyl phenylacetate (D) | 101-97-3 | C10H12O2 | 1227.7 | 678.42 | 1.78766 | Fruit, Sweet | HJ |
14 | α-pinene oxide | 1686-14-2 | C10H16O | 1084.3 | 472.131 | 1.22616 | / | HHJ |
15 | Limonene | 138-86-3 | C10H16 | 1022.2 | 382.914 | 1.65342 | Lemon, Orange | Common |
16 | α-phellandrene | 99-83-2 | C10H16 | 1006.3 | 360.049 | 1.68777 | Turpentine, Mint, Spice | Common |
17 | p-mentha-1(7),8-diene | 499-97-8 | C10H16 | 999.5 | 350.251 | 1.72708 | / | Common |
18 | α-myrcene | 1686-30-2 | C10H16 | 981.2 | 332.858 | 1.64744 | / | Common |
19 | α-pinene | 80-56-8 | C10H16 | 933.5 | 292.194 | 1.67433 | Pine, Turpentine | Common |
20 | β-ocimene | 13877-91-3 | C10H16 | 1047.0 | 418.595 | 1.71467 | Citrus | HJ |
21 | δ-2-carene | 4497-92-1 | C10H16 | 992.1 | 342.167 | 1.72708 | / | Common |
22 | Sabinene | 3387-41-5 | C10H16 | 970.3 | 323.55 | 1.64537 | Pepper, Turpentine, Wood | Common |
23 | α-thujene | 2867-05-2 | C10H16 | 923.8 | 283.866 | 1.67433 | Wood, Green, Herb | HJ |
24 | Heptaldehyde (M) | 111-71-7 | C7H14O | 904.0 | 266.966 | 1.33343 | Fat, Citrus, Rancid | HJ |
25 | Heptaldehyde (D) | 111-71-7 | C7H14O | 904.2 | 267.167 | 1.69889 | HJ | |
26 | 2-heptanone (M) | 110-43-0 | C7H14O | 894.0 | 258.49 | 1.25987 | Soap | DX |
27 | 2-heptanone (D) | 110-43-0 | C7H14O | 894.3 | 258.692 | 1.63798 | DX | |
28 | Trans-2-hexenal (M) | 6728-26-3 | C6H10O | 850.7 | 234.679 | 1.18517 | Apple, Green | HJ |
29 | Hexanal (M) | 66-25-1 | C6H12O | 796.1 | 205.419 | 1.25413 | Grass, Tallow, Fat | RG |
30 | Hexanal (D) | 66-25-1 | C6H12O | 796.1 | 205.419 | 1.56903 | RG | |
31 | 2-methylbutan-1-ol | 137-32-6 | C5H12O | 739.3 | 180.832 | 1.22368 | Wine, Onion | XHX |
32 | Pentanal (M) | 110-62-3 | C5H10O | 702.3 | 165.858 | 1.18104 | Almond, Malt, Pungent | GJ |
33 | 2-methylbutyraldehyde (M) | 96-17-3 | C5H10O | 673.4 | 156.18 | 1.15841 | Cocoa, Almond | GJ |
34 | 2-methylbutyraldehyde (D) | 96-17-3 | C5H10O | 672.2 | 155.875 | 1.40207 | GJ | |
35 | 3-methylbutyraldehyde (M) | 590-86-3 | C5H10O | 660.9 | 152.819 | 1.16972 | Malt | GJ |
36 | 3-methylbutyraldehyde (D) | 590-86-3 | C5H10O | 661.3 | 152.921 | 1.41338 | Malt | GJ |
37 | Ethyl acetate (M) | 141-78-6 | C4H8O2 | 620.1 | 141.817 | 1.10098 | Pineapple | DX |
38 | Ethyl acetate (D) | 141-78-6 | C4H8O2 | 616.7 | 140.901 | 1.34115 | DX | |
39 | 2-methyl propanol (M) | 78-83-1 | C4H10O | 634.5 | 145.688 | 1.16798 | Wine, Solvent, Bitter | HHJ |
40 | Isobutyraldehyde (M) | 78-84-2 | C4H8O | 570.1 | 128.328 | 1.10241 | Pungent, Malt, Green | GJ |
41 | Isobutyraldehyde (D) | 78-84-2 | C4H8O | 569.5 | 128.173 | 1.28738 | GJ | |
42 | Acetone | 67-64-1 | C3H6O | 517.3 | 114.092 | 1.11918 | Peppermint | Common |
43 | Ethanol | 64-17-5 | C2H6O | 495.5 | 108.212 | 1.1268 | Sweet | Common |
44 | 2-propenylmethy disulfide (M) | 2179-58-0 | C4H8S2 | 913.8 | 275.404 | 1.10996 | Garlic, Scallion | HJ |
45 | Propyl sulfide | 111-47-7 | C6H14S | 886.8 | 254.025 | 1.15809 | Garlic, Onion | DX |
46 | Isoamyl acetate (M) | 123-92-2 | C7H14O2 | 877.3 | 248.952 | 1.31112 | Banana | HJ |
47 | Isoamyl acetate (D) | 123-92-2 | C7H14O2 | 877.3 | 248.952 | 1.75788 | HJ | |
48 | Furfural (M) | 98-01-1 | C5H4O2 | 831.1 | 224.171 | 1.08282 | Bread, Almond, Sweet | DX |
49 | Furfural (D) | 98-01-1 | C5H4O2 | 830.6 | 223.909 | 1.3364 | DX | |
50 | Acetoin | 513-86-0 | C4H8O2 | 714.1 | 170.648 | 1.33487 | Butter, Cream | HJ |
51 | Pentanal (D) | 110-62-3 | C5H10O | 702.0 | 165.711 | 1.43156 | Almond, Malt, Pungent | GJ |
52 | 2-methyl propanol (D) | 78-83-1 | C4H10O | 636.7 | 146.301 | 1.35994 | Wine, Solvent, Bitter | HHJ |
53 | Methyl acetate | 79-20-9 | C3H6O2 | 543.6 | 121.18 | 1.2006 | Sweet | DX |
54 | 2-butanone (M) | 78-93-3 | C4H8O | 604.8 | 137.693 | 1.06241 | Ether | XHX |
55 | 2-butanone (D) | 78-93-3 | C4H8O | 603.7 | 137.391 | 1.25159 | XHX | |
56 | 2-pentanone (M) | 107-87-9 | C5H10O | 693.3 | 162.211 | 1.12262 | Ether, Fruit | XHX |
57 | 2-pentanone (D) | 107-87-9 | C5H10O | 692.6 | 161.905 | 1.37694 | XHX | |
58 | Butyl sulfide (D) | 544-40-1 | C8H18S | 1082.4 | 469.406 | 1.80755 | Grass, Rose, Geranium | XHX |
59 | 2-nonanone (D) | 821-55-6 | C9H18O | 1096.8 | 490.16 | 1.88908 | Hot milk, Soap, Green | DX |
60 | Benzaldehyde (M) | 100-52-7 | C7H6O | 960.1 | 314.899 | 1.15391 | Bitter Almond, Burnt Sugar, Cherry, Malt, Roasted Peppe | RG |
61 | 2,6-dimethyl-4-heptanone | 108-83-8 | C9H18O | 955.0 | 310.529 | 1.3238 | Green | XHX |
62 | 2-nonanone (M) | 821-55-6 | C9H18O | 1094.3 | 486.528 | 1.4085 | Hot milk, Soap, Green | DX |
63 | Butyl sulfide (M) | 544-40-1 | C8H18S | 1083.5 | 471.075 | 1.29395 | Grass, Rose, Geranium | XHX |
64 | Dehydrolinalool | 29171-20-8 | C10H16O | 1064.0 | 442.936 | 1.72728 | Sweet, Musk | HJ |
65 | Linalool | 78-70-6 | C10H18O | 1105.5 | 502.654 | 1.75112 | Flower, Lavender | HJ |
66 | 1,8-cineol | 470-82-6 | C10H18O | 1035.7 | 402.3 | 1.29295 | Mint, Sweet | GJ |
67 | Benzaldehyde (D) | 100-52-7 | C7H6O | 961.0 | 315.636 | 1.47649 | Bitter Almond, Burnt Sugar, Cherry, Malt, Roasted Pepper | RG |
68 | Trans-β-ocimene | 3779-61-1 | C10H16 | 1037.9 | 405.41 | 1.22386 | Sweet, Herb | Common |
69 | Styrene | 100-42-5 | C8H8 | 894.7 | 259.036 | 1.43117 | Balsamic, Gasoline | RG |
70 | 2,3-butanediol | 513-85-9 | C4H10O2 | 786.3 | 200.198 | 1.3698 | Fruit, Onion | HJ |
71 | Methylpyrazine | 109-08-0 | C5H6N2 | 801.2 | 208.174 | 1.08018 | Popcorn | GJ |
72 | 2-propenylmethyl disulfide (D) | 2179-58-0 | C4H8S2 | 913.9 | 275.448 | 1.45652 | Garlic, Scallion | HJ |
73 | Furfuryl alcohol | 98-00-0 | C5H6O2 | 857.2 | 238.183 | 1.1268 | Burnt | HJ |
74 | Trans-2-hexenal (D) | 6728-26-3 | C6H10O | 850.8 | 234.772 | 1.52517 | Apple, Green | HJ |
75 | Isoamyl alcohol | 123-51-3 | C5H12O | 736.0 | 179.515 | 1.49146 | Whiskey, Malt, Burnt | HJ |
76 | 1,4-dioxane | 123-91-1 | C4H8O2 | 681.2 | 158.295 | 1.32321 | Ether | HJ |
77 | 2,3-butanedione | 431-03-8 | C4H6O2 | 579.9 | 130.977 | 1.17453 | Butter | HJ |
78 | Isopropyl alcohol | 67-63-0 | C3H8O | 488.5 | 106.325 | 1.08636 | Alcohol, Irritant | HJ |
79 | Limonene oxide | 1195-92-2 | C10H16O | 1195.4 | 631.995 | 1.22306 | Fruit | GJ |
80 | p-mentha-1,5-dien-8-ol | 1686-20-0 | C10H16O | 1158.7 | 579.105 | 1.22254 | / | GJ |
Principal Components | Eigenvalue | Variance Contribution Rate/% | Cumulative Variance Contribution Rate/% |
---|---|---|---|
1 | 47.722 | 34.241 | 34.241 |
2 | 28.393 | 23.228 | 57.469 |
3 | 20.630 | 15.954 | 73.423 |
4 | 15.068 | 10.383 | 83.806 |
5 | 12.188 | 8.470 | 92.276 |
Samples | Principal Component Scores | Comprehensive Scores | ||||
---|---|---|---|---|---|---|
Y1 | Y2 | Y3 | Y4 | Y5 | ||
HHJ | −1.5509 | 2.0422 | −3.8746 | −1.4877 | 6.1415 | −0.3510 |
DX | −6.2205 | −8.9991 | 1.2182 | 2.5422 | 0.1818 | −3.7001 |
RG | −2.3536 | 0.1096 | −4.6950 | −4.5146 | −4.4557 | −2.6483 |
GJ | −2.0804 | 3.3696 | 7.9618 | −3.0126 | 0.1084 | 0.9056 |
HJ | 13.6246 | −2.6994 | 0.4132 | 0.3854 | −0.1602 | 4.7252 |
XHX | −1.4191 | 6.1771 | −1.0236 | 6.0874 | −1.8157 | −12.5029 |
Group | Concentrations (ng/mL) | Decrease Rate (%) | |
---|---|---|---|
Control | - | 5.7 ± 1.95 | - |
Model | - | 31.2 ± 6.61 #### | - |
DX oil | 1 | 12.5 ± 3.81 **** | 59.9 |
GJ oil | 1 | 21.6 ± 6.83 *** | 30.8 |
HHJ oil | 1 | 15.4 ± 3.31 **** | 50.6 |
HJ oil | 1 | 13.3 ± 2.95 **** | 57.4 |
RG oil | 1 | 18.2 ± 2.57 **** | 41.7 |
XHX oil | 1 | 25.2 ± 8.69 | 19.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Zhang, Q.; Wang, C.; Geng, X.; Hua, M.; Li, N.; Dai, Y.; Zhang, Y.; Zhou, Q. HS-GC-IMS Analysis of Volatile Organic Compounds in Six Spicy Spices and Their Effects on Ulcerative Colitis. Molecules 2024, 29, 3764. https://doi.org/10.3390/molecules29163764
Gao Q, Zhang Q, Wang C, Geng X, Hua M, Li N, Dai Y, Zhang Y, Zhou Q. HS-GC-IMS Analysis of Volatile Organic Compounds in Six Spicy Spices and Their Effects on Ulcerative Colitis. Molecules. 2024; 29(16):3764. https://doi.org/10.3390/molecules29163764
Chicago/Turabian StyleGao, Qi, Qiang Zhang, Chunliang Wang, Xue Geng, Min Hua, Nianhong Li, Yanpeng Dai, Yan Zhang, and Qian Zhou. 2024. "HS-GC-IMS Analysis of Volatile Organic Compounds in Six Spicy Spices and Their Effects on Ulcerative Colitis" Molecules 29, no. 16: 3764. https://doi.org/10.3390/molecules29163764
APA StyleGao, Q., Zhang, Q., Wang, C., Geng, X., Hua, M., Li, N., Dai, Y., Zhang, Y., & Zhou, Q. (2024). HS-GC-IMS Analysis of Volatile Organic Compounds in Six Spicy Spices and Their Effects on Ulcerative Colitis. Molecules, 29(16), 3764. https://doi.org/10.3390/molecules29163764