Reactive Behaviour of Platinum(II) Salts with Ethylenediamine in Sustainable Water/Choline Chloride-Based Deep Eutectic Solvents Mixtures
Abstract
:1. Introduction
2. Results
2.1. Behaviour and 1H NMR Spectroscopy of DES and Water Mixtures
2.2. Reactivity of K2PtCl4 with Ethylenediamine
2.3. Reactivity in Glyceline (Reaction 1)
2.3.1. 1H and 195Pt NMR Experiments (Reaction 1)
2.3.2. [1H,13C]-HSQC and [1H,15N]-HSQC NMR Experiments (Reaction 1)
2.3.3. DOSY and T1 Experiments (Reaction 1)
2.4. Reactivity in Ethaline (Reaction 2)
2.4.1. 1H and 195Pt NMR Experiments (Reaction 2)
2.4.2. [1H,13C]-HSQC and [1H,15N]-HSQC NMR Experiments (Reaction 2)
2.4.3. DOSY and T1 Experiments (Reaction 2)
2.5. Comparison of the Hydrogen Bond Donors Glycerol and Ehtylene Glycol
3. Materials and Methods
3.1. Starting Materials
3.2. DESs Preparation
3.3. NMR Spectroscopy
4. Reactions
4.1. Synthesis of K2PtCl4
4.2. Synthesis of [Pt(en)Cl2] (En = Ethylenediamine)
4.3. Reaction of K2PtCl4 and Ethylenediamine in DES
4.4. Preparation of Standard Ethylenediamine in DES:Water Solutions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atharifar, H.; Keivanloo, A.; Maleki, B. Greener Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-Ones in a Deep Eutectic Solvent. Org. Prep. Proced. Int. 2020, 52, 517–523. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M. Deep Eutectic Solvents vs. Ionic Liquids: Similarities and Differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- Thuy Pham, T.P.; Cho, C.-W.; Yun, Y.-S. Environmental Fate and Toxicity of Ionic Liquids: A Review. Water Res. 2010, 44, 352–372. [Google Scholar] [CrossRef] [PubMed]
- Messa, F.; Dilauro, G.; Paparella, A.N.; Silvestri, L.; Furlotti, G.; Iacoangeli, T.; Perrone, S.; Salomone, A. Deep Eutectic Solvents Meet Safe, Scalable and Sustainable Hydrogenations Enabled by Aluminum Powder and Pd/C. Green Chem. 2022, 24, 4388–4394. [Google Scholar] [CrossRef]
- Messa, F.; Perrone, S.; Capua, M.; Tolomeo, F.; Troisi, L.; Capriati, V.; Salomone, A. Towards a Sustainable Synthesis of Amides: Chemoselective Palladium-Catalysed Aminocarbonylation of Aryl Iodides in Deep Eutectic Solvents. Chem. Commun. 2018, 54, 8100–8103. [Google Scholar] [CrossRef]
- Messa, F.; Paparella, A.N.; Veselý, D.; Krajčovič, J.; Papadia, P.; Perrone, S.; Salomone, A. Gas-Free Amino- and Alkoxycarbonylation of Aryl Iodides in a Bioinspired Deep Eutectic Solvent with Mo(CO)6 as a Safe CO Source. Eur. J. Org. Chem. 2023, 26, e202300309. [Google Scholar] [CrossRef]
- Zhang, T.; Doert, T.; Wang, H.; Zhang, S.; Ruck, M. Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angew. Chem. Int. Ed. 2021, 60, 22148–22165. [Google Scholar] [CrossRef]
- Correia, I.; Welton, T. An Old Reaction in New Media: Kinetic Study of a Platinum(II) Substitution Reaction in Ionic Liquids. Dalton Trans. 2009, 4115–4121. [Google Scholar] [CrossRef]
- Hasan, M.; Kozhevnikov, I.V.; Siddiqui, M.R.H.; Femoni, C.; Steiner, A.; Winterton, N. N,N′-Dialkylimidazolium Chloroplatinate(II), Chloroplatinate(IV), and Chloroiridate(IV) Salts and an N-Heterocyclic Carbene Complex of Platinum(II): Synthesis in Ionic Liquids and Crystal Structures. Inorg. Chem. 2001, 40, 795–800. [Google Scholar] [CrossRef]
- Illner, P.; Begel, S.; Kern, S.; Puchta, R.; van Eldik, R. Fast Substitution Reactions of Pt(II) in Different Ionic Liquids. Reactivity Control by Anionic Components. Inorg. Chem. 2009, 48, 588–597. [Google Scholar] [CrossRef]
- Zielinski, W.; Kukawka, R.; Maciejewski, H.; Smiglak, M. Ionic Liquids as Solvents for Rhodium and Platinum Catalysts Used in Hydrosilylation Reaction. Molecules 2016, 21, 1115. [Google Scholar] [CrossRef] [PubMed]
- Woitassek, D.; Strothmann, T.; Biller, H.; Lerch, S.; Schmitz, H.; Song, Y.; Roitsch, S.; Strassner, T.; Janiak, C. Tunable Aryl Alkyl Ionic Liquid Supported Synthesis of Platinum Nanoparticles and Their Catalytic Activity in the Hydrogen Evolution Reaction and in Hydrosilylation. Molecules 2023, 28, 405. [Google Scholar] [CrossRef] [PubMed]
- Wazeer, I.; Hizaddin, H.F.; Hashim, M.A.; Hadj-Kali, M.K. An Overview about the Extraction of Heavy Metals and Other Critical Pollutants from Contaminated Water via Hydrophobic Deep Eutectic Solvents. J. Environ. Chem. Eng. 2022, 10, 108574. [Google Scholar] [CrossRef]
- Mokhodoeva, O.; Maksimova, V.; Shishov, A.; Shkinev, V. Separation of Platinum Group Metals Using Deep Eutectic Solvents Based on Quaternary Ammonium Salts. Sep. Purif. Technol. 2023, 305, 122427. [Google Scholar] [CrossRef]
- Papadia, P.; Gandin, V.; Barbanente, A.; Ruello, A.G.; Marzano, C.; Micoli, K.; Hoeschele, J.D.; Natile, G.; Margiotta, N. A Minimal Structural Variation Can Overcome Tumour Resistance of Oxaliplatin: The Case of 4,5-Dehydrogenation of the Cyclohexane Ring. RSC Adv. 2019, 9, 32448–32452. [Google Scholar] [CrossRef]
- Delso, I.; Lafuente, C.; Muñoz-Embid, J.; Artal, M. NMR Study of Choline Chloride-Based Deep Eutectic Solvents. J. Mol. Liq. 2019, 290, 111236. [Google Scholar] [CrossRef]
- Ferreira, A.S.D.; Craveiro, R.; Duarte, A.R.; Barreiros, S.; Cabrita, E.J.; Paiva, A. Effect of Water on the Structure and Dynamics of Choline Chloride/Glycerol Eutectic Systems. J. Mol. Liq. 2021, 342, 117463. [Google Scholar] [CrossRef]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of Water Addition on Choline Chloride/Glycol Deep Eutectic Solvents: Characterization of Their Structural and Physicochemical Properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Rochon, F.D.; Morneau, A. 195Pt and 1H NMR Studies of Platinum(II) Complexes with Ethylenediamine Derivatives. Magn. Reson. Chem. 1991, 29, 120–126. [Google Scholar] [CrossRef]
- Watt, G.W.; Klett, D.S. The Infrared Spectra and Structure of Bis(Ethylenediamine)Palladium(II) and -Platinum(II) Halides. Inorg. Chem. 1966, 5, 1278–1280. [Google Scholar] [CrossRef]
- Appleton, T.G.; Hall, J.R. Complexes with Six-Membered Chelate Rings. I. Preparation of Platinum(II) and Palladium(II) Complexes of Trimethylenediamine and Some Methyl-Substituted Derivatives. Inorg. Chem. 1970, 9, 1800–1806. [Google Scholar] [CrossRef]
- Ethylenediamine(107-15-3) 1H NMR Spectrum. Available online: https://www.chemicalbook.com/SpectrumEN_107-15-3_1HNMR.htm (accessed on 5 February 2025).
- Josephsen, J. Diaminehalogenoplatinum(II) Complex Reactions with DMSO. Inorganica Chim. Acta 2018, 478, 54–58. [Google Scholar] [CrossRef]
- Pesek, J.J.; Mason, W.R. Platinum-195 Magnetic Resonance Spectra of Some Platinum(II) and Platinum(IV) Complexes. J. Magn. Reson. (1969) 1977, 25, 519–529. [Google Scholar] [CrossRef]
- Pregosin, P.S. Platinum-195 Nuclear Magnetic Resonance. Coord. Chem. Rev. 1982, 44, 247–291. [Google Scholar] [CrossRef]
- Still, B.M.; Kumar, P.G.A.; Aldrich-Wright, J.R.; Price, W.S. 195Pt NMR—Theory and Application. Chem. Soc. Rev. 2007, 36, 665–686. [Google Scholar] [CrossRef]
- Kerrison, S.J.S.; Sadler, P.J. 195Pt NMR Studies of Platinum(II) Dimethylsuphoxide Complexes. Inorganica Chim. Acta 1985, 104, 197–201. [Google Scholar] [CrossRef]
- Burdge, J.R.; Stanko, J.A.; Palmer, J.W. Oxidation of Platinum(Ii) Bis(Ethylenediamine) Complexes with the Oxides of Nitrogen, No and No 2: A Model for Synthesis of Platinum(Iv) Nitro Compounds as Potential Antitumor Agents. Fla. Sci. 1995, 58, 274–285. [Google Scholar]
- Appleton, T.G.; Hall, J.R.; Ralph, S.F. 15N and 195Pt NMR Spectra of Platinum Ammine Complexes: Trans- and Cis-Influence Series Based on 195Pt-15N Coupling Constants and 15N Chemical Shifts. Inorg. Chem. 1985, 24, 4685–4693. [Google Scholar] [CrossRef]
- del Socorro Murdoch, P.; Kratochwil, N.A.; Parkinson, J.A.; Patriarca, M.; Sadler, P.J. A Novel Dinuclear Diaminoplatinum(II) Glutathione Macrochelate. Angew. Chem. Int. Ed. 1999, 38, 2949–2951. [Google Scholar] [CrossRef]
- Tanaka, K. Measurements of Self-Diffusion Coefficients of Water in Pure Water and in Aqueous Electrolyte Solutions. J. Chem. Soc. Faraday Trans. 1 1975, 71, 1127. [Google Scholar] [CrossRef]
- Levitt, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd ed.; John Wiley & Sons: Nashville, TN, USA, 2013; ISBN 978-1-118-68184-8. [Google Scholar]
- Priqueler, J.R.L.; Butler, I.S.; Rochon, F.D. An Overview of 195Pt Nuclear Magnetic Resonance Spectroscopy. Appl. Spectrosc. Rev. 2006, 41, 185–226. [Google Scholar] [CrossRef]
- Sterzel, M.; Autschbach, J. Toward an Accurate Determination of 195Pt Chemical Shifts by Density Functional Computations: The Importance of Unspecific Solvent Effects and the Dependence of Pt Magnetic Shielding Constants on Structural Parameters. Inorg. Chem. 2006, 45, 3316–3324. [Google Scholar] [CrossRef]
- Agieienko, V.; Buchner, R. A Comprehensive Study of Density, Viscosity, and Electrical Conductivity of (Choline Chloride + Glycerol) Deep Eutectic Solvent and Its Mixtures with Dimethyl Sulfoxide. J. Chem. Eng. Data 2021, 66, 780–792. [Google Scholar] [CrossRef]
- Harifi-Mood, A.R.; Buchner, R. Density, Viscosity, and Conductivity of Choline Chloride + Ethylene Glycol as a Deep Eutectic Solvent and Its Binary Mixtures with Dimethyl Sulfoxide. J. Mol. Liq. 2017, 225, 689–695. [Google Scholar] [CrossRef]
- Neufeld, R.; Stalke, D. Accurate Molecular Weight Determination of Small Molecules via DOSY-NMR by Using External Calibration Curves with Normalized Diffusion Coefficients. Chem. Sci. 2015, 6, 3354–3364. [Google Scholar] [CrossRef]
- Claridge, T.D.W. High-Resolution NMR Techniques in Organic Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-099993-7. [Google Scholar]
- AlZahrani, Y.M.; Britton, M.M. Probing the Influence of Zn and Water on Solvation and Dynamics in Ethaline and Reline Deep Eutectic Solvents by 1 H Nuclear Magnetic Resonance. Phys. Chem. Chem. Phys. 2021, 23, 21913–21922. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Kumar Sahu, P.; Chakraborty, S.; Ghosh, A.; Sarkar, M. Spin–Lattice Relaxation Studies on Deep Eutectic Solvent/Choliniumtetrachloroferrate Mixtures: Suitability of DES-Based Systems towards Magnetic Resonance Imaging Studies. Magn. Reson. Chem. 2018, 56, 120–126. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 39, 70–71. [Google Scholar] [CrossRef]
- Wu, D.H.; Chen, A.D.; Johnson, C.S. An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses. J. Magn. Reson. Ser. A 1995, 115, 260–264. [Google Scholar] [CrossRef]
- Kauffman, G.B.; Thurner, J.J.; Zatko, D.A. Ammonium Hexachloroplatinate(IV). In Inorganic Syntheses; Tyree, S.Y., Ed.; Wiley: Hoboken, NJ, USA, 1967; Volume 9, pp. 182–185. ISBN 978-0-470-13168-8. [Google Scholar]
- Keller, R.N.; Moeller, T.; Quagliano, J.V. Potassium Tetrachloroplatinate(II): (Potassium Chloroplatinite). In Inorganic Syntheses; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1946; pp. 247–250. ISBN 978-0-470-13233-3. [Google Scholar]
1H | 13C | 15N | |
---|---|---|---|
-CH2-en | 2.67 | 45.90 | - |
Hx | 2.66 | 49.14 | - |
Hy | 5.34 | - | −31.37 |
Hz | 2.58 | 51.21 | - |
Hw | 5.31 | - | −31.42 |
GL | δ (ppm) | D (10−10 m2/s) | D Error (10−10 m2/s) 1 | T1 (s) | T1 Error 1 |
---|---|---|---|---|---|
Hb | 4.03 | 0.49 | 1.01 × 10−5 | 0.59 | 1.81 × 10−5 |
Hc | 3.55 | 0.50 | 4.50 × 10−5 | 0.34 | 5.74 × 10−6 |
Hd | 3.22 | 0.47 | 4.40 × 10−6 | 0.10 | 4.21× 10−7 |
Hf | 3.59 | 0.56 | 2.27 × 10−5 | 0.32 | 6.07 × 10−6 |
Hg | 3.72 | 0.55 | 7.82 × 10−6 | 0.66 | 1.91 × 10−5 |
water | 4.81 | 1.21 | 1.29 × 10−5 | 0.05 | 1.65 × 10−7 |
Hx | 2.65 | 0.42 | 1.72 × 10−3 | 0.29 | 3.31 × 10−3 |
Hy | 5.34 | 1.11 | 3.18 × 10−2 | 0.26 | 1.00 × 10−3 |
Hz | 2.57 | 0.45 | 6.65 × 10−3 | 0.22 | 1.14 × 10−2 |
Hw | 5.30 | 1.03 | 2.52 × 10−2 | n.d. | n.d. |
-CH2-en | 2.67 | 0.52 | 4.66 × 10−4 | 0.49 | 1.80 × 10−4 |
TSP | 0.00 | 0.33 | 7.29 × 10−5 | 0.95 | 7.20 × 10−4 |
1H | 13C | 15N | |
---|---|---|---|
-CH2-en | 2.69 | 45.44 | - |
Hx | 2.68 | 49.53 | - |
Hy | 5.42 | - | −30.93 |
Hz | 2.58 | 51.76 | - |
Hw | 5.35 | - | −30.44 |
EG | δ (ppm) | D (10−10 m2/s) | D Error (10−10 m2/s) 1 | T1 (s) | T1 Error 1 |
---|---|---|---|---|---|
Hb′ | 4.03 | 1.26 | 6.04 × 10−4 | 0.94 | 2.94 × 10−5 |
Hc′ | 3.55 | 1.27 | 2.62 × 10−5 | 0.80 | 2.16 × 10−5 |
Hd′ | 3.25 | 1.24 | 2.55 × 10−5 | 0.07 | 3.11 × 10−7 |
Hh′ | 3.63 | 1.78 | 3.52 × 10−5 | 0.08 | 3.70 × 10−7 |
water | 4.78 | 3.57 | 1.01 × 10−4 | 0.07 | 3.28 × 10−7 |
Hx | 2.65 | 1.04 | 1.91 × 10−2 | 0.34 | 9.45 × 10−3 |
Hy | 5.34 | 1.78 | 1.30 × 101 | 0.46 | 3.66 × 10−3 |
Hz | 2.57 | 0.99 | 3.94 × 10−2 | 0.39 | 3.43 × 10−4 |
Hw | 5.30 | 2.23 | 7.65 × 10−2 | n.d. | n.d. |
-CH2-en | 2.67 | 1.41 | 1.57 × 10−2 | 0.57 | 1.40 × 10−3 |
TSP | 0.00 | 0.87 | 1.42 × 10−3 | 1.41 | 1.34 × 10−3 |
(δ) ppm (GL) | (δ) ppm (EG) | (δ) ppm | Ref. | |
---|---|---|---|---|
K2PtCl4 | −1560 | −1561 | −1620 (in D2O) | [28] |
[PtCl2(en)] | −2384 | −2386 | −2345 (in DMSO) | [29] |
[Pt(en)2]Cl2 | −3030 | −3030 | −3015 (In D2O) | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garofalo, N.; Messa, F.; Barbanente, A.; Fanizzi, F.P.; Salomone, A.; Margiotta, N.; Papadia, P. Reactive Behaviour of Platinum(II) Salts with Ethylenediamine in Sustainable Water/Choline Chloride-Based Deep Eutectic Solvents Mixtures. Molecules 2025, 30, 1890. https://doi.org/10.3390/molecules30091890
Garofalo N, Messa F, Barbanente A, Fanizzi FP, Salomone A, Margiotta N, Papadia P. Reactive Behaviour of Platinum(II) Salts with Ethylenediamine in Sustainable Water/Choline Chloride-Based Deep Eutectic Solvents Mixtures. Molecules. 2025; 30(9):1890. https://doi.org/10.3390/molecules30091890
Chicago/Turabian StyleGarofalo, Nicola, Francesco Messa, Alessandra Barbanente, Francesco Paolo Fanizzi, Antonio Salomone, Nicola Margiotta, and Paride Papadia. 2025. "Reactive Behaviour of Platinum(II) Salts with Ethylenediamine in Sustainable Water/Choline Chloride-Based Deep Eutectic Solvents Mixtures" Molecules 30, no. 9: 1890. https://doi.org/10.3390/molecules30091890
APA StyleGarofalo, N., Messa, F., Barbanente, A., Fanizzi, F. P., Salomone, A., Margiotta, N., & Papadia, P. (2025). Reactive Behaviour of Platinum(II) Salts with Ethylenediamine in Sustainable Water/Choline Chloride-Based Deep Eutectic Solvents Mixtures. Molecules, 30(9), 1890. https://doi.org/10.3390/molecules30091890