Molecular Pathology of Lewy Body Diseases
Abstract
:Prologue
1. Lewy body diseases
1.1. Parkinson’s Disease
1.2. Dementia with Lewy Bodies
2. Lewy Bodies
2.1. Structure
2.2. Components
2.3. Formation
3. Alpha-synuclein oligomerisation and aggregation – neurotoxicity vs. protection
4. Mitochondrial dysfunction
4.1. Parkin
4.2. PINK-1
4.3. Omi/HtrA2
5. Dysfunction of protein degradation pathways
5.1. Proteasomal dysfunction
5.1.1. UCH-L1
5.1.2. SIAH-1
5.1.3. Synphilin-1
5.2. Dysfunction of the autophagy-lysosomal pathway
6. Alternative splicing
6.1. AS alternative splicing
6.1.1. AS 126
6.1.2. AS112
6.1.3. AS98
6.2. Synphilin-1 alternative splicing
6.2.1. Synphilin-1A
6.3. Parkin alternative splicing
6.4. Isoform expression profiles
Conclusions
Acknowledgments
References
- Braak, H; Del Tredici, K; Bratzke, H; Hamm-Clement, J; Sandmann-Keil, D; Rüb, U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 2002, 249(III), 1–5. [Google Scholar]
- Braak, H; Rub, U; Gai, WP; Del Tredici, K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural. Transm 2003, 110, 517–536. [Google Scholar]
- Kruger, R; Kuhn, W; Muller, T; Woitalla, D; Graeber, M; Kösel, S; Przuntek, H; Epplen, JT; Schöls, L; Riess, O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet 1998, 18, 106–108. [Google Scholar]
- Polymeropoulos, MH; Lavedan, C; Leroy, E; Ide, SE; Dehejia, A; Dutra, A; Pike, B; Root, H; Rubenstein, J; Boyer, R; et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276, 2045–2047. [Google Scholar]
- Zarranz, JJ; Alegre, J; Gomez-Esteban, JC; Lezcano, E; Ros, R; Ampuero, I; Vidal, L; Hoenicka, J; Rodriguez, O; Atarés, B; et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol 2004, 55, 164–173. [Google Scholar]
- Singleton, AB; Farrer, M; Johnson, J; Singleton, A; Hague, S; Kachergus, J; Hulihan, M; Peuralinna, T; Dutra, A; Nussbaum, R; et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 2003, 302, 841. [Google Scholar]
- Nishioka, K; Hayashi, S; Farrer, MJ; Singleton, AB; Yoshino, H; Imai, H; Kitami, T; Sato, K; Kuroda, R; Tomiyama, H; et al. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann. Neurol 2006, 59, 298–309. [Google Scholar]
- Marx, FP; Holzmann, C; Strauss, KM; Eberhardt, O; Gerhardt, E; Cookson, MR; Hernandez, D; Farrer, MJ; Kachergus, J; Engelender, S; et al. Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Hum. Mol. Genet 2003, 12, 1223–1231. [Google Scholar]
- Hernandez, D; Paisan Ruiz, C; Crawley, A; Malkani, R; Werner, J; Gwinn-Hardy, K; Dickson, D; Wavrant Devrieze, F; Hardy, J; Singleton, A. The dardarin G 2019 S mutation is a common cause of Parkinson’s disease but not other neurodegenerative diseases. Neurosci. Lett 2005, 389, 137–139. [Google Scholar]
- Strauss, KM; Martins, LM; Plun-Favreau, H; Marx, FP; Kautzmann, S; Berg, D; Gasser, T; Wszolek, Z; Müller, T; Bornemann, A; et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum. Mol. Genet 2005, 14, 2099–2111. [Google Scholar]
- Maraganore, DM; Wilkes, K; Lesnick, TG; Strain, KJ; de Andrade, M; Rocca, WA; Bower, JH; Ahlskog, JE; Lincoln, S; Farrer, MJ. A limited role for DJ1 in Parkinson disease susceptibility. Neurology 2004, 63, 550–553. [Google Scholar]
- Gosal, D; Ross, OA; Toft, M. Parkinson’s disease: The genetics of a heterogeneous disorder. Eur. J. Neurol 2006, 13, 616–627. [Google Scholar]
- Hedrich, K; Eskelson, C; Wilmot, B; Marder, K; Harris, J; Garrels, J; Meija-Santana, H; Vieregge, P; Jacobs, H; Bressman, SB; et al. Distribution, type, and origin of Parkin mutations: Review and case studies. Mov. Disord 2004, 19, 1146–1157. [Google Scholar]
- Hattori, N; Mizuno, Y. Pathogenetic mechanisms of parkin in Parkinson’s disease. Lancet 2004, 364, 722–724. [Google Scholar]
- Nishikawa, K; Li, H; Kawamura, R; Wang, YL; Hara, Y; Hirokawa, T; Manago, Y; Amano, T; Noda, M; Aoki, S; Wada, K. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem. Biophys. Res. Commun 2003, 304, 176–183. [Google Scholar]
- Jellinger, KA. Neuropathological spectrum of synucleinopathies. Mov. Disord 2003, 18, S2–12. [Google Scholar]
- McKeith, IG; Galasko, D; Kosaka, K; Perry, EK; Dickson, DW; Hansen, LA; Salmon, DP; Lowe, J; Mirra, SS; Byrne, EJ; et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996, 47, 1113–1124. [Google Scholar]
- Neef, D; Walling, AD. Dementia with Lewy bodies: An emerging disease. Am. Fam. Physician 2006, 73, 1223–1229. [Google Scholar]
- Lopez, OL; Becker, JT; Kaufer, DI; Hamilton, RL; Sweet, RA; Klunk, W; DeKosky, ST. Research evaluation and prospective diagnosis of dementia with Lewy bodies. Arch. Neurol 2002, 59, 43–46. [Google Scholar]
- Del Ser, T; Hachinski, V; Merskey, H; Munoz, DG. Clinical and pathologic features of two groups of patients with dementia with Lewy bodies: Effect of coexisting Alzheimer-type lesion load. Alzheimer Dis. Assoc. Disord 2001, 15, 31–44. [Google Scholar]
- Merdes, AR; Hansen, LA; Jeste, DV; Galasko, D; Hofstetter, CR; Ho, GJ; Thal, LJ; Corey-Bloom, J. Influence of Alzheimer pathology on clinical diagnostic accuracy in dementia with Lewy bodies. Neurology 2003, 60, 1586–1590. [Google Scholar]
- McKeith, IG; Dickson, DW; Lowe, J; Emre, M; O’Brien, JT; Feldman, H; Cummings, J; Duda, JE; Lippa, C; Perry, EK; et al. Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium. Neurology 2005, 65, 1863–1872. [Google Scholar]
- Weisman, D; Cho, M; Taylor, C; Adame, A; Thal, LJ; Hansen, LA. In dementia with Lewy bodies, Braak stage determines phenotype, not Lewy body distribution. Neurology 2007, 69, 356–359. [Google Scholar]
- Ohtake, H; Limprasert, P; Fan, Y; Onodera, O; Kakita, A; Takahashi, H; Bonner, LT; Tsuang, DW; Murray, IV; Lee, VM; et al. Beta-synuclein gene alterations in dementia with Lewy bodies. Neurology 2004, 63, 805–811. [Google Scholar]
- Tanaka, M; Kim, YM; Lee, G; Junn, E; Iwatsubo, T; Mouradian, MM. Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J. Biol. Chem 2004, 279, 4625–4631. [Google Scholar]
- Tompkins, MM; Hill, WD. Contribution of somal Lewy bodies to neuronal death. Brain Res 1997, 775, 24–29. [Google Scholar]
- Olanow, CW; Perl, DP; DeMartino, GN; McNaught, KS. Lewy-body formation is an aggresome-related process: A hypothesis. Lancet Neurol 2004, 3, 496–503. [Google Scholar]
- Shults, CW. Lewy bodies. Proc. Natl. Acad. Sci. USA 2006, 103, 1661–1668. [Google Scholar]
- Campbell, BC; McLean, CA; Culvenor, JG; Gai, WP; Blumbergs, PC; Jäkälä, P; Beyreuther, K; Masters, CL; Li, QX. The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J. Neurochem 2001, 76, 87–96. [Google Scholar]
- Gomez-Tortosa, E; Newell, K; Irizarry, MC; Sanders, JL; Hyman, BT. Alpha-synuclein immunoreactivity in dementia with Lewy bodies: Morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol 2000, 99, 352–357. [Google Scholar]
- Sakamoto, M; Uchihara, T; Hayashi, M; Nakamura, A; Kikuchi, E; Mizutani, T; Mizusawa, H; Hirai, S. Heterogeneity of nigral and cortical Lewy bodies differentiated by amplified triple-labeling for alpha-synuclein, ubiquitin, and thiazin red. Exp. Neurol 2002, 177, 88–94. [Google Scholar]
- Beyer, K; Ariza, A. Protein aggregation mechanisms in synucleinopathies: Commonalities and differences. J. Neuropathol. Exp. Neurol 2007, 66, 965–974. [Google Scholar]
- Wakabayashi, K; Tanji, K; Mori, F; Takahashi, H. The Lewy body in Parkinson’s disease: Molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 2007, 27, 494–506. [Google Scholar]
- Arima, K; Ueda, K; Sunohara, N; Hirai, S; Izumiyama, Y; Tonozuka-Uehara, H; Kawai, M. Immunoelectron-microscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res 1998, 808, 93–100. [Google Scholar]
- Engelender, S. Ubiquitination of alpha-synuclein and autophagy in Parkinson’s disease. Autophagy 2008, 4, 372–374. [Google Scholar]
- Orosz, F; Kovács, GG; Lehotzky, A; Oláh, J; Vincze, O; Ovádi, J. TPPP/p25: from unfolded protein to misfolding disease: Prediction and experiments. Biol. Cell 2004, 96, 701–711. [Google Scholar]
- Kuusisto, E; Parkkinen, L; Alafuzoff, I. Morphogenesis of Lewy bodies: Dissimilar incorporation of alpha-synuclein, ubiquitin, and p62. J. Neuropathol. Exp. Neurol 2003, 62, 1241–1253. [Google Scholar]
- Katsuse, O; Iseki, E; Marui, W; Kosaka, K. Developmental stages of cortical Lewy bodies and their relation to axonal transport blockage in brains of patients with dementia with Lewy bodies. J. Neurol. Sci 2003, 211, 29–35. [Google Scholar]
- Beyer, K. Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol 2006, 112, 237–251. [Google Scholar]
- Uversky, VN. Alpha-synuclein misfolding and neurodegenerative diseases. Curr. Protein Pept. Sci 2008, 9, 507–540. [Google Scholar]
- Irvine, GB; El-Agnaf, OM; Shankar, GM; Walsh, DM. Protein aggregation in the brain: The molecular basis for Alzheimer’s and Parkinson’s diseases. Mol. Med 2008, 14, 451–464. [Google Scholar]
- Uversky, VN. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J. Neurochem 2007, 103, 17–37. [Google Scholar]
- Clayton, DF; George, JM. The synucleins: A family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 1998, 21, 249–254. [Google Scholar]
- Uversky, VN. A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J. Biomol. Struct. Dyn 2003, 21, 211–234. [Google Scholar]
- Volles, MJ; Lansbury, PT, Jr. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 2003, 42, 7871–7878. [Google Scholar]
- Caughey, B; Lansbury, PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci 2003, 26, 267–298. [Google Scholar]
- Lashuel, HA; Grillo-Bosch, D. In vitro preparation of prefibrillar intermediates of amyloid-beta and alpha-synuclein. Methods Mol. Biol 2005, 299, 19–33. [Google Scholar]
- Bodles, AM; Guthrie, DJ; Greer, B; Irvine, GBJ. Identification of the region of non-Abeta component (NAC) of Alzheimer’s disease amyloid responsible for its aggregation and toxicity. Neurochemistry 2001, 78, 384–395. [Google Scholar]
- Bodles, AM; Guthrie, DJ; Harriott, P; Campbell, P; Irvine, GB. Toxicity of non-abeta component of Alzheimer’s disease amyloid, and N-terminal fragments thereof, correlates to formation of beta-sheet structure and fibrils. Eur. J. Biochem 2000, 267, 2186–2194. [Google Scholar]
- El-Agnaf, OM; Irving, GB. Aggregation and neurotoxicity of alpha-synuclein and related peptides. Biochem. Soc. Trans 2002, 30, 559–565. [Google Scholar]
- Goers, J; Manning-Bog, AB; McCormack, AL; Millett, IS; Doniach, S; Di Monte, DA; Uversky, VN; Fink, AL. Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 2003, 42, 8465–8471. [Google Scholar]
- Kontopoulos, E; Parvin, JD; Feany, MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet 2006, 15, 3012–3023. [Google Scholar]
- Lashuel, HA; Petre, BM; Wall, J; Simon, M; Nowak, RJ; Walz, T; Lansbury, PT, Jr. Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol 2002, 322, 1089–1102. [Google Scholar]
- Yang, Q; She, H; Gearing, M; Colla, E; Lee, M; Shacka, JJ; Mao, Z. Regulation of survival factor MEF2D by chaperone-mediated autophagy. Science 2009, 323, 124–127. [Google Scholar]
- Lee, JT; Wheeler, TC; Li, L; Chin, LS. Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death. Hum. Mol. Genet 2008, 17, 906–917. [Google Scholar]
- Ross, CA; Poirier, MA. Opinion: What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell. Biol 2005, 6, 891–898. [Google Scholar]
- Liani, E; Eyal, A; Avraham, E; Shemer, R; Szargel, R; Berg, D; Bornemann, A; Riess, O; Ross, CA; Rott, R; Engelender, S. Ubiquitylation of synphilin-1 and alpha-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2004, 101, 5500–5505. [Google Scholar]
- Eyal, A; Szargel, R; Avraham, E; Liani, E; Haskin, J; Rott, R; Engelender, S. Synphilin-1A: An aggregation-prone isoform of synphilin-1 that causes neuronal death and is present in aggregates from alpha-synucleinopathy patients. Proc. Natl. Acad. Sci. USA 2006, 103, 5917–5922. [Google Scholar]
- Periquet, M; Fulga, T; Myllykangas, L; Schlossmacher, MG; Feany, MB. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J. Neurosci 2007, 27, 3338–3346. [Google Scholar]
- Baba, M; Nakajo, S; Tu, PH; Tomita, T; Nakaya, K; Lee, VM; Trojanowski, JQ; Iwatsubo, T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol 1998, 152, 879–884. [Google Scholar]
- Rott, R; Szargel, R; Haskin, J; Shani, V; Shainskaya, A; Manov, I; Liani, E; Avraham, E; Engelender, S. Monoubiquitylation of alpha-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells. J. Biol. Chem 2008, 283, 3316–3328. [Google Scholar]
- Tofaris, GK; Razzaq, A; Ghetti, B; Lilley, KS; Spillantini, MG. Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J. Biol. Chem 2003, 278, 44405–44411. [Google Scholar]
- Anderson, JP; Walker, DE; Goldstein, JM; de Laat, R; Banducci, K; Caccavello, RJ; Barbour, R; Huang, J; Kling, K; Lee, M; et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem 2006, 281, 29739–29752. [Google Scholar]
- Junn, E; Lee, SS; Suhr, UT; Mouradian, MM. Parkin accumulation in aggresomes due to proteasome impairment. J. Biol. Chem 2002, 277, 47870–47877. [Google Scholar]
- Muqit, MM; Abou-Sleiman, PM; Saurin, AT; Harvey, K; Gandhi, S; Deas, E; Eaton, S; Payne Smith, MD; Venner, K; Matilla, A. Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. J. Neurochem 2006, 98, 156–169. [Google Scholar]
- Szargel, R; Rott, R; Engelender, S. Synphilin-1 isoforms in Parkinson’s disease: Regulation by phosphorylation and ubiquitylation. Cell Mol. Life Sci 2008, 65, 80–88. [Google Scholar]
- Hershko, A; Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem 1998, 67, 425–479. [Google Scholar]
- Hasegawa, M; Fujiwara, H; Nonaka, T; Wakabayashi, K; Takahashi, H; Lee, VM; Trojanowski, JQ; Mann, D; Iwatsubo, T. Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J. Biol. Chem 2002, 277, 49071–49076. [Google Scholar]
- Chen, G; Bower, KA; Ma, C; Fang, S; Thiele, CJ; Luo, J. Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 2004, 18, 1162–1164. [Google Scholar]
- Smith, PD; Crocker, SJ; Jackson-Lewis, V; Jordan-Sciutto, KL; Hayley, S; Mount, MP; O’Hare, MJ; Callaghan, S; Slack, RS; Przedborski, S; et al. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2003, 100, 13650–13655. [Google Scholar]
- Avraham, E; Rott, R; Liani, E; Szargel, R; Engelender, S. Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J. Biol. Chem 2007, 282, 12842–12850. [Google Scholar]
- Chung, KK; Thomas, B; Li, X; Pletnikova, O; Troncoso, JC; Marsh, L; Dawson, VL; Dawson, TM. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 2004, 304, 1328–1331. [Google Scholar]
- Lee, G; Tanaka, M; Park, K; Lee, SS; Kim, YM; Junn, E; Lee, SH; Mouradian, MM. Casein kinase II-mediated phosphorylation regulates alpha-synuclein/synphilin-1 interaction and inclusion body formation. J. Biol. Chem 2004, 279, 6834–6839. [Google Scholar]
- Avraham, E; Szargel, R; Eyal, A; Rott, R; Engelender, S. Glycogen synthase kinase 3beta modulates synphilin-1 ubiquitylation and cellular inclusion formation by SIAH: Implications for proteasomal function and Lewy body formation. J. Biol. Chem 2005, 280, 42877–42886. [Google Scholar]
- Cookson, MR; van der Brug, M. Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp. Neurol 2008, 209, 5–11. [Google Scholar]
- Shen, J; Cookson, MR. Mitochondria and dopamine: new insights into recessive parkinsonism. Neuron 2004, 43, 301–304. [Google Scholar]
- Clark, IE; Dodson, MW; Jiang, C; Cao, JH; Huh, JR; Seol, JH; Yoo, SJ; Hay, BA; Guo, M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441, 1162–1166. [Google Scholar]
- Park, SY; Lee, SB; Lee, S; Kim, Y; Song, S; Kim, S; Bae, E; Kim, J; Shong, M; Kim, JM; et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006, 441, 1157–1161. [Google Scholar]
- Wood-Kaczmar, A; Gandhi, S; Wood, NW. Understanding the molecular causes of Parkinson’s disease. Trends Mol. Med 2006, 12, 521–528. [Google Scholar]
- Dodson, MW; Guo, M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr. Opin. Neurobiol 2007, 17, 331–337. [Google Scholar]
- Schapira, AH. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 2008, 7, 97–109. [Google Scholar]
- Pesah, Y; Pham, T; Burgess, H; Middlebrooks, B; Verstreken, P; Zhou, Y; Harding, M; Bellen, H; Mardon, G. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 2004, 131, 2183–2194. [Google Scholar]
- Greene, JC; Whitworth, AJ; Kuo, I; Andrews, LA; Feany, MB; Pallanck, LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 2003, 100, 4078–4083. [Google Scholar]
- Palacino, JJ; Sagi, D; Goldberg, MS; Krauss, S; Motz, C; Wacker, M; Klose, J; Shen, J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem 2004, 279, 18614–18622. [Google Scholar]
- Müftüoglu, M; Elibol, B; Dalmizrak, O; Ercan, A; Kulaksiz, G; Ogüs, H; Dalkara, T; Ozer, N. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov. Disord 2004, 19, 544–548. [Google Scholar]
- McBride, HM. Parkin mitochondria in the autophagosome. J. Cell Biol 2008, 183, 757–759. [Google Scholar]
- Poole, AC; Thomas, RE; Andrews, LA; McBride, HM; Whitworth, AJ; Pallanck, LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl. Acad. Sci. USA 2008, 105, 1638–1643. [Google Scholar]
- Park, J; Lee, G; Chung, J. The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process. Biochem. Biophys. Res. Commun 2009, 378, 518–523. [Google Scholar]
- Narendra, D; Tanaka, A; Suen, DF; Youle, RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol 2008, 183, 795–803. [Google Scholar]
- Gandhi, S; Muqit, MM; Stanyer, L; Healy, DG; Abou-Sleiman, PM; Hargreaves, I; Heales, S; Ganguly, M; Parsons, L; Lees, AJ; et al. PINK1 protein in normal human brain and Parkinson’s disease. Brain 2006, 129, 1720–1731. [Google Scholar]
- Silvestri, L; Caputo, V; Bellacchio, E; Atorino, L; Dallapiccola, B; Valente, EM; Casari, G. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum. Mol. Genet 2005, 14, 3477–3492. [Google Scholar]
- Yang, Y; Gehrke, S; Imai, Y; Huang, Z; Ouyang, Y; Wang, JW; Yang, L; Beal, MF; Vogel, H; Lu, B. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. USA 2006, 103, 10793–10798. [Google Scholar]
- Hoepken, HH; Gispert, S; Morales, B; Wingerter, O; Del Turco, D; Mülsch, A; Nussbaum, RL; Müller, K; Dröse, S; Brandt, U; et al. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis 2007, 25, 401–411. [Google Scholar]
- van de Warrenburg, BP; Lammens, M; Lücking, CB; Denèfle, P; Wesseling, P; Booij, J; Praamstra, P; Quinn, N; Brice, A; Horstink, MW. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology 2001, 56, 555–557. [Google Scholar]
- Wiedemann, FR; Winkler, K; Lins, H; Wallesch, CW; Kunz, WS. Detection of respiratory chain defects in cultivated skin fibroblasts and skeletal muscle of patients with Parkinson’s disease. Ann. N. Y. Acad. Sci 1999, 893, 426–429. [Google Scholar]
- Kim, Y; Park, J; Kim, S; Song, S; Kwon, SK; Lee, SH; Kitada, T; Kim, JM; Chung, J. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem. Biophys. Res. Commun 2008, 377, 975–980. [Google Scholar]
- Plun-Favreau, H; Klupsch, K; Moisoi, N; Gandhi, S; Kjaer, S; Frith, D; Harvey, K; Deas, E; Harvey, RJ; McDonald, N; et al. The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat. Cell. Biol 2007, 9, 1243–1252. [Google Scholar]
- Suzuki, Y; Imai, Y; Nakayama, H; Takahashi, K; Takio, K; Takahashi, R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 2001, 8, 613–621. [Google Scholar]
- Hegde, R; Srinivasula, SM; Zhang, Z; Wassell, R; Mukattash, R; Cilenti, L; DuBois, G; Lazebnik, Y; Zervos, AS; Fernandes-Alnemri, T; et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem 2002, 277, 432–438. [Google Scholar]
- Suzuki, Y; Takahashi-Niki, K; Akagi, T; Hashikawa, T; Takahashi, R. Mitochondrial protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ 2004, 11, 208–216. [Google Scholar]
- Whitworth, AJ; Lee, JR; Ho, VM; Flick, R; Chowdhury, R; McQuibban, GA. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis. Model Mech 2008, 1, 168–174. [Google Scholar]
- Strauss, KM; Martins, LM; Plun-Favreau, H; Marx, FP; Kautzmann, S; Berg, D; Gasser, T; Wszolek, Z; Müller, T; Bornemann, A; et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum. Mol. Genet 2005, 14, 2099–2111. [Google Scholar]
- Webb, JL; Ravikumar, B; Atkins, J; Skepper, JN; Rubinsztein, DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem 2003, 278, 25009–25013. [Google Scholar]
- Lowe, J; Mayer, RJ; Landon, M. Ubiquitin in neurodegenerative diseases. Brain Pathol 1993, 3, 55–65. [Google Scholar]
- Sigismund, S; Polo, S; Di Fiore, PP. Signaling through monoubiquitination. Curr. Top. Microbiol. Immunol 2004, 286, 149–185. [Google Scholar]
- McNaught, KS; Jenner, P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett 2001, 297, 191–194. [Google Scholar]
- Leroy, E; Boyer, R; Auburger, G; Leube, B; Ulm, G; Mezey, E; Harta, G; Brownstein, MJ; Jonnalagada, S; Chernova, T; et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998, 395, 451–452. [Google Scholar]
- Shimura, H; Schlossmacher, MG; Hattori, N; Frosch, MP; Trockenbacher, A; Schneider, R; Mizuno, Y; Kosik, KS; Selkoe, DJ. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 2001, 293, 263–269. [Google Scholar]
- Liu, Y; Fallon, L; Lashuel, HA; Liu, Z; Lansbury, PT, Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 2002, 111, 209–218. [Google Scholar]
- Kyratzi, E; Pavlaki, M; Stefanis, L. The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells. Hum. Mol. Genet 2008, 17, 2160–2171. [Google Scholar]
- Maraganore, DM; Lesnick, TG; Elbaz, A; Chartier-Harlin, MC; Gasser, T; Krüger, R; Hattori, N; Mellick, GD; Quattrone, A; Satoh, J; et al. UCHL1 is a Parkinson’s disease susceptibility gene. Ann. Neurol 2004, 55, 512–521. [Google Scholar]
- Carmine Belin, A; Westerlund, M; Bergman, O; Nissbrandt, H; Lind, C; Sydow, O; Galter, D. S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson’s disease in Sweden. Parkinsonism Relat. Disord 2007, 13, 295–298. [Google Scholar]
- Setsuie, R; Wada, K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem. Int 2007, 51, 105–111. [Google Scholar]
- Wheeler, TC; Chin, LS; Li, Y; Roudabush, FL; Li, L. Regulation of synaptophysin degradation by mammalian homologues of seven in absentia. J. Biol. Chem 2002, 277, 10273–10282. [Google Scholar]
- Nagano, Y; Yamashita, H; Takahashi, T; Kishida, S; Nakamura, T; Iseki, E; Hattori, N; Mizuno, Y; Kikuchi, A; Matsumoto, M. Siah-1 facilitates ubiquitination and degradation of synphilin-1. J. Biol. Chem 2003, 278, 51504–51514. [Google Scholar]
- Engelender, S; Kaminsky, Z; Guo, X; Sharp, AH; Amaravi, RK; Kleiderlein, JJ; Margolis, RL; Troncoso, JC; Lanahan, AA; Worley, PF; et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat. Genet 1999, 22, 110–114. [Google Scholar]
- Chung, KK; Zhang, Y; Lim, KL; Tanaka, Y; Huang, H; Gao, J; Ross, CA; Dawson, VL; Dawson, TM. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med 2001, 7, 1144–1150. [Google Scholar]
- Marx, FP; Soehn, AS; Berg, D; Melle, C; Schiesling, C; Lang, M; Kautzmann, S; Strauss, KM; Franck, T; Engelender, S; et al. The proteasomal subunit S6 ATPase is a novel synphilin-1 interacting protein--implications for Parkinson’s disease. FASEB J 2007, 21, 1759–1767. [Google Scholar]
- Lim, KL; Chew, KC; Tan, JM; Wang, C; Chung, KK; Zhang, Y; Tanaka, Y; Smith, W; Engelender, S; Ross, CA; et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci 2005, 25, 2002–2009. [Google Scholar]
- Cuervo, AM. Autophagy: many paths to the same end. Mol. Cell Biochem 2004, 263, 55–72. [Google Scholar]
- Dice, JF. Chaperone-mediated autophagy. Autophagy 2007, 3, 295–299. [Google Scholar]
- Hideshima, T; Bradner, JE; Wong, J; Chauhan, D; Richardson, P; Schreiber, SL; Anderson, KC. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl. Acad. Sci. USA 2005, 102, 8567–8572. [Google Scholar]
- Qiao, L; Hamamichi, S; Caldwell, KA; Caldwell, GA; Yacoubian, TA; Wilson, S; Xie, ZL; Speake, LD; Parks, R; Crabtree, D; Liang, Q. Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Mol. Brain 2008, 1, 17. [Google Scholar]
- Rogaev, EI; Sherrington, R; Wu, C; Levesque, G; Liang, Y; Rogaeva, EA; Ikeda, M; Holman, K; Lin, C; Lukiw, WJ; et al. Analysis of the 5’ sequence, genomic structure, and alternative splicing of the presenilin-1 gene (PSEN1) associated with early onset alzheimer disease. Genomics 1997, 40, 415–424. [Google Scholar]
- Scheper, W; Zwart, R; Baas, F. Alternative splicing in the N-terminus of Alzheimer’s presenilin 1. Neurogenetics 2004, 5, 223–227. [Google Scholar]
- Smith, MJ; Sharples, RA; Evin, G; Malean, CA; Dean, B; Pavel, G; Fantino, E; Cotton, RG; Imaizumi, K; Masters, CL; et al. Expression of truncated presenilin 2 splice variant in Alzheimer’s disease, bipolar disorder, and schizophrenia brain cortex. Brain Res. Mol. Brain Res 2004, 127, 128–135. [Google Scholar]
- Ferrer, I; Gomez-Isla, T; Puig, B; Freixes, M; Ribé, E; Dalfó, E; Ávila, J. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr. Alzheimer Res 2005, 2, 3–18. [Google Scholar]
- Luo, MH; Leski, ML; Andreadis, A. Tau isoforms which contain the domain encoded by exon 6 and their role in neurite elongation. J. Cell Biochem 2004, 91, 880–895. [Google Scholar]
- Luo, MH; Tse, SW; Memmott, J; Andreadis, A. Novel isoforms of tau that lack the microtubule-binding domain. J. Neurochem 2004, 90, 340–351. [Google Scholar]
- Gao, QS; Memmott, J; Lafyatis, R; Stamm, S; Screaton, G; Andreadis, A. Complex regulation of tau exon 10, whose missplicing causes frontotemporal dementia. J. Neurochem 2000, 74, 490–500. [Google Scholar]
- Humbert, J; Beyer, K; Carrato, C; Mate, JL; Ferrer, I; Ariza, A. Parkin and synphilin-1 isoform expression changes in Lewy body diseases. Neurobiol. Dis 2007, 26, 681–687. [Google Scholar]
- Beyer, K; Domingo-Sábat, M; Lao, JI; Carrato, C; Ferrer, I; Ariza, A. Identification and characterization of a new alpha-synuclein isoform and its role in Lewy body diseases. Neurogenetics 2008, 9, 15–23. [Google Scholar]
- Campion, D; Martin, C; Heilig, R; Charbonnier, F; Moreau, V; Flaman, JM; Petit, JL; Hannequin, D; Brice, A; Frebourg, T. The NACP/synuclein gene: chromosomal assignment and screening for alterations in Alzheimer disease. Genomics 1995, 26, 254–257. [Google Scholar]
- Ueda, K; Saitoh, T; Mori, H. Tissue-dependent alternative splicing of mRNA for NACP, the precursor of non-A beta component of Alzheimer’s disease amyloid. Biochem. Biophys. Res. Commun 1994, 205, 1366–1372. [Google Scholar]
- Beyer, K; Humbert, J; Ferrer, A; Lao, JI; Carrato, C; López, D; Ferrer, I; Ariza, A. Low alpha-synuclein 126 mRNA levels in dementia with Lewy bodies and Alzheimer disease. NeuroReport 2006, 17, 1327–1330. [Google Scholar]
- Beyer, K; Domingo-Sábat, M; Humbert, J; Carrato, C; Ferrer, I; Ariza, A. Differential expression of alpha-synuclein, parkin, and synphilin-1 isoforms in Lewy body disease. Neurogenetics 2008, 9, 163–172. [Google Scholar]
- Lee, HJ; Choi, C; Lee, SJ. Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J. Biol. Chem 2002, 277, 671–678. [Google Scholar]
- Beyer, K; Humbert, J; Ferrer, A; Lao, JI; Lattorre, P; López, D; Tolosa, E; Ferrer, I; Ariza, A. A variable poly-T sequence modulates alpha-synuclein isoform expression and is associated with aging. J. Neurosci. Res 2007, 85, 1538–1546. [Google Scholar]
- Beyer, K; Lao, JI; Carrato, C; Mate, JL; López, D; Ferrer, I; Ariza, A. Differential expression of alpha-synuclein isoforms in dementia with Lewy bodies. Neuropathol. Appl. Neurobiol 2004, 30, 601–607. [Google Scholar]
- Jao, CC; Der-Sarkissian, A; Chen, J; Langen, R. Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc. Natl. Acad. Sci. USA 2004, 101, 8331–8336. [Google Scholar]
- Giasson, BI; Murray, IV; Trojanowski, JQ; Lee, VM. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J. Biol. Chem 2001, 276, 2380–2386. [Google Scholar]
- Neystat, M; Rzhetskaya, M; Kholodilov, N; Burke, RE. Analysis of synphilin-1 and synuclein interactions by yeast two-hybrid beta-galactosidase liquid assay. Neurosci. Lett 2002, 325, 119–123. [Google Scholar]
- Eyal, A; Engelender, S. Synphilin isoforms and the search for a cellular model of Lewy body formation in Parkinson’s disease. Cell Cycle 2006, 5, 2082–2086. [Google Scholar]
- Dagata, V; Cavallaro, S. Parkin transcript variants in rat and human brain. Neurochem. Res 2004, 29, 1715–1724. [Google Scholar]
- Parkkinen, L; Pirttilä, T; Tervahauta, M; Alafuzoff, I. Widespread and abundant alpha-synuclein pathology in a neurologically unimpaired subject. Neuropathology 2005, 25, 304–314. [Google Scholar]
- Alafuzoff, I; Parkkinen, L; Al-Sarraj, S; Arzberger, T; Bell, J; Bodi, I; Bogdanovic, N; Budka, H; Ferrer, I; Gelpi, E; et al. Assessment of alpha-synuclein pathology: A study of the BrainNet Europe Consortium. J. Neuropathol. Exp. Neurol 2008, 67, 125–143. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/). This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Beyer, K.; Domingo-Sàbat, M.; Ariza, A. Molecular Pathology of Lewy Body Diseases. Int. J. Mol. Sci. 2009, 10, 724-745. https://doi.org/10.3390/ijms10030724
Beyer K, Domingo-Sàbat M, Ariza A. Molecular Pathology of Lewy Body Diseases. International Journal of Molecular Sciences. 2009; 10(3):724-745. https://doi.org/10.3390/ijms10030724
Chicago/Turabian StyleBeyer, Katrin, Montserrat Domingo-Sàbat, and Aurelio Ariza. 2009. "Molecular Pathology of Lewy Body Diseases" International Journal of Molecular Sciences 10, no. 3: 724-745. https://doi.org/10.3390/ijms10030724
APA StyleBeyer, K., Domingo-Sàbat, M., & Ariza, A. (2009). Molecular Pathology of Lewy Body Diseases. International Journal of Molecular Sciences, 10(3), 724-745. https://doi.org/10.3390/ijms10030724