Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits
Abstract
:1. Introduction
2. Dietary Polyphenols in Culinary Herbs and Spices
Food | Total Phenolic Content (mg/100 g FW a) b | ||
---|---|---|---|
Herbs | Coriander (Coriandrum sativum L.) | dried | 2260 |
fresh | 158.90 | ||
Dill (Anethum graveolens L.) | dried | 1250 | |
fresh | 208.18 | ||
Oregano (Wild Majoram) (Origanum vulgare L.) | dried | 6367 | |
fresh | 935.34 | ||
Parsley (Petroselinum crispum (P. Mill.)) | dried | 1584 | |
fresh | 89.27 | ||
Rosemary (Rosmarinus officinalis L.) | dried | 2518 | |
fresh | 1082.43 | ||
Sage (Common) (Salvia officinalis L.) | dried | 2919 | |
fresh | 185.20 | ||
Thyme (Common) (Thymus vulgaris L.) | dried | 1815 | |
fresh | 1173.28 | ||
Spices | Cinnamon (Ceylan) (Cinnamomum verum J. Presl) | 9700 | |
Cloves (Syzygium aromaticum) | 16,047.25 | ||
Coriander seed (Coriandrum sativum L.) | 357.36 | ||
Ginger (Zingiber officinale Roscoe) | dried | 473.50 | |
fresh | 204.66 | ||
Nutmeg (Myristica fragans Houtt.) | 1905 | ||
Turmeric (Curcuma longa L.) | 2117 |
Total Phenolic Content (mg/100 g FW a) b | ||
---|---|---|
Food | Dark Chocolate | 1859.80 |
Broccoli (Brassica oleracea var. italica Plenck) | 198.55 | |
Blackcurrant (raw) (Ribes nigrum L.) | 820.64 | |
Red raspberry (raw) (Rubus idaeus L.) | 148.10 | |
Strawberry (raw) (Fragaria L.) | 289.20 | |
Blueberries | Half Highbush (Vaccinium augustifolium Ait. × Vaccinium corymbosum L.) | 151.33 |
Highbush (raw) (Vaccinium corymbosum L. and Vaccinium corymbosum L.) | 223.4 | |
Lowbush (raw) (Vaccinium augustifolium Aiton) | 471.55 | |
Rabbiteye (Vaccinium corymbosum L.) | 549.98 | |
Cranberry | American (Vaccinium macrocarpon Ait.) | 315.00 |
European (Vaccinium oxycoccos L.) | 139.50 | |
Grape (Vitis vinifera L.) | Black | 184.97 |
Green | 121.80 | |
Onion (raw) | Red (Allium cepa var. cepa L.) | 102.83 |
Properties of Polyphenols
3. Habitual Levels of Intake of Culinary Herbs and Spices
Study | Intake Data |
---|---|
Pellegrini et al. [72]: Determined daily intake of spices using 3 day weighed food record (3D-WR) and food frequency questionnaire (FFQ). For the 3D-WR median data were obtained. For the FFQ, interquartile range data were obtained. n = 285; Subjects: men (n = 159) and women (n = 126); Country of study: Italy | 0.4 (1.3) g (3D-WR); 3.2 (2.7) g (FFQ) |
Carlsen et al. [3]: Determined herb and spice intake using a FFQ and 2–4 weeks later 28 days recording of herb and spice consumption (HSR). n = 146; Subjects: men (n = 63) and women (n = 83); Country of study: Norway | Median estimates of total herb and spice consumption: 2.7 g/person/day (range 0.19–45.0; Interquartile range 4.4) from the FFQ; 1.6 g/person/day (range 0–10; interquartile range 1.8) from the HSR; Main herb/spice contributors: Basil (dried and fresh), oregano (dried), cinnamon, pepper, and spice blends |
Pérez-Jiménez et al. [4]: Measured the contribution of seasonings (included non-herb and spice seasonings) to daily polyphenol intake using 24 h dietary records every 2 months from 1995–1996 and the Phenol-Explorer database. Mean intake data obtained. n = 4942; Subjects: men (n = 2596) and women (n = 2346); Country of study: France | 0.4 (0.3) mg/day/person; Main herb/spice contributors: Ginger and parsley |
4. The Impact of Processes Prior to, and Post Consumption on the Bioactive Properties of Culinary Herbs and Spices
4.1. Antioxidant Capacity and Total Phenolic Content
4.2. Anti-Inflammatory Activity and Total Phenolic Content
5. Bioavailability of Polyphenols from Culinary Herbs and Spices
6. Bioactive Properties of Combinations of Culinary Herbs and Spices: The Role of Synergy
Combinations | Effect | Study |
---|---|---|
Epigallocatechin gallate (EGCG) and curcumin | Synergistically cytotoxic to MDA-MB-231 estrogen receptor α (ERα) human breast cancer cells in vitro when compared to effects of the individual polyphenols.EGCG + curcumin also synergistically inhibited tumor growth within female athymic nude mice implanted with MDA-MB-231 estrogen receptor (ERα) human breast cancer cells compared to individual polyphenols. Proposed mechanism of action: Cell cycle arrest and decrease in the expression of vascular endothelial growth factor receptor in tumor may play a role. | Somers-Edgar et al. [124] |
Curcumin and resveratrol | Synergistic inhibition of growth of p53 positive and p53 negative human colorectal cancer HCT116 cells in vitro when compared to effects of the individual polyphenols.Curcumin and resveratrol combination also synergistically inhibited tumor growth within severe combined immunodeficient female mice implanted with HCT-116 cells. Proposed mechanism of action: Decrease in proliferation and induction of apoptosis, decreased NF-κB activity, inhibition of activation of epidermal growth factor receptor. | Majumdar et al. [125] |
Carnosic acid and curcumin | Combinations (at levels shown to be non-cytotoxic to normal human fibroblasts or human peripheral blood mononuclear cells) inhibited the growth of, and induced apoptosis in, HL-60 and KG-1a human acute myeloid leukemia cells. Proposed mechanism of action: Apoptosis associated with activation of caspases 8, 9 and 3 and Bid (a proapoptotic protein) which is a member of the Bcl family. No other Bcl proteins shown to be affected. No evidence that oxidative stress was involved. | Pesakhov et al. [126] |
Chicken +/−herb and spice based marinating sauces | Marinating and cooking significantly decreased the antioxidant capacities of herb and spice marinating sauces. | Thomas et al. [127] |
Antioxidant rich spice (black pepper, cloves, cinnamon, garlic powder, ginger, oregano, paprika and rosemary) added to hamburger meat | Significant reduction in malondialdehyde concentration (a biomarker of oxidative stress) in the spiced burger compared to that in the unspiced (control) burger. There was also a significant increase in plasma malondialdehyde concentration following consumption of the control burger. Following consumption of the spiced burger there was a “trend to decrease” in plasma malondialdehyde concentration. Urinary malondialdehyde concentration decreased by almost 50% in subjects that consumed the spiced burgers compared to those who consumed the control burgers. | Li et al. [128] |
Combinations of Aspalathus linearis and Malus domestica, Aspalathus linearis and Vaccinium, Myrtillus, Punica granatum and Malus domestica | Combinations demonstrated additive or synergistic effects (based on antioxidant capacity) but these outcomes depended on the type of assay used. | Blasa et al. [129] |
Polyphenol rich herbs oregano, ajowan (Trachyspermum ammi) and Indian borage (Plectranthus amboinicus) | Addition of oregano extract increased the radical scavenging activity of ajowan and Indian borage extracts. | Khanum et al. [130] |
Peppermint, rosemary, sage, spearmint, thyme. | All herb extracts inhibited the growth of SW-480 human colorectal cancer cells. Combinations of these extracts herbs had additive, antagonistic and synergistic effects, which were based on the combinations and/or the concentrations of the herb extracts used in the combinations. | Yi and Wetzstein [131] |
Blueberries, grapes, chocolate covered strawberries, and polyphenol rich fruit smoothies. | Significant synergy, based on antioxidant capacity, found in combinations of chocolate covered strawberries; reported either antagonism or synergy within the combinations of constituent polyphenols; the effect depended on the constituents, and their number, and also the antioxidant assay used. | Epps et al. [132] |
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Sullivan, D.R.; Fenech, M.; Patch, C.S.; Roodenrys, S.; Keogh, J.B.; Clifton, P.M.; Williams, P.G.; et al. Health benefits of herbs and spices: The past, the present, the future. Med. J. Aust. 2006, 185, S1–S24. [Google Scholar]
- Ghawi, S.K.; Rowland, I.; Methven, L. Enhancing consumer liking of low salt tomato soup over repeated exposure by herb and spice seasonings. Appetite 2014, 81, 20–29. [Google Scholar]
- Carlsen, M.H.; Blomhoff, R.; Andersen, L.F. Intakes of culinary herbs and spices from a food frequency questionnaire evaluated against 28-days estimated records. Nutr. J. 2011, 10, 50. [Google Scholar]
- Pérez-Jiménez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 2011, 93, 1220–1228. [Google Scholar]
- Kaefer, C.M.; Milner, J.A. The role of herbs and spices in cancer prevention. J. Nutr. Biochem. 2008, 19, 347–361. [Google Scholar]
- Raghavendra, R.H.; Naidu, A.K. Spice active principles as the inhibitors of human platelet aggregation and thromboxane biosynthesis. Prostaglandins, Leukot. Essent. Fat. Acids 2009, 81, 73–78. [Google Scholar]
- Iriti, M.; Vitalini, S.; Fico, G.; Faoro, F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010, 15, 3517–3555. [Google Scholar]
- Jungbauer, A.; Medjakovic, S. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas 2012, 71, 227–239. [Google Scholar]
- Fleenor, B.S.; Sindler, A.L.; Marvi, N.K.; Howell, K.L.; Zigler, M.L.; Yoshizawa, M.; Seals, D.R. Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp. Gerontol. 2013, 48, 269–276. [Google Scholar]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; Scalbert, A. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. A systematic analysis of the content of 502 polyphenols in 452 foods and beverages—An application of the Phenol-Explorer database. J. Agric. Food Chem. 2010, 58, 4959–4969. [Google Scholar]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols—An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, s112–s120. [Google Scholar]
- Kondratyuk, T.P.; Pezzuto, J.M. Natural product polyphenols of relevance to human health. Pharm. Biol. 2004, 42, 46–63. [Google Scholar]
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar]
- Pandey, K.B.; Risvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavalability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar]
- Singh, M.; Arseneault, M.; Sanderson, T.; Murthy, V.; Ramassamy, C. Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. J. Agric. Food Chem. 2008, 56, 4855–4873. [Google Scholar]
- Chohan, M.; Forster-Wilkins, G.; Opara, E.I. Determination of the antioxidant capacity of culinary herbs subjected to various cooking and storage processes using the ABTS*+ radical cation assay. Plant Foods Hum. Nutr. 2008, 63, 47–52. [Google Scholar]
- Ninfali, P.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br. J. Nutr. 2005, 93, 257–266. [Google Scholar]
- Beier, R.C.; Ivie, G.W.; Oertli, E.H. Linear furanocoumarins and graveolone from the common herb parsley. Phytochemistry 1994, 36, 869–872. [Google Scholar]
- Justesen, U.; Knuthsen, P.; Leth, T. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A 1998, 799, 101–110. [Google Scholar]
- Variyar, P.S.; Bandyopadhyay, C.; Thomas, P. Effect of gamma-irradiation on the phenolic acids of some Indian spices. Int. J. Food Sci. Technol. 1998, 33, 533–537. [Google Scholar]
- Kahkonen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar]
- Bandoniene, D.; Pukalskas, A.; Venskutonis, P.R.; Gruzdiene, D. Preliminary screening of antioxidant activity of some plant extracts in rapeseed oil. Food Res. Int. 2000, 33, 785–791. [Google Scholar]
- Mattila, P.; Astola, J.; Kumpulainen, J. Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J. Agric. Food Chem. 2000, 48, 5834–5841. [Google Scholar]
- Jayaprakasha, G.K.; Rao, L.J.M.; Sakariah, K.K. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J. Agric. Food Chem. 2002, 50, 3668–3672. [Google Scholar]
- Wang, H.; Provan, G.J.; Helliwell, K. Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem. 2004, 87, 307–311. [Google Scholar]
- Proestos, C.; Chorianopoulos, N.; Nychas, G.J.E.; Komaitis, M. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food Chem. 2005, 53, 1190–1195. [Google Scholar]
- Proestos, C.; Komaitis, M. Ultrasonically assisted extraction of phenolic compounds from aromatic plants: Comparison with conventional extraction technics. J. Food Qual. 2006, 29, 567–582. [Google Scholar]
- Shan, B.; Cai, Y.Z.; Corke, H. Antioxidant capacity of 26 spice extracts and characterisation of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar]
- Luthria, D.L.; Pastor-Corrales, M.A. Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J. Food Compos. Anal. 2006, 19, 205–211. [Google Scholar]
- Tayyem, R.F.; Heath, D.D.; Al-Delaimy, W.K.; Rock, C.L. Curcumin content of turmeric and curry powders. Nutr. Cancer 2006, 55, 126–131. [Google Scholar]
- Anilakumar, K.R.; Saritha, V.; Khanum, F.; Bawa, A.S. Effect of cooking on total phenols, flavonoids and antioxidant activity in spices of Indian culinary. J. Food Sci. Technol. 2007, 44, 357–359. [Google Scholar]
- Baskan, S.; Oztekin, N.; Erim, F.B. Determination of carnosic acid and rosmarinic acid in sage by capillary electrophoresis. Food Chem. 2007, 101, 1748–1752. [Google Scholar]
- Kivilompolo, M.; Hyotylainen, T.A. Comprehensive two-dimensional liquid chromatography in analysis of Lamiaceae herbs: Characterisation and quantification of antioxidant phenolic acids. J. Chromatogr. A 2007, 1145, 155–164. [Google Scholar]
- Kivilompolo, M.; Oburka, V.; Hyotylainen, T. Comparison of GC-MS and LC-MS methods for the analysis of antioxidant phenolic acids in herbs. Anal. Bioanal. Chem. 2007, 388, 881–887. [Google Scholar]
- Suresh, D.; Manjunatha, H.; Srinivasan, K. Effect of heat processing of spices on the concentrations of their bioactive principles: Turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum). J. Food Compos. Anal. 2007, 20, 346–351. [Google Scholar]
- Scalbert, A.; Johnson, I.T.; Salmarch, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215s–217s. [Google Scholar]
- Tsai, P.-J.; Tsai, T.-H.; Yu, C.-H.; Ho, S.-C. Evaluation of NO-suppressing activity of several Mediterranean culinary spices. Food Chem. Toxicol. 2007, 45, 440–447. [Google Scholar]
- Romier, B.; van de Walle, J.; During, A.; Larondelle, Y.; Schneider, Y. Modulation of signaling nuclear factor-κB activation pathway by polyphenols in human intestinal Caco-2 cells. Br. J. Nutr. 2008, 100, 542–551. [Google Scholar]
- Romier-Crouzet, B.; van de Walle, J.; During, A.; Joly, A.; Rousseau, C.; Henry, O.; Larondelle, Y.; Schneider, Y. Inhibition of inflammatory mediators by polyphenolic plants extracts in human intestinal Caco-2 cells. Food Chem. Toxicol. 2009, 47, 1221–1230. [Google Scholar]
- Hollman, P.C.; Cassidy, A.; Comte, B.; Heinonen, M.; Richelle, M.; Richling, E.; Serafini, M.; Scalbert, A.; Sies, H.; Vidry, S. The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J. Nutr. 2010, 141, 989S–1009S. [Google Scholar]
- Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochem. Pharmacol. 2010, 80, 1771–1792. [Google Scholar]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients 2010, 2, 1106–1131. [Google Scholar]
- Ebrahimi, A.; Schluesener, H. Natural polyphenols against neurodegenerative disorders: Potentials and pitfalls. Ageing Res. Rev. 2012, 11, 329–345. [Google Scholar]
- Thomas, R.; Williams, M.H.; Sharma, H.; Chaudry, A.; Bellamy, P. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer—The UK NCRN Pomi-T study. Prostate Cancer Prostatic Dis. 2014, 17, 180–186. [Google Scholar]
- Anhê, F.F.; Desjardinsb, Y.; Pilona, G.; Dudonnéb, S.; Genovesec, M.I.; Lajoloc, F.M.; Marettea, A. Polyphenols and type 2 diabetes: A prospective review. Pharma Nutr. 2013, 1, 105–114. [Google Scholar]
- Daglia, M. Polyphenolsas antimicrobial agents. Curr. Opin. Biotechnol. 2013, 23, 174–181. [Google Scholar]
- Queipo-Ortuño, M.I.; Boto-Ordóñez, M.; Murri, M.; Gomez-Zumaquero, J.M.; Clemente-Postigo, M.; Estruch, R.; Cardona-Diaz, F.; Andrés-Lacueva, C.; Tinahones, F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 2012, 95, 1323–1334. [Google Scholar]
- Tuohy, K.M.; Conterno, L.; Gasperotti, M.; Viola, R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J. Agric. Food Chem. 2012, 61, 8776–8782. [Google Scholar]
- Etxeberria, U.; Fernández-Quintela, A.; Milagro, F.I.; Aguirre, L.; Martínez, J.A.; Portillo, M. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J. Agric. Food Chem. 2013, 61, 9517–9533. [Google Scholar]
- He, X.; Marco, M.L.; Slupsky, C.M. Emerging aspects of food and nutrition on gut microbiota. J. Agric. Food Chem. 2013, 61, 9559–9574. [Google Scholar]
- Liu, Z.; Nakano, H. Antibacterial activity of spice extracts against food related bacteria. J. Fac. Appl. Biol. Sci. 1996, 35, 181–190. [Google Scholar]
- Akhondzadeh, S.; Noroozian, M.; Mohammadi, M.; Ohadinia, S.; Jamshidi, A.H.; Khani, M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind randomized and placebo controlled trial. J. Clin. Pharm. Ther. 2003, 28, 53–59. [Google Scholar]
- Dragland, S.; Senoo, H.; Wake, K.; Holte, K.; Blomhoff, R. Several culinary and medicinal herbs are important sources of dietary antioxidants. J. Nutr. 2003, 133, 1286–1290. [Google Scholar]
- Halvorsen, B.L.; Carlsen, M.H.; Phillipis, K.M.; Bøhn, S.K.; Jacobs, D.R.; Blomhoff, J.R. Content of redox-active compounds (i.e., antioxidants) in foods consumed in the United States. J. Clin. Nutr. 2006, 84, 95–135. [Google Scholar]
- Ozsoy-Sacan, O.; Yanardag, R.; Orak, H.; Ozgey, Y.; Yarat, A.; Tunali, T. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2006, 104, 175–181. [Google Scholar]
- Cheung, S.; Tai, J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol. Rep. 2007, 17, 1525–1531. [Google Scholar]
- Moreno, S.; Scheyer, T.; Romano, C.; Vojnov, A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar]
- Shan, B.; Cai, Y.; Brooks, J.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food. Microbiol. 2007, 117, 112–119. [Google Scholar]
- Shukla, Y.; Singh, M. Cancer preventive properties of ginger: A brief review. Food Chem. Toxicol. 2007, 45, 683–690. [Google Scholar]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bohn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar]
- Kwon, H.K.; Hwang, J.S.; Therefore, J.S.; Lee, C.G.; Sahoo, A.; Ryu, J.H.; Jeon, W.K.; Ko, B.S.; Im, C.R.; Lee, S.H.; et al. Cinnamon extract induces tumor cell death through inhibition of NF-κB and AP1. BMC Cancer 2010, 10, 392–402. [Google Scholar]
- Mueller, M.; Hobiger, S.; Jungbauer, A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010, 122, 987–996. [Google Scholar]
- Van Breemen, R.B.; Tao, Y.; Li, W. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia 2011, 82, 38–43. [Google Scholar]
- Keshavarz, M.; Bidmeshkipour, A.; Mostafaie, A.; Monsouri, K.; Mohammadi-Motlagh, H.-R. Anti-tumor activity of Salvia officinalis is due to its anti-proliferative effects. Cell J. 2011, 12, 477–482. [Google Scholar]
- Karna, P.; Chagani, S.; Gundala, S.R.; Rida, P.C.G.; Asif, G.; Sharma, V.; Gupta, M.V.; Aneja, R. Benefits of whole ginger extract in prostate cancer. Br. J. Nutr. 2012, 107, 473–484. [Google Scholar]
- Baker, I.; Chohan, M.; Opara, E.I. Impact of cooking and digestion, in vitro, on the antioxidant capacity and anti-inflammatory activity of cinnamon, clove and nutmeg. Plant Foods Hum. Nutr. 2013, 68, 364–369. [Google Scholar]
- Chohan, M.; Naughton, D.P.; Jones, L.; Opara, E.I. An investigation of the relationship between the anti-inflammatory activity, polyphenolic content, and antioxidant activities of cooked and in vitro digested culinary herbs. Oxid. Med. Cell. Longev. 2012, 2012, 627843. [Google Scholar]
- Pellegrini, N.; Salvatore, S.; Valtueña, S.; Bedogni, G.; Porrini, M.; Pala, V.; del Rio, D.; Sieri, S.; Miglio, C.; Krogh, V.; et al. Development and validation of a food frequency questionnaire for the assessment of dietary total antioxidant capacity. J. Nutr. 2007, 137, 93–98. [Google Scholar]
- Choi, Y.; Lee, S.M.; Chun, J.; Lee, H.B.; Lee, J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 2006, 99, 381–387. [Google Scholar]
- Kim, S.; Jeong, S.; Park, W.; Nam, K.C.; Ahn, D.U.; Lee, S. Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem. 2006, 97, 472–479. [Google Scholar]
- Nicoli, M.C.; Anese, M.; Parpinel, M.T.; Franceschi, S.; Lericia, C.R. Loss and/or formation of antioxidants during food processing and storage. Cancer Lett. 1997, 114, 71–74. [Google Scholar]
- Morales, F.J.; Jiménez-Pérez, S. Free radical scavenging capacity of Maillard reaction products as related to color and fluorescence. Food Chem. 2001, 72, 119–125. [Google Scholar]
- Chohan, M. The Impact of Digestion and Gut Bioavailability, in Vitro, on the Polyphenolic Associated Activity of Cooked Culinary Herbs. Ph.D. Thesis, Thesis, Kingston University, Kingston upon Thames, UK, 2011. [Google Scholar]
- Phipps, S.M.; Sharaf, M.H.M.; Butterweck, V. Assessing antioxidant activity in botanicals and other dietary supplements. Pharmacop. Forum 2007, 33, 810–814. [Google Scholar]
- Khatun, M.; Eguchi, S.; Yamahuchi, T.; Takamura, H.; Matoba, T. Effect of thermal treatment on radical-scavenging activity of some spices. Food Sci. Technol. Res. 2006, 12, 178–185. [Google Scholar]
- Patil, S.B.; Ghadyale, V.A.; Taklikar, S.S.; Kulkarni, C.R.; Arvinder, A.U. Insulin secretagogue, α-glucosidase and antioxidant activity of some selected spices in streptozotocin-induced diabetic rats. Plant Foods Hum. Nutr. 2011, 66, 85–90. [Google Scholar]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar]
- Mulinacci, N.; Ieri, F.; Giaccherini, C.; Innocenti, M.; Andrenelli, L.; Canova, G.; Saracchi, M.; Casiraghi, M.C. Effects of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberrosum L. J. Agric. Food Chem. 2009, 56, 11830–11837. [Google Scholar]
- Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. [Google Scholar]
- Cilla, A.; González-Sarrías, A.; Tomás-Barberán, F.A.; Espín, J.C.; Barberá, R. Availability of polyphenols in fruit beverages subjected to in vitro gastrointestinal digestion and their effects on proliferation, cell-cycle and apoptosis in human colon cancer Caco-2 cells. Food Chem. 2009, 114, 813–820. [Google Scholar]
- Gião, M.S.; Gomes, S.; Madureira, A.R.; Faria, A.; Pestana, D.; Calhau, C.; Pintado, M.E.; Azevedo, I.; Malcata, X. Effect of in vitro digestion upon the antioxidant capacity of aqueous extracts of Agrimonia eupatoria, Rubus idaeus, Salvia sp. and Satureja Montana. Food Chem. 2012, 131, 761–767. [Google Scholar]
- Henning, S.M.; Zhang, Y.; Rontoyanni, V.G.; Huang, J.; Lee, R.-P.; Trang, A.; Nuernberger, G.; Heber, D. Variability in the antioxidant activity of dietary supplements from pomegranate, milk thistle, green tea, grape seed, goji, and acai: Effects of in vitro digestion. J. Agric. Food Chem. 2014, 62, 4313–4321. [Google Scholar]
- Minekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardized static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar]
- Luis, J.C.; Johnson, C.B. Seasonal variations of rosmarinic acid and carnosic acid in rosemary extracts. Analysis of their in vitro antiradical activity. Span J. Agric. Res. 2005, 3, 106–112. [Google Scholar]
- Cocchiara, J.; Letizia, C.S.; Lalko, J.; Lapczynski, A.; Api, A.M. Fragrance material review on cinnamaldehyde. Food Chem. Toxicol. 2005, 43, 867–923. [Google Scholar]
- Guo, J.; Huo, H.; Zhao, B.; Liu, H.; Li, L.; Ma, Y.; Guo, S.; Jiang, T. Cinnamaldehyde reduces IL-1β-induced cyclooxygenase-2 activity in rat cerebral microvascular endothelial cells. Eur. J. Pharmacol. 2005, 537, 174–180. [Google Scholar]
- Yoon, J.H.; Baek, S.J. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med. J. 2005, 46, 585–596. [Google Scholar]
- Osakabe, N.; Yasuda, A.; Natsume, M.; Yoshikama, T. Rosmarinic acid inhibits epidermal inflammatory responses: Anticarcenogenic effect of Perilla frutescens extracts in the murine two-stage skin model. Carcinogenesis 2004, 25, 549–557. [Google Scholar]
- Dhandapani, K.M.; Mahesh, V.B.; Brann, D.W. Curcumin suppresses AP-1 and NF-κB transcription factors. J. Neurochem. 2007, 102, 522–538. [Google Scholar]
- Kim, S.S.; Oh, O.; Min, H.; Park, E.; Kim, Y.; Park, H.; Han, Y.N.; Lee, S.K. Eugenol suppresses cyclooxygenase-2 expression in liposaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci. 2003, 73, 337–348. [Google Scholar]
- Pan, M.H.; Lai, C.S.; Ho, C.T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010, 1, 15–31. [Google Scholar]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.; Lee, C.Y. Relative antioxidant and cryoprotective activities of common herbs. Food Chem. 2008, 106, 929–936. [Google Scholar]
- Yasui, K.; Baba, A. Therapeutic potential of superoxide dismutase for resolution of inflammation. Inflamm. Res. 2006, 55, 359–363. [Google Scholar]
- Chohan, M.; Naughton, D.P.; Opara, E.I. Determination of superoxide dismutase mimetic activity in common culinary herbs. SpringerPlus 2014, 3, 578. [Google Scholar]
- Hunaefi, D.; Smetanska, I. The effect of tea fermentation on rosmarinic acid and antioxidant properties using selected in vitro sprout culture of Orthosiphon aristatus as a model study. SpringerPlus 2013, 2, 167. [Google Scholar]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar]
- Chohan, M.; Naughton, D.P.; Jones, L.; Opara, E.I. The impact of digestion and absorption on the antioxidant capacities and polyphenol concentrations of a selection of cooked culinary herbs. Polyphenols communications. Salamanca, Spain, July 2008; 695–695. [Google Scholar]
- Pinto, M.; Robineloeon, S.; Appay, M.D.; Kedinger, M.; Triadou, N.; Dussaulx, E.; Lacroix, B.; Simonassmann, P.; Haffen, K.; Fogh, J.; et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell-line (Caco-2) in culture. Biol. Cell 1983, 47, 323–330. [Google Scholar]
- Mc Clement, J.; Decker, E.A. Designing Functional Foods; Woodhead Publishing Ltd.: Cambridge, UK, 2009; p. 347. [Google Scholar]
- Lee, H.J.; Cha, K.H.; Kim, C.Y.; Nho, C.W.; Pan, C.H. Bioavailability of hydroxycinnamic acids from Crepidiastrum denticulatum using simulated digestion and Caco-2 intestinal cells. J. Agric. Food Chem. 2014, 62, 5290–5295. [Google Scholar]
- Wang, W.; Heideman, L.; Chung, C.S.; Pelling, J.C.; Koehler, K.J.; Birt, D.F. Cell-cycle arrest at G2/M and growth inhibition byapigeninin human colon carcinoma cell lines. Mol. Carcinog. 2000, 28, 102–110. [Google Scholar]
- Aggarwal, B.B.; Shishodia, S.; Sandur, S.K.; Pandey, M.K.; Sethi, G. Inflammation and cancer: How hot is the link? Biochem. Pharmacol. 2006, 72, 1605–1621. [Google Scholar]
- Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signaling pathways. Mol. Nutr. Food Res. 2008, 52, 507–526. [Google Scholar]
- Xavier, C.P.; Lima, C.F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: The role in MAPK/ERK pathway. Nutr. Cancer 2009, 61, 564–571. [Google Scholar]
- Araújo, J.R.; Gonçalves, P.; Martel, F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr. Res. 2011, 31, 77–87. [Google Scholar]
- Carroll, R.E.; Benya, R.V.; Turgeon, D.K.; Vareed, S.; Neuman, M.; Rodriguez, L.; Kakarala, M.; Carpenter, P.M.; McLaren, C.; Meyskens, F.L., Jr.; et al. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. 2011, 4, 354–364. [Google Scholar]
- Aggarwal, B.B.; Prasad, S.; Yadav, V.R.; Park, B.; Kim, J.I.; Gupta, S.C.; Yoon, S.W.; Lavasanifar, A.; Sung, B. Targeting inflammatory pathways by dietary agents for prevention and therapy of cancer. J. Food Drug Anal. 2012, 20, 213–236. [Google Scholar]
- Macdonald, R.S.; Wagner, K. Influence of dietary phytochemicals and microbiota on colon cancer risk. J. Agric. Food Chem. 2012, 60, 6728–6735. [Google Scholar]
- García-Pérez, E.; Noratto, G.D.; García-Lara, S.; Gutiérrez-Uribe, J.A.; Mertens-Talcott, S.U. Micropropagation effect on the anti-carcinogenic activitiy of polyphenolics from Mexican oregano (Poliomintha glabrescens Gray) in human colon cancer cells HT-29. Plant Foods Hum. Nutr. 2013, 68, 155–162. [Google Scholar]
- Haraguchi, T.; Kayashima, T.; Okazaki, Y.; Inoue, J.; Mineo, S.; Matsubara, K.; Sakaguchi, E.; Yanaka, N.; Kato, N. Cecal succinate elevated by some dietary polyphenols may inhibit colon cancer cell proliferation and angiogenesis. J. Agric. Food Chem. 2014, 62, 5589–5594. [Google Scholar]
- Dempe, J.S.; Scheerle, R.K.; Pfeiffer, E.; Metzler, M. Metabolism and permeability of curcumin in cultured Caco-2 cells. Mol. Nutr. Food Res. 2013, 57, 1543–1549. [Google Scholar]
- Jenner, A.M.; Rafter, J.; Halliwell, B. Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 2004, 38, 763–772. [Google Scholar]
- Dall’Asta, M.; Calani, L.; Tedeschi, M.; Jechiu, L.; Brighenti, F.; del Rio, D. Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources. Nutrition 2012, 28, 197–203. [Google Scholar]
- Bermúdez-Soto, M.J.; Larrosa, M.; García-Cantalejo, J.; Espín, J.C.; Tomás-Barberan, F.A.; García-Conesa, M.T. Transcriptional changes in human Caco-2 colon cancer cells following exposure to a recurrent non-toxic dose of polyphenol-rich chokeberry juice. Genes Nutr. 2007, 2, 111–113. [Google Scholar]
- Bermúdez-Soto, M.J.; Larrosa, M.; Garcia-Cantalejo, J.M.; Espín, J.C.; Tomás-Barberan, F.A.; García-Conesa, M.T. Up-regulation of tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 in human colon cancer Caco-2 cells following repetitive exposure to dietary levels of a polyphenol-rich chokeberry juice. J. Nutr. Biochem. 2007, 18, 259–271. [Google Scholar]
- Jacobs, D.R.; Gross, M.D.; Tapsell, L.C. Food synergy: An operational concept for understanding nutrition. Am. J. Clin. Nutr. 2009, 89, 1543S–1548S. [Google Scholar]
- Jacobs, D.R.; Tapsell, L.C.; Temple, N.J. Food synergy: The key to balancing the nutrition research effort. Public Health Rev. 2012, 33, 507–529. [Google Scholar]
- Jacobs, D.R.; Tapsell, L.C. Food synergy: The key to a healthy diet. Proc. Nutr. Soc. 2013, 72, 200–206. [Google Scholar]
- De Kok, T.M.; van Breda, S.G.; Manson, M.M. Mechanisms of combined action of different chemopreventive dietary compounds: A review. Eur. J. Nutr. 2008, 47, 51–59. [Google Scholar]
- Somers-Edgar, T.J.; Scandlyn, M.J.; Stuart, E.C.; le Nedelec, M.J.; Valentine, S.P.; Rosengren, R.J. The combination of epigallocatechin gallate and curcumin suppresses ERα-breast cancer cell growth in vitro and in vivo. Int. J. Cancer 2008, 122, 1966–1971. [Google Scholar]
- Majumdar, A.P.N.; Banerjee, S.; Nautiyal, J.; Patel, B.B.; Patel, V.; Du, J.; Yu, Y.; Elliot, A.A.; Levi, E.; Sarkar, F. Curcumin synergizes with resveratrol to inhibit colon cancer. Nutr. Cancer 2009, 61, 544–553. [Google Scholar]
- Pesakhov, S.; Khanin, M.; Studzinski, G.P.; Danilenko, D. Distinct combinatorial effects of the plant polyphenols curcumin, carnosic acid and silibinin on proliferation and apoptosis in acute myeloid leukemia cells. Nutr. Cancer 2010, 62, 811–824. [Google Scholar]
- Thomas, R.H.; Bernards, M.A.; Drake, E.E.; Guglielmo, C.G. Changes in the antioxidant activities of seven herb and spice-based marinating sauces after cooking. J. Food Compos. Anal. 2010, 23, 244–252. [Google Scholar]
- Li, Z.; Henning, S.M.; Zhang, Y.; Zerlin, A.; Li, L.; Gao, K.; Lee, R.-P.; Karp, H.; Thames, G.; Bowerman, S.; et al. Antioxidant-rich spice added to hamburger meat during cooking results in reduced meat, plasma, and urine malondialdehyde concentrations. Am. J. Clin. Nutr. 2010, 91, 1180–1184. [Google Scholar]
- Blasa, M.; Angelino, D.; Gennari, L.; Ninfali, P. The cellular antioxidant activity in red blood cells (CAA-RBC): A new approach to bioavailability and synergy of phytochemicals and botanical extracts. Food Chem. 2011, 125, 685–691. [Google Scholar]
- Khanum, H.; Ramalakshmi, K.; Srinivas, P.; Borse, B.B. Synergistic antioxidant action of oregano, ajowan and borage extracts. Food Nutr. Sci. 2011, 2, 387–392. [Google Scholar]
- Yi, W.; Wetzstein, H.Y. Anti-tumorigenic activity of five culinary and medicinal herbs grown under greenhouse conditions and their combination effects. J. Sci. Food Agric. 2011, 91, 1849–1854. [Google Scholar]
- Epps, C.T.; Stequist, B.P.; Lowder, K.T.; Blacker, B.C.; Low, R.M.; Egget, D.L.; Parker, T.L. Synergistic endo- and exo-interactions between blueberry phenolic compounds, grape variety fractions, chocolate covered strawberries, and fruit smoothies. J. Food Res. 2013, 2, 33–47. [Google Scholar]
- Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine 2001, 8, 401–409. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opara, E.I.; Chohan, M. Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits. Int. J. Mol. Sci. 2014, 15, 19183-19202. https://doi.org/10.3390/ijms151019183
Opara EI, Chohan M. Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits. International Journal of Molecular Sciences. 2014; 15(10):19183-19202. https://doi.org/10.3390/ijms151019183
Chicago/Turabian StyleOpara, Elizabeth I., and Magali Chohan. 2014. "Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits" International Journal of Molecular Sciences 15, no. 10: 19183-19202. https://doi.org/10.3390/ijms151019183
APA StyleOpara, E. I., & Chohan, M. (2014). Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits. International Journal of Molecular Sciences, 15(10), 19183-19202. https://doi.org/10.3390/ijms151019183