Clinical Significance of CUB and Sushi Multiple Domains 1 Inactivation in Head and Neck Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Development and Clinical Significance of CSMD1-Related Gene Signature
2.2. Association with CSMD1 Inactivation and Clinicopathologic Characteristics of HNSCC
2.3. Relationship between CSMD1 Inactivation and Somatic Mutation
2.4. Relationship with Immunotherapy-Related Signature
2.5. Biological Process and Pathway Analysis
3. Discussion
4. Materials and Methods
4.1. Patient Datasets
4.2. Identification of Gene Signature
4.3. Construction of Prediction Models and Validation in Test Cohorts
4.4. Association with CSMD1 Signature and Clinicopathologic Characteristics of HNSCC
4.5. Biological Process and Pathway Analysis
4.6. Immunotherapy-Related Gene Signatures
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Urashima, M.; Hama, T.; Suda, T.; Suzuki, Y.; Ikegami, M.; Sakanashi, C.; Akutsu, T.; Amagaya, S.; Horiuchi, K.; Imai, Y. Distinct effects of alcohol consumption and smoking on genetic alterations in head and neck carcinoma. PLoS ONE 2013, 8, e80828. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kong, W.; Peng, Y.; Miao, Q.; Mackillop, W.J. Temporal trends in the incidence and survival of cancers of the upper aerodigestive tract in Ontario and the United States. Int. J. Cancer 2009, 125, 2159–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero-Esparza, A.; Kalchishkova, N.; Kurbasic, E.; Jiang, W.G.; Blom, A.M. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly. FASEB J. 2013, 27, 5083–5093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, M.-R.; Wang, Y.-X.; Guo, S.; Han, S.-Y.; Wang, D. CSMD1 exhibits antitumor activity in A375 melanoma cells through activation of the Smad pathway. Apoptosis 2012, 17, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.C.; Uppaluri, R.; Schmidt, A.P.; Pashia, M.E.; Quant, E.C.; Sunwoo, J.B.; Gollin, S.M.; Scholnick, S.B. Transcript map of the 8p23 putative tumor suppressor region. Genomics 2001, 75, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Mitelman, F.; Mertens, F.; Johansson, B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat. Genet. 1997, 15, 417–474. [Google Scholar] [CrossRef] [PubMed]
- Hogan, L.E.; Meyer, J.A.; Yang, J.; Wang, J.; Wong, N.; Yang, W.; Condos, G.; Hunger, S.P.; Raetz, E.; Saffery, R. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood 2011, 118, 5218–5226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R.J.; Shen, D.; Boca, S.M.; Barber, T.; Ptak, J. The genomic landscapes of human breast and colorectal cancers. Science 2007, 318, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Quesnelle, K.M.; Sparano, A.; Rao, S.; Park, M.S.; Cohen, M.A.; Wang, Y.; Samanta, M.; Kumar, M.S.; Aziz, M.U. Characterization CSMD1 in a large set of primary lung, head and neck, breast and skin cancer tissues. Cancer Biol. Ther. 2009, 8, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Shaaban, A.M.; Zhang, L.; Walker, C.; Gray, S.; Thakker, N.; Toomes, C.; Speirs, V.; Bell, S.M. Loss of CSMD1 expression is associated with high tumour grade and poor survival in invasive ductal breast carcinoma. Breast Cancer Res. Treat. 2010, 121, 555–563. [Google Scholar] [CrossRef] [PubMed]
- India Project Team of the International; Cancer Genome Consortium. Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat. Commun. 2013, 4, 2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlobec, I.; Steele, R.; Terracciano, L.; Jass, J.R.; Lugli, A. Selecting immunohistochemical cut-off scores for novel biomarkers of progression and survival in colorectal cancer. J. Clin. Pathol. 2007, 60, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Scholnick, S.B.; Haughey, B.H.; Sunwoo, J.B.; El-Mofty, S.K.; Baty, J.D.; Piccirillo, J.F.; Zequeira, M.R. Chromosome 8 allelic loss and the outcome of patients with squamous cell carcinoma of the supraglottic larynx. JNCI J. Natl. Cancer Inst. 1996, 88, 1676–1682. [Google Scholar] [CrossRef] [PubMed]
- Akhoondi, S.; Sun, D.; von der Lehr, N.; Apostolidou, S.; Klotz, K.; Maljukova, A.; Cepeda, D.; Fiegl, H.; Dofou, D.; Marth, C. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 2007, 67, 9006–9012. [Google Scholar] [CrossRef] [PubMed]
- Perrone, F.; Bossi, P.; Cortelazzi, B.; Locati, L.; Quattrone, P.; Pierotti, M.A.; Pilotti, S.; Licitra, L. TP53 mutations and pathologic complete response to neoadjuvant cisplatin and fluorouracil chemotherapy in resected oral cavity squamous cell carcinoma. J. Clin. Oncol. 2010, 28, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.S.; Stojanov, P.; Mermel, C.H.; Robinson, J.T.; Garraway, L.A.; Golub, T.R.; Meyerson, M.; Gabriel, S.B.; Lander, E.S.; Getz, G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014, 505, 495–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellacosa, A.; Cicchillitti, L.; Schepis, F.; Riccio, A.; Yeung, A.T.; Matsumoto, Y.; Golemis, E.A.; Genuardi, M.; Neri, G. MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc. Natl. Acad. Sci. USA 1999, 96, 3969–3974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penton, A.L.; Leonard, L.D.; Spinner, N.B. Notch signaling in human development and disease. Semin. Cell Dev. Biol. 2012, 23, 450–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ock, C.-Y.; Hwang, J.-E.; Keam, B.; Kim, S.-B.; Shim, J.-J.; Jang, H.-J.; Park, S.; Sohn, B.H.; Cha, M.; Ajani, J.A. Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers. Nat. Commun. 2017, 8, 1050. [Google Scholar] [CrossRef]
- Van Allen, E.M.; Miao, D.; Schilling, B.; Shukla, S.A.; Blank, C.; Zimmer, L.; Sucker, A.; Hillen, U.; Foppen, M.H.G.; Goldinger, S.M. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015, 350, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Escudero-Esparza, A.; Bartoschek, M.; Gialeli, C.; Okroj, M.; Owen, S.; Jirström, K.; Orimo, A.; Jiang, W.G.; Pietras, K.; Blom, A.M. Complement inhibitor CSMD1 acts as tumor suppressor in human breast cancer. Oncotarget 2016, 7, 76920. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer 2009, 9, 550. [Google Scholar] [CrossRef] [PubMed]
- Murugan, A.K.; Hong, N.T.; Fukui, Y.; Munirajan, A.K.; Tsuchida, N. Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. Int. J. Oncol. 2008, 32, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, G.; Rosolowski, M.; Krohn, K.; Kreuz, M.; Boehm, A.; Reiche, A.; Scharrer, U.; Halama, D.; Bertolini, J.; Bauer, U. The role of HPV RNA transcription, immune response-related gene expression and disruptive TP53 mutations in diagnostic and prognostic profiling of head and neck cancer. Int. J. Cancer 2015, 137, 2846–2857. [Google Scholar] [CrossRef] [PubMed]
- Fountzilas, E.; Kotoula, V.; Angouridakis, N.; Karasmanis, I.; Wirtz, R.M.; Eleftheraki, A.G.; Veltrup, E.; Markou, K.; Nikolaou, A.; Pectasides, D. Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer. PLoS ONE 2013, 8, e70429. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Lam, A.; Li, M.C.; Ngan, M.; Menenzes, S.; Zhao, Y. Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 2007, 3, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95, 14863–14868. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Sohn, B.H.; Lee, H.-S.; Kim, S.-B.; Yoo, J.E.; Park, Y.-Y.; Jeong, W.; Lee, S.S.; Park, E.S.; Kaseb, A. Genomic predictors for recurrence patterns of hepatocellular carcinoma: Model derivation and validation. PLoS Med. 2014, 11, e1001770. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2008, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Robert, C.; Hodi, F.S.; Wolchok, J.D.; Joshua, A.M.; Hwu, W.-J.; Weber, J.S.; Zarour, H.M.; Kefford, R.; Loboda, A. Association of Response to Programmed Death Receptor 1 (PD-1) Blockade with Pembrolizumab (MK-3475) with an Interferon-Inflammatory Immune Gene Signature; American Society of Clinical Oncology: Alexandria, VA, USA, 2015. [Google Scholar]
TCGA Cohort (N = 513) | Leipzig Cohort (N = 270) | Greece Cohort (N = 109) | |
---|---|---|---|
Gender | |||
Male | 370 (73.7%) | 223 (82.6%) | 104 (95.4%) |
Female | 132 (26.3%) | 47 (17.4%) | 5 (4.5%) |
Age (mean ± SD) | 60.9 ± 11.9 | 60.1 ± 10.0 | 63 ± 10.0 |
Anatomic site | |||
Oral cavity | 301 (60.0%) | 83 (30.7%) | NA |
Oropharynx | 79 (15.7%) | 102 (37.8%) | NA |
Larynx | 113 (22.5%) | 48 (17.8%) | NA |
Hypopharynx | 9 (1.8%) | 33 (12.2%) | NA |
others | 0 | 4 (1.5%) | NA |
Primary tumor | |||
T1 | 33 (6.8%) | 35 (13.0%) | NA |
T2 | 147 (30.2%) | 80 (29.6%) | NA |
T3 | 129 (26.5%) | 58 (21.5%) | NA |
T4 | 178 (36.6%) | 97 (35.9%) | NA |
Regional lymph node | |||
N0 | 238 (49.5%) | 94 (34.8%) | NA |
N1 | 79 (16.4%) | 32 (11.9%) | NA |
N2 | 155 (32.2%) | 132 (48.9%) | NA |
N3 | 9 (1.9%) | 12 (4.4%) | NA |
Stage | |||
I | 20 (4.1%) | 18 (6.7%) | 12 (11.0%) |
II | 96 (19.6%) | 37 (13.7%) | 18 (16.5%) |
III | 101 (20.7%) | 37 (13.7%) | 36 (33.0%) |
IV | 272 (55.6%) | 178 (65.9%) | 43 (39.4%) |
HPV status | |||
Positive | 68 (19.9%) | 60 (23.4%) | NA |
Negative | 274 (80.1%) | 196 (76.6%) | NA |
Tobacco use | |||
Never | 114 (23.3%) | 48 (17.8%) | 1 (0.9%) |
Yes | 376 (76.7%) | 222 (82.2%) | 108 (99.0%) |
Alcohol use | |||
Never | 154 (42.1%) | 31 (11.5%) | 51 (46.7%) |
Yes | 212 (57.9%) | 239 (88.5%) | 58 (53.2%) |
CSMD1 signature | |||
CSMD1-activated | 294 (57.3%) | 158 (58.5%) | 63 (57.7%) |
CSMD1-inactivated | 219 (42.7%) | 112 (41.4%) | 46 (42.2%) |
Variables | Univariate | Multivariate | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
CSMD1 inactivation | 1.59 (1.23–2.04) | 0.00036 * | 1.42 (1.07–1.87) | 0.012 * |
Gender (male) | 0.80 (0.60–1.07) | 0.14 | 0.94 (0.68–1.29) | 0.72 |
Age (≥60 years old) | 1.32 (1.02–1.71) | 0.031 * | 1.25 (0.95–1.64) | 0.102 |
Smoking (YES) | 1.01 (0.74–1.37) | 0.94 | 1.02 (0.73–1.41) | 0.904 |
Alcohol (YES) | 0.86 (0.64–1.15) | 0.32 | 0.99 (0.72–1.36) | 0.966 |
Anatomic site (Oropharynx) | 0.52 (0.30–0.90) | 0.021 * | 0.63 (0.36–1.10) | 0.107 |
Primary tumor (T3 & 4) | 1.71 (1.29–2.27) | 0.00018 * | 1.97 (1.26–3.10) | 0.003 * |
Regional lymph node (N+) | 1.18 (0.91–1.52) | 0.19 | 1.29 (0.93–1.79) | 0.12 |
Stage (stage III & IV) | 1.36 (0.98–1.90) | 0.062 | 0.68 (0.37–1.24) | 0.21 |
CSMD1-Activated Subgroup | CSMD1-Inactivated Subgroup | p Value | |
---|---|---|---|
Tumor site | 2.2 × 10−16 | ||
Oral cavity | 35.83% | 69.06% | |
Oropharynx | 30.21% | 14.69% | |
Larynx | 27.63% | 11.56% | |
hypopharynx | 6.32% | 4.69% | |
HPV status | 1.57 × 10−8 | ||
HPV (+) | 25.23% | 6.22% | |
HPV (−) | 74.76% | 93.77% | |
Gender | 6.25 × 10−5 | ||
Male | 82.13% | 69.31% | |
Female | 17.86% | 30.62% | |
Smoking | 0.018 | ||
Smoker | 81.83% | 74.36% | |
Non-smoker | 18.16% | 25.63% | |
LN metastasis | 0.07 | ||
Positive | 58.39% | 51.47% | |
Negative | 41.6% | 48.53% | |
T stage | 0.228 | ||
T1 & T2 | 40.76% | 35.83% | |
T3 & T4 | 59.24% | 64.17% |
GO Terms Biological Process | Count | Molecules | p-Value |
---|---|---|---|
Synapse assembly | 8 | DSCAM, WNT7A, CEL, NRXN1, NRXN3, NLGN1, NRCAM, PCLO | 8.9 × 10−5 * |
Response to estradiol | 8 | DNMT3A, WNT7A, ARNT2, BMP7, CASP9, FOXA1, PTCH1, PTN | 1.1 × 10−3 * |
Positive regulation of synapse assembly | 5 | WNT7A, NRXN1, NRXN3, NLGN1, NTRK2 | 0.023 * |
Intrinsic apoptotic signaling pathway in response to DNA damage | 4 | BAK1, BCL2, CASP9, SFN | 0.049 * |
KEGG Pathway | Count | Molecules | p-Value |
Inflammatory mediator regulation of TRP channels | 6 | F2RL1, ADCY5, MAP2K6, PIK3R3, PLA2G6, TRPV4 | 0.021 * |
Phosphatidylinositol signaling system | 6 | DGKB, ITPKA, PI4K2A, PIP5K1B, PIK3R3, PLCE1 | 0.021 * |
Glycine, serine and threonine metabolism | 4 | CHDH, CBS, GATM, PGAM1 | 0.025 * |
Inositol phosphate metabolism | 5 | ISYNA1, ITPKA, PI4K2A, PIP5K1B, PLCE1 | 0.028 * |
Small cell lung cancer | 5 | BCL2, CASP9, NOS2, PIK3R3, PIAS2 | 0.049 * |
Ras signaling pathway | 5 | PLA2G6, RIN1, KSR2, VEGFC, HTRZ | 0.08 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, A.R.; Eun, Y.-G.; Lee, Y.C.; Noh, J.K.; Kwon, K.H. Clinical Significance of CUB and Sushi Multiple Domains 1 Inactivation in Head and Neck Squamous Cell Carcinoma. Int. J. Mol. Sci. 2018, 19, 3996. https://doi.org/10.3390/ijms19123996
Jung AR, Eun Y-G, Lee YC, Noh JK, Kwon KH. Clinical Significance of CUB and Sushi Multiple Domains 1 Inactivation in Head and Neck Squamous Cell Carcinoma. International Journal of Molecular Sciences. 2018; 19(12):3996. https://doi.org/10.3390/ijms19123996
Chicago/Turabian StyleJung, Ah Ra, Young-Gyu Eun, Young Chan Lee, Joo Kyung Noh, and Kee Hwan Kwon. 2018. "Clinical Significance of CUB and Sushi Multiple Domains 1 Inactivation in Head and Neck Squamous Cell Carcinoma" International Journal of Molecular Sciences 19, no. 12: 3996. https://doi.org/10.3390/ijms19123996
APA StyleJung, A. R., Eun, Y. -G., Lee, Y. C., Noh, J. K., & Kwon, K. H. (2018). Clinical Significance of CUB and Sushi Multiple Domains 1 Inactivation in Head and Neck Squamous Cell Carcinoma. International Journal of Molecular Sciences, 19(12), 3996. https://doi.org/10.3390/ijms19123996