HB-EGF Improves the Hair Regenerative Potential of Adipose-Derived Stem Cells via ROS Generation and Hck Phosphorylation
Abstract
:1. Introduction
2. Results
2.1. HB-EGF Induces the Growth and Migration of ASCs
2.2. HB-EGF-Preconditioned ASCs Promote Hair Growth in Vivo
2.3. Conditioned Medium of Preconditioned ASCs with HB-EGF Promotes Hair Growth In Vivo
2.4. Thrombopoietin Promotes Hair Growth by Stimulating DPCs
2.5. HB-EGF Increases ROS Levels by Regulating the Activity of NADPH Oxidase 4 (NOX4) in Mitochondria
2.6. Hck Phosphorylation Pathway is Involved in the HB-EGF-Induced Stimulation of ASCs
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Cell Growth Assay
4.3. Scratch Migration Assay
4.4. Cell Migration Measurement Using a Transwell Migration Assay
4.5. Measurement of Colony-Forming Units (CFUs)
4.6. Measuring Population Doublings
4.7. RNA Extraction, Quantitative RT-PCR, qPCR Array, and RT-PCR
4.8. X-Gal Staining for Cellular Senescence and Sudan III Staining
4.9. Hematoxylin and Eosin Staining
4.10. Immunofluorescence Staining
4.11. Western Blot Analysis
4.12. Mouse Anagen Induction
4.13. Purification of Conditioned Medium and Vibrissae Follicle Organ Culture
4.14. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASC | Adipose-derived stem cell |
THPO | Thrombopoietin |
PDGF-D | Platelet-derived growth factor-D |
DPC | Dermal papilla cell |
bFGF | basic fibroblast growth factor |
NAC | following N-acetyl-L-cysteine |
DPI | diphenyleneiodonium |
ROS | reactive oxygen species |
References
- Won, C.H.; Yoo, H.G.; Kwon, O.S.; Sung, M.Y.; Kang, Y.J.; Chung, J.H.; Park, B.S.; Sung, J.H.; Kim, W.S.; Kim, K.H. Hair growth promoting effects of adipose tissue-derived stem cells. J. Dermatol. Sci. 2010, 57, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.E.; Sung, J.H. Hair regeneration using adipose-derived stem cells. Histol. Histopathol. 2016, 31, 249–256. [Google Scholar] [PubMed]
- Fukuoka, H.; Suga, H. Hair Regeneration treatment using adipose-derived stem cell conditioned medium: Follow-up with trichograms. Eplasty 2015, 15, e10. [Google Scholar] [PubMed]
- Shin, H.; Ryu, H.H.; Kwon, O.S.; Park, B.S.; Jo, S.J. Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss: A retrospective case series study. Int. J. Dermatol. 2015, 54, 730–735. [Google Scholar] [CrossRef]
- Yang, Y.; Choi, H.; Seon, M.; Cho, D.; Bang, S.I. LL-37 stimulates the functions of adipose-derived stromal/stem cells via early growth response 1 and the MAPK pathway. Stem Cell Res. Ther. 2016, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.M.; Sung, Y.K.; Kim, W.K.; Kim, J.H.; Kwack, M.H.; Yoon, I.; Kim, D.D.; Sung, J.H. Ultraviolet B preconditioning enhances the hair growth-promoting effects of adipose-derived stem cells via generation of reactive oxygen species. Stem Cells Dev. 2013, 22, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Park, S.G.; Song, S.Y.; Kim, J.K.; Sung, J.H. Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose derived stem cells via PTPN2. Cell Death Dis. 2013, 4, e588. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Park, G.S.; Kim, W.K.; Song, S.U.; Sung, J.H. Functional regulation of adipose-derived stem cells by PDGF-D. Stem Cells 2015, 33, 542–556. [Google Scholar] [CrossRef]
- Choi, N.; Choi, J.; Kim, J.H.; Jang, Y.; Yeo, J.H.; Kang, J.; Song, S.Y.; Lee, J.; Sung, J.H. Generation of trichogenic adipose-derived stem cells by expression of three factors. J. Dermatol. Sci. 2018, 92, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Tsang, M.W.; Wong, W.K.; Hung, C.S.; Lai, K.M.; Tang, W.; Cheung, E.Y.; Kam, G.; Leung, L.; Chan, C.W.; Chu, C.M.; et al. Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care 2003, 26, 1856–1861. [Google Scholar] [CrossRef] [Green Version]
- Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012, 16, 15–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, K.K.; Chan, S.Y. Epidermal growth factor as a biologic switch in hair growth cycle. J. Biol. Chem. 2003, 278, 26120–26126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Nan, W.; Wang, S.; Zhang, T.; Si, H.; Yang, F.; Li, G. Epidermal growth factor promotes proliferation and migration of follicular outer root sheath cells via Wnt/β-catenin signaling. Cell Physiol. Biochem. 2016, 39, 360–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilde, A.; Beattie, E.C.; Lem, L.; Riethof, D.A.; Liu, S.H.; Mobley, W.C.; Soriano, P.; Brodsky, F.M. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 1999, 96, 677–678. [Google Scholar] [CrossRef] [Green Version]
- Ai, G.; Shao, X.; Meng, M.; Song, L.; Qiu, J.; Wu, Y.; Zhou, J.; Cheng, J.; Tong, X. Epidermal growth factor promotes proliferation and maintains multipotency of continuous cultured adipose stem cells via activating STAT signal pathway in vitro. Medicine (Baltimore) 2017, 96, e7607. [Google Scholar] [CrossRef]
- Li, Q.; Li, P.H.; Hou, D.J.; Zhang, A.J.; Tao, C.B.; Li, X.Y.; Jin, P.S. EGF enhances ADSCs secretion via ERK and JNK pathways. Cell Biochem. Biophys. 2014, 69, 189–196. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Yang, H.; Lin, X.; Li, G.; Han, N.; Du, J.; Fan, Z. Epiregulin promotes the migration and chemotaxis ability of adipose-derived mesenchymal stem cells via mitogen-activated protein kinase signaling pathways. J. Cell Biochem. 2018, 119, 8450–8459. [Google Scholar] [CrossRef]
- Kim, J.H.; Song, S.Y.; Park, S.G.; Song, S.U.; Xia, Y.; Sung, J.H. Primary involvement of NADPH oxidase 4 in hypoxia-induced generation of reactive oxygen species in adipose-derived stem cells. Stem Cells Dev. 2012, 1, 2212–2221. [Google Scholar] [CrossRef] [Green Version]
- Fromm, J.A.; Johnson, A.S. Epidermal Growth Factor Receptor 1 (EGFR1) and Its Variant EGFRvIII Regulate TATA-Binding Protein Expression through Distinct Pathways. Mol. Cell Biol. 2008, 28, 6483–6495. [Google Scholar] [CrossRef] [Green Version]
- Krampera, M.; Pasini, A.; Rigo, A.; Scupoli, M.T.; Tecchio, C.; Malpeli, G.; Scarpa, A.; Dazzi, F.; Pizzolo, G.; Vinante, F. HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: Inducing cell expansion and reversibly preventing multilineag differentiation. Blood 2005, 106, 59–66. [Google Scholar] [CrossRef]
- Ozaki, Y.; Nishimura, M.; Sekiya, K.; Suehiro, F.; Kanawa, M.; Nikawa, H.; Hamada, T.; Kato, Y. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev. 2007, 16, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Watkins, D.J.; Yang, J.; Matthews, M.A.; Besner, G.E. Synergistic effects of HB-EGF and mesenchymal stem cells in a murine model of intestinal ischemia/reperfusion injury. J. Pediatr. Surg. 2013, 48, 1323–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, D.J.; Mika, Y.; Matthews, Z.; Chen, L.; Besner, G.E. HB-EGF Augments the Ability of Mesenchymal Stem Cells to Attenuate Intestinal Injury. J. Pediatr. Surg. 2014, 49, 938–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haznedaroğlu, I.C.; Atalar, E.; Oztürk, M.A.; Ozer, N.; Ovünç, K.; Aksöyek, S.; Kes, S.; Kirazli, S.; Ozmen, F. Thrombopoietin inside the pulmonary vessels in patients with and without pulmonary hypertension. Platelets 2002, 13, 395–399. [Google Scholar]
- Choi, N.; Shin, S.; Song, S.U.; Sung, J.H. Minoxidil promotes hair growth through stimulation of growth factor release from adipose-derived stem cells. Int. J. Mol. Sci. 2018, 19, E691. [Google Scholar] [CrossRef] [Green Version]
- Choi, N.; Sung, J.H. Udenafil induces the hair growth effect of adipose-derived stem cells. Biomol. Ther. 2019, 27, 404–413. [Google Scholar] [CrossRef]
- Ten Freyhaus, H.; Dagnell, M.; Leuchs, M.; Vantler, M.; Berghausen, E.M.; Caglayan, E.; Weissmann, N.; Dahal, B.K.; Schermuly, R.T.; Ostman, A.; et al. Hypoxia enhances platelet-derived growth factor signaling inthe pulmonary vasculature by down-regulation of protein.tyrosine phosphatases. Am. J. Respir. Crit. Care Med. 2011, 183, 1092–1102. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Moon, H.H.; Kim, H.A.; Hwang, K.C.; Lee, M.; Choi, D. Hypoxia-inducible vascular endo.-thelial growth factor-engineered myocardial mesenchymal stem cells prevent myocardial ischemic injury. Mol. Ther. 2011, 19, 741–750. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 19, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- Osherov, N.; Levitzki, A. Epidermal-growth-factor-dependent activation of the src-family kinases. Eur. J. Biochem. 1994, 225, 1047–1053. [Google Scholar] [CrossRef]
- Kassenbrock, C.K.; Hunter, S.; Garl, P.; Johnson, G.L.; Anderson, S.M. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J. Biol. Chem. 2002, 277, 24967–24975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.S.; Park, B.S.; Sung, J.H.; Yang, J.M.; Park, S.B.; Kwak, S.J.; Park, J.S. Wound healing effect of adipose-derived stem cells: A critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci. 2007, 48, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Kim, W.K.; Choi, J.S.; Song, S.Y.; Han, J.; Kim, J.H.; Kim, W.S.; Park, S.G.; Lee, H.J.; Cho, Y.K.; et al. Isolation of adipose-derived stem cells by using a subfractionation culturing method. Expert Opin. Biol. Ther. 2014, 14, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, N.; Kim, W.-S.; Oh, S.H.; Sung, J.-H. HB-EGF Improves the Hair Regenerative Potential of Adipose-Derived Stem Cells via ROS Generation and Hck Phosphorylation. Int. J. Mol. Sci. 2020, 21, 122. https://doi.org/10.3390/ijms21010122
Choi N, Kim W-S, Oh SH, Sung J-H. HB-EGF Improves the Hair Regenerative Potential of Adipose-Derived Stem Cells via ROS Generation and Hck Phosphorylation. International Journal of Molecular Sciences. 2020; 21(1):122. https://doi.org/10.3390/ijms21010122
Chicago/Turabian StyleChoi, Nahyun, Won-Serk Kim, Sang Ho Oh, and Jong-Hyuk Sung. 2020. "HB-EGF Improves the Hair Regenerative Potential of Adipose-Derived Stem Cells via ROS Generation and Hck Phosphorylation" International Journal of Molecular Sciences 21, no. 1: 122. https://doi.org/10.3390/ijms21010122
APA StyleChoi, N., Kim, W.-S., Oh, S. H., & Sung, J.-H. (2020). HB-EGF Improves the Hair Regenerative Potential of Adipose-Derived Stem Cells via ROS Generation and Hck Phosphorylation. International Journal of Molecular Sciences, 21(1), 122. https://doi.org/10.3390/ijms21010122