Semaphorin3A-Inhibitor Ameliorates Doxorubicin-Induced Podocyte Injury
Abstract
:1. Introduction
2. Results
2.1. Podocyte SEMA3A Expression is Increased in a Dox-Induced Mouse Model
2.2. SEMA3A-Inhibitor Protected from Dox-Induced Podocyte Injury
2.3. SEMA3A-Inhibitor Protected from Dox-Induced Podocyte Apoptosis
2.4. SEMA3A-Inhibitor Reduced Dox-Induced JNK/c-Jun Signaling
2.5. SEMA3A Caused Podocyte Apoptosis In Vitro
2.6. JNK-Inhibitor Attenuated SEMA3A-Induced Podocyte Apoptosis
2.7. Positive Correlation between Urinary SEMA3A and Proteinuria is Present in Human Samples
3. Discussion
4. Materials and Methods
4.1. Animal Experimental Design
4.2. Mouse Model of Doxorubicin-Induced Podocytopathy
4.3. Histological Examination
4.4. Immunohistochemical Staining
4.5. TUNEL Staining
4.6. Cell Culture
4.7. Western Blotting
4.8. Real-Time Quantitative Polymerase Chain Reaction
4.9. Human Study
4.10. Enzyme-Linked Immunosorbent Assay
4.11. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SEMA3A | Semaphorin3A |
Dox | doxorubicin |
JNK | c-Jun N-terminal kinase |
GBM | glomerular basement membrane |
CKD | chronic kidney disease |
NRP1 | Neuropilin-1 |
MCNS | minimal change nephrotic syndrome |
PAS | Periodic acid-Schiff |
LPS | lipopolysaccharide |
C-Caspase3 | cleaved-Caspase3 |
TUNEL | TdT-mediated dUTP Nick-End Labeling |
RT-qPCR | reverse transcription-quantitative polymerase chain reaction |
Bax | B cell lymphoma2-associated x-protein |
MAPK | mitogen-activated protein kinase |
p-c-Jun | Phospho-c-Jun |
DAPI | 4′,6′-diamidino-2-phenylindole |
IgA-N | IgA nephritis |
MN | membranous nephropathy |
TBM | thin basement membrane disease |
AKI | acute kidney injury |
JAK/STAT | Janus kinase/signal transducers and activators of transcription |
Akt | protein kinase B |
ERK | extracellular signal-regulated kinase |
PAN | puromycin aminonucleoside |
TGF-β1 | transforming growth factor beta 1 |
TRPC6 | transient receptor potential cation channel 6 |
mTOR | mammalian target of rapamycin |
ER | endoplasmic reticulum |
ASK1 | apoptosis signal-regulating kinase 1 |
MAPKKK | mitogen-activated protein kinase kinase kinase |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
References
- Moeller, M.J.; Tenten, V. Renal albumin filtration: Alternative models to the standard physical barriers. Nat. Rev. Nephrol. 2013, 9, 266–277. [Google Scholar] [CrossRef]
- Mundel, P.; Shankland, S.J. Podocyte biology and response to injury. J. Am. Soc. Nephrol. 2002, 13, 3005–3015. [Google Scholar] [CrossRef] [Green Version]
- Burlaka, I.; Nilsson, L.M.; Scott, L.; Holtback, U.; Eklof, A.C.; Fogo, A.B.; Brismar, H.; Aperia, A. Prevention of apoptosis averts glomerular tubular disconnection and podocyte loss in proteinuric kidney disease. Kidney Int. 2016, 90, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Humalda, J.K.; Goldsmith, D.J.; Thadhani, R.; de Borst, M.H. Vitamin D analogues to target residual proteinuria: Potential impact on cardiorenal outcomes. Nephrol. Dial. Transplant 2015, 30, 1988–1994. [Google Scholar] [CrossRef] [Green Version]
- Turin, T.C.; James, M.; Ravani, P.; Tonelli, M.; Manns, B.J.; Quinn, R.; Jun, M.; Klarenbach, S.; Hemmelgarn, B.R. Proteinuria and rate of change in kidney function in a community-based population. J. Am. Soc. Nephrol. 2013, 24, 1661–1667. [Google Scholar] [CrossRef] [Green Version]
- Unified nomenclature for the semaphorins/collapsins. Semaphorin Nomenclature Committee. Cell 1999, 97, 551–552. [CrossRef] [Green Version]
- Xia, J.; Worzfeld, T. Semaphorins and Plexins in Kidney Disease. Nephron 2016, 132, 93–100. [Google Scholar] [CrossRef]
- Tufro, A. Semaphorin3a signaling, podocyte shape, and glomerular disease. Pediatr. Nephrol. 2014, 29, 751–755. [Google Scholar] [CrossRef] [Green Version]
- Takamatsu, H.; Okuno, T.; Kumanogoh, A. Regulation of immune cell responses by semaphorins and their receptors. Cell Mol. Immunol. 2010, 7, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Villegas, G.; Tufro, A. Ontogeny of semaphorins 3A and 3F and their receptors neuropilins 1 and 2 in the kidney. Mech. Dev. 2002, 119 (Suppl. 1), S149–S153. [Google Scholar] [CrossRef]
- Reidy, K.J.; Aggarwal, P.K.; Jimenez, J.J.; Thomas, D.B.; Veron, D.; Tufro, A. Excess podocyte semaphorin-3A leads to glomerular disease involving plexinA1-nephrin interaction. Am. J. Pathol. 2013, 183, 1156–1168. [Google Scholar] [CrossRef] [Green Version]
- Inoue-Torii, A.; Kitamura, S.; Wada, J.; Tsuji, K.; Makino, H. The level of urinary semaphorin3A is associated with disease activity in patients with minimal change nephrotic syndrome. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.T.; Wang, W.W.; Ren, L.H.; Zhao, X.X.; Wang, Z.H.; Zhuang, D.L.; Bai, Y.N. The mTORC2/Akt/NFkappaB Pathway-Mediated Activation of TRPC6 Participates in Adriamycin-Induced Podocyte Apoptosis. Cell. Physiol. Biochem. 2016, 40, 1079–1093. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Hosotani, N.; Kikuchi, K.; Kimura, T.; Saji, I. Xanthofulvin, a novel semaphorin inhibitor produced by a strain of Penicillium. J. Antibiot. (Tokyo) 2003, 56, 610–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, K.; Kishino, A.; Konishi, O.; Kumagai, K.; Hosotani, N.; Saji, I.; Nakayama, C.; Kimura, T. In vitro and in vivo characterization of a novel semaphorin 3A inhibitor, SM-216289 or xanthofulvin. J. Biol. Chem. 2003, 278, 42985–42991. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Kaneko, S.; Kikuchi, K.; Sano, A.; Maeda, M.; Kishino, A.; Shibata, S.; Mukaino, M.; Toyama, Y.; Liu, M.; et al. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition. Mol. Brain 2014, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Gan, H.; Zeng, Y.; Zhao, H.; Tang, R.; Xia, Y. Inhibition of semaphorin-3a suppresses lipopolysaccharide-induced acute kidney injury. J. Mol. Med. 2018, 96, 713–724. [Google Scholar] [CrossRef]
- Grynberg, K.; Ma, F.Y.; Nikolic-Paterson, D.J. The JNK Signaling Pathway in Renal Fibrosis. Front. Physiol. 2017, 8, 829. [Google Scholar] [CrossRef]
- Ben-Zvi, A.; Yagil, Z.; Hagalili, Y.; Klein, H.; Lerman, O.; Behar, O. Semaphorin 3A and neurotrophins: A balance between apoptosis and survival signaling in embryonic DRG neurons. J. NeuroChem. 2006, 96, 585–597. [Google Scholar] [CrossRef]
- Jayakumar, C.; Ranganathan, P.; Devarajan, P.; Krawczeski, C.D.; Looney, S.; Ramesh, G. Semaphorin 3A is a new early diagnostic biomarker of experimental and pediatric acute kidney injury. PLoS ONE 2013, 8, e58446. [Google Scholar] [CrossRef]
- Doi, K.; Noiri, E.; Nangaku, M.; Yahagi, N.; Jayakumar, C.; Ramesh, G. Repulsive guidance cue semaphorin 3A in urine predicts the progression of acute kidney injury in adult patients from a mixed intensive care unit. Nephrol. Dial. Transplant. 2014, 29, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, P.K.; Veron, D.; Thomas, D.B.; Siegel, D.; Moeckel, G.; Kashgarian, M.; Tufro, A. Semaphorin3a promotes advanced diabetic nephropathy. Diabetes 2015, 64, 1743–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, R.; Ranganathan, P.; Jayakumar, C.; Nauta, F.L.; Gansevoort, R.T.; Weintraub, N.L.; Brands, M.; Ramesh, G. Urinary semaphorin 3A correlates with diabetic proteinuria and mediates diabetic nephropathy and associated inflammation in mice. J. Mol. Med. 2014, 92, 1245–1256. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.T.; Lin, Y.F.; Chou, C.T.; Tsai, C.Y. Semaphorin 3A in Ankylosing Spondylitis. J. MicroBiol. Immunol. Infect. 2019, 52, 151–157. [Google Scholar] [CrossRef]
- Gao, H.; Ma, X.X.; Guo, Q.; Zou, Y.D.; Zhong, Y.C.; Xie, L.F.; Shao, M.; Zhang, X.W. [Expression and Clinical Significance of Semaphorin 3A in serum and mononuclear cells in patients with systemic lupus erythematosus]. Zhonghua Yi Xue Za Zhi 2017, 97, 370–374. [Google Scholar] [CrossRef]
- Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 2006, 66, 2500–2505. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments. Biomed. Res. Int. 2017, 2017, 5615647. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, S.; Iwanami, A.; Nakamura, M.; Kishino, A.; Kikuchi, K.; Shibata, S.; Okano, H.J.; Ikegami, T.; Moriya, A.; Konishi, O.; et al. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat. Med. 2006, 12, 1380–1389. [Google Scholar] [CrossRef]
- Omoto, M.; Yoshida, S.; Miyashita, H.; Kawakita, T.; Yoshida, K.; Kishino, A.; Kimura, T.; Shibata, S.; Tsubota, K.; Okano, H.; et al. The semaphorin 3A inhibitor SM-345431 accelerates peripheral nerve regeneration and sensitivity in a murine corneal transplantation model. PLoS ONE 2012, 7, e47716. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, P.; Jayakumar, C.; Mohamed, R.; Weintraub, N.L.; Ramesh, G. Semaphorin 3A inactivation suppresses ischemia-reperfusion-induced inflammation and acute kidney injury. Am. J. Physiol. Renal. Physiol. 2014, 307, F183–F194. [Google Scholar] [CrossRef]
- Weston, C.R.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Genet. Dev. 2002, 12, 14–21. [Google Scholar] [CrossRef]
- Weston, C.R.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin Cell Biol. 2007, 19, 142–149. [Google Scholar] [CrossRef]
- Wen, H.; Lei, Y.; Eun, S.Y.; Ting, J.P. Plexin-A4-semaphorin 3A signaling is required for Toll-like receptor- and sepsis-induced cytokine storm. J. Exp. Med. 2010, 207, 2943–2957. [Google Scholar] [CrossRef]
- Goshima, Y.; Yamashita, N.; Nakamura, F.; Sasaki, Y. Regulation of dendritic development by semaphorin 3A through novel intracellular remote signaling. Cell Adh. Migr. 2016, 10, 627–640. [Google Scholar] [CrossRef]
- Guan, F.; Villegas, G.; Teichman, J.; Mundel, P.; Tufro, A. Autocrine class 3 semaphorin system regulates slit diaphragm proteins and podocyte survival. Kidney Int. 2006, 69, 1564–1569. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ding, J.; Fan, Q.; Zhang, H. The activation of extracellular signal-regulated kinase is responsible for podocyte injury. Mol. Biol. Rep. 2010, 37, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Lin, Q.; Liao, H.; Feng, J.; Dong, X.; Ye, J. TGF-beta1 induces podocyte injury through Smad3-ERK-NF-kappaB pathway and Fyn-dependent TRPC6 phosphorylation. Cell Physiol. BioChem. 2010, 26, 869–878. [Google Scholar] [CrossRef]
- Lei, J.; Zhao, L.; Zhang, Y.; Wu, Y.; Liu, Y. High Glucose-Induced Podocyte Injury Involves Activation of Mammalian Target of Rapamycin (mTOR)-Induced Endoplasmic Reticulum (ER) Stress. Cell Physiol. BioChem. 2018, 45, 2431–2443. [Google Scholar] [CrossRef]
- Koshikawa, M.; Mukoyama, M.; Mori, K.; Suganami, T.; Sawai, K.; Yoshioka, T.; Nagae, T.; Yokoi, H.; Kawachi, H.; Shimizu, F.; et al. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. J. Am. Soc. Nephrol. 2005, 16, 2690–2701. [Google Scholar] [CrossRef]
- Pengal, R.; Guess, A.J.; Agrawal, S.; Manley, J.; Ransom, R.F.; Mourey, R.J.; Benndorf, R.; Smoyer, W.E. Inhibition of the protein kinase MK-2 protects podocytes from nephrotic syndrome-related injury. Am. J. Physiol. Renal. Physiol. 2011, 301, F509–F519. [Google Scholar] [CrossRef] [Green Version]
- Husain, A.; Roberts, D.; Pro, B.; McLaughlin, P.; Esmaeli, B. Meta-analyses of the association between Chlamydia psittaci and ocular adnexal lymphoma and the response of ocular adnexal lymphoma to antibiotics. Cancer 2007, 110, 809–815. [Google Scholar] [CrossRef]
- Ma, F.Y.; Flanc, R.S.; Tesch, G.H.; Bennett, B.L.; Friedman, G.C.; Nikolic-Paterson, D.J. Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. Lab. Investig. 2009, 89, 470–484. [Google Scholar] [CrossRef] [Green Version]
- van der Velden, J.L.; Ye, Y.; Nolin, J.D.; Hoffman, S.M.; Chapman, D.G.; Lahue, K.G.; Abdalla, S.; Chen, P.; Liu, Y.; Bennett, B.; et al. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin. Transl. Med. 2016, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Ogier, J.M.; Nayagam, B.A.; Lockhart, P.J. ASK1 inhibition: A therapeutic strategy with multi-system benefits. J. Mol. Med. 2020, 98, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Tesch, G.H.; Ma, F.Y.; Han, Y.; Liles, J.T.; Breckenridge, D.G.; Nikolic-Paterson, D.J. ASK1 Inhibitor Halts Progression of Diabetic Nephropathy in Nos3-Deficient Mice. Diabetes 2015, 64, 3903–3913. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.Y.; Tesch, G.H.; Nikolic-Paterson, D.J. ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. Am. J. Physiol. Renal. Physiol. 2014, 307, F1263–F1273. [Google Scholar] [CrossRef]
- Terada, Y.; Inoshita, S.; Kuwana, H.; Kobayashi, T.; Okado, T.; Ichijo, H.; Sasaki, S. Important role of apoptosis signal-regulating kinase 1 in ischemic acute kidney injury. BioChem. Biophys. Res. Commun. 2007, 364, 1043–1049. [Google Scholar] [CrossRef]
- Liles, J.T.; Corkey, B.K.; Notte, G.T.; Budas, G.R.; Lansdon, E.B.; Hinojosa-Kirschenbaum, F.; Badal, S.S.; Lee, M.; Schultz, B.E.; Wise, S.; et al. ASK1 contributes to fibrosis and dysfunction in models of kidney disease. J. Clin. Investig. 2018, 128, 4485–4500. [Google Scholar] [CrossRef]
- Tsuji, K.; Kitamura, S.; Makino, H. Hypoxia-inducible factor 1alpha regulates branching morphogenesis during kidney development. BioChem. Biophys Res. Commun 2014, 447, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Mundel, P.; Reiser, J.; Zuniga Mejia Borja, A.; Pavenstadt, H.; Davidson, G.R.; Kriz, W.; Zeller, R. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp. Cell Res. 1997, 236, 248–258. [Google Scholar] [CrossRef]
Antigen | Manufacturer | Species | Dilution (IF) | Dilution (IB) |
---|---|---|---|---|
SEMA3A | Abcam | Rabbit | 1:100 | 1:1000 |
Nephrin | Progen | Pig | 1:200 | - |
C-Caspase3 | Cell Signaling | Rabbit | 1:300 | - |
p-c-Jun | Cell Signaling | Rabbit | 1:200 | - |
p-JNK | Cell Signaling | Rabbit | - | 1:1000 |
JNK | Cell Signaling | Rabbit | - | 1:1000 |
β-actin | Abcam | Rabbit | - | 1:2000 |
GAPDH | Cell Signaling | Rabbit | - | 1:5000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, Y.; Tsuji, K.; Inoue-Torii, A.; Fukushima, K.; Kitamura, S.; Wada, J. Semaphorin3A-Inhibitor Ameliorates Doxorubicin-Induced Podocyte Injury. Int. J. Mol. Sci. 2020, 21, 4099. https://doi.org/10.3390/ijms21114099
Sang Y, Tsuji K, Inoue-Torii A, Fukushima K, Kitamura S, Wada J. Semaphorin3A-Inhibitor Ameliorates Doxorubicin-Induced Podocyte Injury. International Journal of Molecular Sciences. 2020; 21(11):4099. https://doi.org/10.3390/ijms21114099
Chicago/Turabian StyleSang, Yizhen, Kenji Tsuji, Akiko Inoue-Torii, Kazuhiko Fukushima, Shinji Kitamura, and Jun Wada. 2020. "Semaphorin3A-Inhibitor Ameliorates Doxorubicin-Induced Podocyte Injury" International Journal of Molecular Sciences 21, no. 11: 4099. https://doi.org/10.3390/ijms21114099
APA StyleSang, Y., Tsuji, K., Inoue-Torii, A., Fukushima, K., Kitamura, S., & Wada, J. (2020). Semaphorin3A-Inhibitor Ameliorates Doxorubicin-Induced Podocyte Injury. International Journal of Molecular Sciences, 21(11), 4099. https://doi.org/10.3390/ijms21114099