Discovery of Novel Non-Steroidal Cytochrome P450 17A1 Inhibitors as Potential Prostate Cancer Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Enzyme Inhibition
2.3. Antiproliferative Activity
2.4. Molecular Modelling
3. Materials and Methods
3.1. Synthetic Protocols
3.2. NMR
3.3. MS
3.4. HPLC
3.5. Spectral Binding Assay
3.6. Cytochrome P450 17A1 17α-Hydroxylation Inhibition Assay
3.7. Inhibition Assays for CYP3A4, CYP2D6, and CYP21A2
3.8. Prostate Cancer Cell Line Proliferation Screening
3.9. Molecular Modelling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PCa | prostate cancer |
ADT | androgen deprivation therapy |
CRPC | castration resistant prostate cancer |
AR | androgen receptor |
PSA | prostate specific antigen |
hK1 | human glandular kallikrein 1 |
MD | molecular dynamics |
ABT | abiraterone |
5-FU | 5-fluorouracil |
GnRH | gonadotropin releasing hormone |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer. J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Hu, Q. CYP17 Inhibitors—Abiraterone, C17,20-Lyase Inhibitors and Multi-Targeting Agents. Nat. Rev. Urol. 2013, 11, 32. [Google Scholar] [CrossRef]
- Sviridonov, L.; Dobkin-Bekman, M.; Shterntal, B.; Przedecki, F.; Formishell, L.; Kravchook, S.; Rahamim-Ben Navi, L.; Bar-Lev, T.H.; Kazanietz, M.G.; Yao, Z.; et al. Differential Signaling of the GnRH Receptor in Pituitary Gonadotrope Cell Lines and Prostate Cancer Cell Lines. Mol. Cell. Endocrinol. 2013, 369, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, R.B.; Mostaghel, E.A.; Vessella, R.; Hess, D.L.; Kalhorn, T.F.; Higano, C.S.; True, L.D.; Nelson, P.S. Maintenance of Intratumoral Androgens in Metastatic Prostate Cancer: A Mechanism for Castration-Resistant Tumor Growth. Cancer Res. 2008, 68, 4447–4454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohler, J.L.; Titus, M.A.; Wilson, E.M. Potential Prostate Cancer Drug Target: Bioactivation of Androstanediol by Conversion to Dihydrotestosterone. Clin. Cancer Res. 2011, 17, 5844–5849. [Google Scholar] [CrossRef] [Green Version]
- Gomez, L.; Kovac, J.R.; Lamb, D.J. CYP17A1 Inhibitors in Castration-Resistant Prostate Cancer. Steroids 2015, 95, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, G.A.; Barrie, S.E.; Jarman, M.; Rowlands, M.G. Novel Steroidal Inhibitors of Human Cytochrome P45017.Alpha.-Hydroxylase-C17,20-lyase): Potential Agents for the Treatment of Prostatic Cancer. J. Med. Chem. 1995, 38, 2463–2471. [Google Scholar] [CrossRef]
- Kaku, T.; Hitaka, T.; Ojida, A.; Matsunaga, N.; Adachi, M.; Tanaka, T.; Hara, T.; Yamaoka, M.; Kusaka, M.; Okuda, T.; et al. Discovery of Orteronel (TAK-700), a Naphthylmethylimidazole Derivative, as a Highly Selective 17,20-Lyase Inhibitor with Potential Utility in the Treatment of Prostate Cancer. Bioorg. Med. Chem. 2011, 19, 6383–6399. [Google Scholar] [CrossRef]
- Rafferty, S.W.; Eisner, J.R.; Moore, W.R.; Schotzinger, R.J.; Hoekstra, W.J. Highly-Selective 4-(1,2,3-Triazole)-Based P450c17a 17,20-Lyase Inhibitors. Bioorg Med. Chem. Lett. 2014, 24, 2444–2447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVore, N.M.; Scott, E.E. Structures of Cytochrome P450 17A1 with Prostate Cancer Drugs Abiraterone and TOK-001. Nature 2012, 482, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrunak, E.M.; Rogers, S.A.; Aubé, J.; Scott, E.E. Structural and Functional Evaluation of Clinically Relevant Inhibitors of Steroidogenic Cytochrome P450 17A1. Drug Metab. Dispos. 2017, 45, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Castillo, P.; Buchwald, S.L. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564–12649. [Google Scholar] [CrossRef] [PubMed]
- Diness, F.; Fairlie, D.P. Catalyst-Free N-Arylation Using Unactivated Fluorobenzenes. Angew. Chemie Int. Ed. 2012, 51, 8012–8016. [Google Scholar] [CrossRef]
- Conner, K.P.; Woods, C.M.; Atkins, W.M. Interactions of Cytochrome P450s with Their Ligands. Arch. Biochem. Biophys. 2011, 507, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pia, A.; Vignani, F.; Attard, G.; Tucci, M.; Bironzo, P.; Scagliotti, G.; Arlt, W.; Terzolo, M.; Berruti, A. Strategies for Managing ACTH Dependent Mineralocorticoid Excess Induced by Abiraterone. Cancer Treat. Rev. 2013, 39, 966–973. [Google Scholar] [CrossRef]
- Malikova, J.; Brixius-Anderko, S.; Udhane, S.S.; Parween, S.; Dick, B.; Bernhardt, R.; Pandey, A.V. CYP17A1 Inhibitor Abiraterone, an Anti-Prostate Cancer Drug, also Inhibits the 21-Hydroxylase Activity of CYP21A2. J. Steroid Biochem. Mol. Biol. 2017, 174, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Fehl, C.; Vogt, C.D.; Yadav, R.; Li, K.; Scott, E.E.; Aubé, J. Structure-Based Design of Inhibitors with Improved Selectivity for Steroidogenic Cytochrome P450 17A1 over Cytochrome P450 21A2. J. Med. Chem. 2018, 61, 4946–4960. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; You, Z. In Vitro and in Vivo Model Systems Used in Prostate Cancer Research. J. Biol. Methods 2015, 2, e17. [Google Scholar] [CrossRef] [Green Version]
- Hafner, M.; Niepel, M.; Chung, M.; Sorger, P.K. Growth Rate Inhibition Metrics Correct for Confounders in Measuring Sensitivity to Cancer drugs. Nat. Methods 2016, 13, 521. [Google Scholar] [CrossRef] [Green Version]
- Alimirah, F.; Chen, J.; Basrawala, Z.; Xin, H.; Choubey, D. DU-145 and PC-3 human Prostate Cancer Cell Lines Express Androgen Rceptor: Implications for the Androgen Receptor Functions and Regulation. FEBS Lett. 2006, 580, 2294–2300. [Google Scholar] [CrossRef] [Green Version]
- Sobel, R.E.; Sadar, M.D. Cell Lines Used in Prostate Cancer Research: A Compendium of Old and New Lines—Part 1. J. Urol. 2005, 173, 342–359. [Google Scholar] [CrossRef] [PubMed]
- Pulukuri, S.M.; Gondi, C.S.; Lakka, S.S.; Jutla, A.; Estes, N.; Gujrati, M.; Rao, J.S. RNA Interference-Directed Knockdown of Urokinase Plasminogen Activator and Urokinase Plasminogen Activator Receptor Inhibits Prostate Cancer Cell Invasion, Survival, and Tumorigenicity in Vivo. J. Biol. Chem. 2005, 280, 36529–36540. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, D.-Y.; Xu, L.-H.; He, X.-H.; Zhang, Y.-T.; Zeng, L.-H.; Cai, J.-Y.; Ren, S. Autophagy is Differentially Induced in Prostate Cancer LNCaP, DU145 and PC-3 cells via Distinct Splicing Profiles of ATG5. Autophagy 2013, 9, 20–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.T.; Steelman, L.S.; McCubrey, J.A. Phosphatidylinositol 3′-Kinase Activation Leads to Multidrug Resistance Protein-1 Expression and Subsequent Chemoresistance in Advanced Prostate Cancer Cells. Cancer Res. 2004, 64, 8397–8404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Chitkara, D.; Mehrazin, R.; Behrman, S.W.; Wake, R.W.; Mahato, R.I. Chemoresistance in Prostate Cancer Cells Is Regulated by miRNAs and Hedgehog Pathway. PLoS ONE 2012, 7, e40021. [Google Scholar] [CrossRef]
- Litvinov, I.V.; Antony, L.; Dalrymple, S.L.; Becker, R.; Cheng, L.; Isaacs, J.T. PC3, but not DU145, Human Prostate Cancer Cells Retain the Coregulators Required for Tumor Suppressor Ability of Androgen Receptor. Prostate 2006, 66, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, S.; Hansen, C.H.; Petrunak, E.M.; Scott, E.E.; Styrishave, B.; Jørgensen, F.S.; Olsen, L. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors. Sci. Rep. 2016, 6, 29468. [Google Scholar] [CrossRef] [Green Version]
- Bart, A.G.; Scott, E.E. Structural and Functional Effects of Cytochrome b5 Interactions with Human Cytochrome P450 Enzymes. J. Biol. Chem. 2017, 292, 20818–20833. [Google Scholar] [CrossRef] [Green Version]
- Clark, N.A.; Hafner, M.; Kouril, M.; Williams, E.H.; Muhlich, J.L.; Pilarczyk, M.; Niepel, M.; Sorger, P.K.; Medvedovic, M. GRcalculator: An Online Tool for Calculating and Mining Dose–Response Data. BMC Cancer 2017, 17, 698. Available online: http://www.grcalculator.org (accessed on 10 June 2020). [CrossRef] [Green Version]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and Ligand Preparation: Parameters, Protocols, and Influence on Virtual Screening Enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-Like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef]
- Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A Software Program for pK( a ) Prediction and Protonation State Generation for Drug-like Molecules. J. Comput. Aided Mol. Des. 2007, 21, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirton, S.B.; Murray, C.W.; Verdonk, M.L.; Taylor, R.D. Prediction of Binding Modes for Ligands in the Cytochromes P450 and other Heme-Containing Proteins. Proteins 2005, 58, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.L.; Beard, H.S.; Cao, Y.; Cho, A.E.; Damm, W.; Farid, R.; Felts, A.K.; Halgren, T.A.; Mainz, D.T.; Maple, J.R.; et al. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J. Comput. Chem. 2005, 26, 1752–1780. [Google Scholar] [CrossRef] [Green Version]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
Compound | CYP17A1 Kd (nM) | CYP17A1 IC50 (µM) | CYP21A2 IC50 (µM) | CYP3A4 IC50 (µM) | CYP2D6 IC50 (µM) |
---|---|---|---|---|---|
1a | 290 ± 55 | 8.06 ± 3.9 | ND | ND | ND |
1b | 420 ± 70 | >10 | ND | ND | ND |
1c | 96 ± 22 | 0.83 ± 0.19 | 1.5 ± 0.67 | >10 | >10 |
1d | 150 ± 37 | 1.76 ± 0.19 | ND | ND | ND |
1e | 120 ± 34 | 0.56 ± 0.10 | 0.19 ± 0.03 | >10 | 2.5 ± 0.60 |
Abiraterone | <100 * | 0.08 ** | - | - | - |
Galeterone | <100 * | 0.13 ** | - | - | - |
Orteronel | <40 ** | 0.95 ** | - | - | - |
Compound | Kcal/mol | Kcal/mol |
---|---|---|
1a | –18.7 | –24.6 |
1b | –20.8 | n/a |
1c | –18.5 | –26.7 |
1d | –19.9 | n/a |
1e | n/a | –23.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, T.M.; Rogova, O.; Andersen, K.L.; Yadav, R.; Brixius-Anderko, S.; Scott, E.E.; Olsen, L.; Jørgensen, F.S.; Björkling, F. Discovery of Novel Non-Steroidal Cytochrome P450 17A1 Inhibitors as Potential Prostate Cancer Agents. Int. J. Mol. Sci. 2020, 21, 4868. https://doi.org/10.3390/ijms21144868
Wróbel TM, Rogova O, Andersen KL, Yadav R, Brixius-Anderko S, Scott EE, Olsen L, Jørgensen FS, Björkling F. Discovery of Novel Non-Steroidal Cytochrome P450 17A1 Inhibitors as Potential Prostate Cancer Agents. International Journal of Molecular Sciences. 2020; 21(14):4868. https://doi.org/10.3390/ijms21144868
Chicago/Turabian StyleWróbel, Tomasz M., Oksana Rogova, Kasper L. Andersen, Rahul Yadav, Simone Brixius-Anderko, Emily E. Scott, Lars Olsen, Flemming Steen Jørgensen, and Fredrik Björkling. 2020. "Discovery of Novel Non-Steroidal Cytochrome P450 17A1 Inhibitors as Potential Prostate Cancer Agents" International Journal of Molecular Sciences 21, no. 14: 4868. https://doi.org/10.3390/ijms21144868
APA StyleWróbel, T. M., Rogova, O., Andersen, K. L., Yadav, R., Brixius-Anderko, S., Scott, E. E., Olsen, L., Jørgensen, F. S., & Björkling, F. (2020). Discovery of Novel Non-Steroidal Cytochrome P450 17A1 Inhibitors as Potential Prostate Cancer Agents. International Journal of Molecular Sciences, 21(14), 4868. https://doi.org/10.3390/ijms21144868