Hybrid Porous Microparticles Based on a Single Organosilica Cyclophosphazene Precursor
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Characterization Methods
2.3. Synthesis of Silane Derived Cyclic Phosphazenes SiCPz1 and SiCPz2
2.4. Synthesis of Porous Organosilica Phosphazene Based Microparticles SiCPz1-PM1 and SiCPz2-PM2
2.5. Hydrolytic Degradation Studies of the Porous SiCPz1-PM1 Microparticles
2.6. Post-Functionalization of the Porous SiCPz2-PM2 Microparticles
3. Results and Discussion
3.1. Synthesis and Characterization of the Cyclic Organosilica Phosphazenes Bridges
3.2. Synthesis of Porous Organosilica Phosphazene-Based Microparticles
3.3. Characterization of the Prepared Porous Organosilica Microparticles
3.4. Hydrolytic Degradation Studies of SiCPz1-PM1 Microparticles
3.5. Post-Functionalization of the Porous SiCPz2-PM2 Microparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Ilharco, L.M.; Pagliaro, M. The sol-gel route to advanced silica-based materials and recent applications. Chem. Rev. 2013, 113, 6592–6620. [Google Scholar] [CrossRef] [PubMed]
- Möller, K.; Bein, T. Degradable drug carriers: Vanishing mesoporous silica nanoparticles. Chem. Mater. 2019, 31, 4364–4378. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Hu, Y.; Sun, L.; Bai, L.; Jiang, T.; Wang, S. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: A comparative study between three dimensional and two dimensional macroporous silica. Int. J. Nanomed. 2013, 8, 4015–4031. [Google Scholar] [CrossRef] [PubMed]
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: Boston, MA, USA, 1990. [Google Scholar]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Lai, C.Y. Mesoporous silica nanomaterials applications in catalysis. J. Thermodyn. Catal. 2013, 5, 10–12. [Google Scholar]
- Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 2020, 30, 3–5. [Google Scholar] [CrossRef]
- Asefa, T.; MacLachlan, M.J.; Coombs, N.; Ozin, G.A. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 1999, 402, 867–871. [Google Scholar] [CrossRef]
- Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc. 1999, 121, 9611–9614. [Google Scholar] [CrossRef]
- Hatton, B.; Landskron, K.; Whitnall, W.; Perovic, D.; Ozin, G.A. Past, present, and future of periodic mesoporous organosilicas—The PMOs. Acc. Chem. Res. 2005, 38, 305–312. [Google Scholar] [CrossRef]
- Poscher, V.; Salinas, Y. Trends in degradable mesoporous organosilica-based nanomaterials for controlling drug delivery: A mini review. Materials 2020, 13, 3668. [Google Scholar] [CrossRef] [PubMed]
- Rothemund, S.; Teasdale, I. Preparation of polyphosphazenes: A tutorial review. Chem. Soc. Rev. 2016, 45, 5200–5215. [Google Scholar] [CrossRef] [PubMed]
- Strasser, P.; Teasdale, I. Main-chain phosphorus-containing polymers for therapeutic applications. Molecules 2020, 25, 1716. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, I.; Brüggemann, O.; Henke, H. Polyphosphazenes for Medical Applications; De Gruyter: Berlin, NH, USA, 2020. [Google Scholar]
- Allcock, H.R.; Morozowich, N.L. Bioerodible polyphosphazenes and their medical potential. Polym. Chem. 2012, 3, 578–590. [Google Scholar] [CrossRef]
- Caminade, A.M.; Hameau, A.; Majoral, J.P. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Trans. 2016, 45, 1810–1822. [Google Scholar] [CrossRef]
- Xiong, S.; Tao, J.; Wang, Y.; Tang, J.; Liu, C.; Liu, Q.; Wang, Y.; Yu, G.; Pan, C. Uniform poly(phosphazene-triazine) porous microspheres for highly efficient iodine removal. Chem. Commun. 2018, 54, 8450–8453. [Google Scholar] [CrossRef]
- Wang, S.; Sui, X.; Li, Y.; Li, J.; Xu, H.; Zhong, Y.; Zhang, L.; Mao, Z. Durable flame retardant finishing of cotton fabrics with organosilicon functionalized cyclotriphosphazene. Polym. Degrad. Stab. 2016, 128, 22–28. [Google Scholar] [CrossRef]
- Christova, D.; Ivanova, S.D.; Velichkova, R.S.; Tzvetkova, P.; Mihailova, P.; Lakov, L.; Peshev, O. New functionalized cyclotriphosphazenes-synthesis and application in the sol-gel process. Des. Monomers Polym. 2001, 4, 329–341. [Google Scholar] [CrossRef][Green Version]
- Khanin, D.A.; Kononevich, Y.N.; Temnikov, M.N.; Morgalyuk, V.P.; Vasil’ev, V.G.; Popov, A.Y.; Brel, V.K.; Muzafarov, A.M. New hybrid materials based on cyclophosphazene and polysiloxane precursors: Synthesis and properties. Polymer 2020, 186, 122011. [Google Scholar] [CrossRef]
- Jiménez, J.; Laguna, A.; Gascón, E.; Sanz, J.A.; Serrano, J.L.; Barberá, J.; Oriol, L. New liquid crystalline materials based on two generations of dendronised cyclophosphazenes. Chem. Eur. J. 2012, 18, 16801–16814. [Google Scholar]
- Jiang, J.; Wang, Y.; Luo, Z.; Qi, T.; Qiao, Y.; Zuo, M.; Wang, B. Design and application of highly efficient flame retardants for polycarbonate combining the advantages of cyclotriphosphazene and silicone oil. Polymers 2019, 11, 1155. [Google Scholar] [CrossRef] [PubMed]
- Poscher, V.; Teasdale, I.; Salinas, Y. Surfactant-free synthesis of cyclomatrix and linear organosilica phosphazene-based hybrid nanoparticles. ACS Appl. Nano Mater. 2019, 2, 655–660. [Google Scholar] [CrossRef]
- Qian, Y.-C.; Huang, X.-J.; Chen, C.; Ren, N.; Huang, X.; Xu, Z.-K. A versatile approach to the synthesis of polyphosphazene derivatives via the thiol-ene reaction. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 5170–5176. [Google Scholar] [CrossRef]
- Wang, D.; Feng, X.; Zhang, L.; Li, M.; Liu, M.; Tian, A.; Fu, S. Cyclotriphosphazene-bridged periodic mesoporous organosilica-integrated cellulose nanofiber anisotropic foam with highly flame-retardant and thermally insulating properties. Chem. Eng. J. 2019, 375, 121933. [Google Scholar] [CrossRef]
- Henke, H.; Wilfert, S.; Iturmendi, A.; Brüggemann, O.; Teasdale, I. Branched polyphosphazenes with controlled dimensions. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 4467–4473. [Google Scholar] [CrossRef] [PubMed]
- Croissant, J.G.; Mauriello-Jimenez, C.; Maynadier, M.; Cattoën, X.; Wong Chi Man, M.; Raehm, L.; Mongin, O.; Blanchard-Desce, M.; Garcia, M.; Gary-Bobo, M.; et al. Synthesis of disulfide-based biodegradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells. Chem. Commun. 2015, 51, 12324–12327. [Google Scholar] [CrossRef]
- Wilfert, S.; Iturmendi, A.; Schoefberger, W.; Kryeziu, K.; Heffeter, P.; Berger, W.; Brüggemann, O.; Teasdale, I. Water-soluble, biocompatible polyphosphazenes with controllable and pH-promoted degradation behavior. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.C.; Aggad, D.; Croissant, J.G.; Tresfield, K.; Laurencin, D.; Berthomieu, D.; Cubedo, N.; Rossel, M.; Alsaiari, S.; Anjum, D.H.; et al. Porous porphyrin-based organosilica nanoparticles for nir two-photon photodynamic therapy and gene delivery in Zebrafish. Adv. Funct. Mater. 2018, 28, 1800235. [Google Scholar]
- Barczak, M.; Dobrowolski, R.; Borowski, P.; Giannakoudakis, D.A. Pyridine-, thiol- and amine-functionalized mesoporous silicas for adsorptive removal of pharmaceuticals. Microporous Mesoporous Mater. 2020, 299, 110132. [Google Scholar] [CrossRef]
- Mangos, D.N.; Nakanishi, T.; Lewis, D.A. A simple method for the quantification of molecular decorations on silica particles. Sci. Technol. Adv. Mater. 2014, 15, 015002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poscher, V.; Pappas, G.S.; Brüggemann, O.; Teasdale, I.; Salinas, Y. Hybrid Porous Microparticles Based on a Single Organosilica Cyclophosphazene Precursor. Int. J. Mol. Sci. 2020, 21, 8552. https://doi.org/10.3390/ijms21228552
Poscher V, Pappas GS, Brüggemann O, Teasdale I, Salinas Y. Hybrid Porous Microparticles Based on a Single Organosilica Cyclophosphazene Precursor. International Journal of Molecular Sciences. 2020; 21(22):8552. https://doi.org/10.3390/ijms21228552
Chicago/Turabian StylePoscher, Vanessa, George S. Pappas, Oliver Brüggemann, Ian Teasdale, and Yolanda Salinas. 2020. "Hybrid Porous Microparticles Based on a Single Organosilica Cyclophosphazene Precursor" International Journal of Molecular Sciences 21, no. 22: 8552. https://doi.org/10.3390/ijms21228552
APA StylePoscher, V., Pappas, G. S., Brüggemann, O., Teasdale, I., & Salinas, Y. (2020). Hybrid Porous Microparticles Based on a Single Organosilica Cyclophosphazene Precursor. International Journal of Molecular Sciences, 21(22), 8552. https://doi.org/10.3390/ijms21228552