The Vitamin A and D Exposure of Cells Affects the Intracellular Uptake of Aluminum Nanomaterials and Its Agglomeration Behavior: A Chemo-Analytic Investigation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Al and Al2O3 NMs
2.2. Cellular Uptake
2.3. Metabolic Changes after Nanomaterial Uptake
3. Materials and Methods
3.1. Cell Culture and NM Exposure
3.2. ICP-MS Analysis
3.3. ToF-SIMS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Al | aluminum |
DAG DLS EELS | diacylglycerol dynamic light scattering electron energy loss spectroscopy |
EFSA | European Food Safety Authority |
HaCaT | human keratinocyte cell line |
ICP-MS | inductively coupled plasma mass spectrometry |
NMs | nanomaterials |
PA | phosphatidic acids |
PC | phosphatidylcholine |
PCA | principal component analysis |
PE | phosphatidylethanolamine |
PIP2 | phosphatidylinositol 4,5-bisphosphate |
PKC SAXS SEM SP TEM | protein kinase C small angle X-ray scattering standard error of the mean single particle transmission electron microscopy |
ToF-SIMS | time-of-flight secondary ion mass spectrometry |
TWI XRD | tolerable weekly intake X-ray diffraction |
References
- Lu, X.; Liang, R.; Jia, Z.; Wang, H.; Pan, B.; Zhang, Q.; Niu, Q. Cognitive disorders and tau-protein expression among retired aluminum smelting workers. J. Occup. Env. Med. 2014, 56, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Sheykhansari, S.; Kozielski, K.; Bill, J.; Sitti, M.; Gemmati, D.; Zamboni, P.; Singh, A.V. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis. 2018, 9, 348. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; Vallamkondu, J.; Corgiat, E.B.; Gill, K.D. Understanding Aspects of Aluminum Exposure in Alzheimer’s Disease Development. Brain Pathol. 2016, 26, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Scotter, M.J. 3-Overview of EU regulations and safety assessment for food colours. In Colour Additives for Foods and Beverages; Woodhead Publishing: Oxford, UK, 2015; pp. 61–74. [Google Scholar] [CrossRef]
- Tietz, T.; Lenzner, A.; Kolbaum, A.E.; Zellmer, S.; Riebeling, C.; Gürtler, R.; Jung, C.; Kappenstein, O.; Tentschert, J.; Giulbudagian, M.; et al. Aggregated aluminium exposure: risk assessment for the general population. Arch. Toxicol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwalfenberg, G.K.; Genuis, S.J. Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions between Nutrients and Toxicants in Clinical Medicine. Scientific World J. 2015, 2015, 318595. [Google Scholar] [CrossRef] [Green Version]
- Torma, H.; Rollman, O.; Binderup, L.; Michaelsson, G. Vitamin D analogs affect the uptake and metabolism of retinol by human epidermal keratinocytes in culture. J. Investig. Dermatol. Symp. Proc. 1996, 1, 49–53. [Google Scholar]
- Jungnickel, H.; Laux, P.; Luch, A. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS): A New Tool for the Analysis of Toxicological Effects on Single Cell Level. Toxics 2016, 4, 5. [Google Scholar] [CrossRef]
- Laux, P.; Riebeling, C.; Booth, A.M.; Brain, J.D.; Brunner, J.; Cerrillo, C.; Creutzenberg, O.; Estrela-Lopis, I.; Gebel, T.; Johanson, G.; et al. Biokinetics of nanomaterials: The role of biopersistence. NanoImpact 2017, 6, 69–80. [Google Scholar] [CrossRef]
- Sieg, H.; Kästner, C.; Krause, B.; Meyer, T.; Burel, A.; Böhmert, L.; Lichtenstein, D.; Jungnickel, H.; Tentschert, J.; Laux, P.; et al. Impact of an Artificial Digestion Procedure on Aluminum-Containing Nanomaterials. Langmuir 2017, 33, 10726–10735. [Google Scholar] [CrossRef]
- Krause, B.; Meyer, T.; Sieg, H.; Kästner, C.; Reichardt, P.; Tentschert, J.; Jungnickel, H.; Estrela-Lopis, I.; Burel, A.; Chevance, S.; et al. Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis. RSC Adv. 2018, 8, 14377–14388. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Qi, J.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 2016, 238, 176–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadeel, B.; Fornara, A.; Toprak, M.S.; Bhattacharya, K. Keeping it real: The importance of material characterization in nanotoxicology. Biochem. Biophys. Res. Commun. 2015, 468, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Sieg, H.; Braeuning, C.; Kunz, B.M.; Daher, H.; Kastner, C.; Krause, B.C.; Meyer, T.; Jalili, P.; Hogeveen, K.; Bohmert, L.; et al. Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells. Nanotoxicology 2018, 12, 992–1013. [Google Scholar] [CrossRef] [PubMed]
- Varani, J.; Warner, R.L.; Gharaee-Kermani, M.; Phan, S.H.; Kang, S.; Chung, J.H.; Wang, Z.Q.; Datta, S.C.; Fisher, G.J.; Voorhees, J.J. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J. Investig. Dermatol. 2000, 114, 480–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandamachira, A.; Selvam, S.; Marimuthu, N.; Janardhanan Kalarical, S.; Fathima Nishter, N. Collagen-nanoparticle Interactions: Type I Collagen Stabilization Using Functionalized Nanoparticles. Soft Mater. 2015, 13, 59–65. [Google Scholar] [CrossRef]
- Chauhan, A.; Chauhan, V.P.S.; Brockerhoff, H. Activation of Protein-Kinase-C by Phosphatidylinositol 4,5-Bisphosphate - Possible Involvement in Na+/H+ Antiport down-Regulation and Cell-Proliferation. Biochem. Biophys. Res. Commun. 1991, 175, 852–857. [Google Scholar] [CrossRef]
- Hegemann, L.; Wevers, A.; Bonnekoh, B.; Mahrle, G. Changes of epidermal cell morphology and keratin expression induced by inhibitors of protein kinase C. J. Dermatol. Sci. 1992, 3, 103–110. [Google Scholar] [CrossRef]
- Papp, H.; Czifra, G.; Lazar, J.; Gonczi, M.; Csernoch, L.; Kovacs, L.; Biro, T. Protein kinase C isozymes regulate proliferation and high cell density-mediated differentiation in HaCaT keratinocytes. Exp. Dermatol. 2003, 12, 811–824. [Google Scholar] [CrossRef]
- Athenstaedt, K.; Daum, G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem. 1999, 266, 1–16. [Google Scholar] [CrossRef]
- Vance, J.E.; Tasseva, G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Bba-Mol. Cell Biol. L 2013, 1831, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Agellon, L.B.; Allen, T.M.; Umeda, M.; Jewell, L.; Mason, A.; Vance, D.E. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006, 3, 321–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, C.R.; Munoz-Olaya, J.M.; Sot, J.; Jimenez-Baranda, S.; Izquierdo-Useros, N.; Abad, J.L.; Apellaniz, B.; Delgado, R.; Martinez-Picado, J.; Alonso, A.; et al. Dihydrosphingomyelin Impairs HIV-1 Infection by Rigidifying Liquid-Ordered Membrane Domains. Chem. Biol. 2010, 17, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Cuenca, S.; Barbarroja, N.; Vidal-Puig, A. Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Bba-Mol. Cell Biol. L 2015, 1851, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Stiban, J.; Fistere, D.; Colombini, M. Dihydroceramide hinders ceramide channel formation: Implications on apoptosis. Apoptosis 2006, 11, 773–780. [Google Scholar] [CrossRef]
- Tavares, A.M.; Louro, H.; Antunes, S.; Quarre, S.; Simar, S.; De Temmerman, P.J.; Verleysen, E.; Mast, J.; Jensen, K.A.; Norppa, H.; et al. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol. Vitr. 2014, 28, 60–69. [Google Scholar] [CrossRef]
- Vickerman, J.C. Molecular Surface Mass Spectrometry by SIMS. In Surface Analysis – The Principal Techniques; John Wiley & Sons, Ltd.: Chichester, UK, 2009; pp. 113–205. [Google Scholar] [CrossRef]
- Singh, A.V.; Jungnickel, H.; Leibrock, L.; Tentschert, J.; Reichardt, P.; Katz, A.; Laux, P.; Luch, A. ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Sci Rep.-Uk 2020, 10, 261. [Google Scholar] [CrossRef] [Green Version]
- Tentschert, J.; Draude, F.; Jungnickel, H.; Haase, A.; Mantion, A.; Galla, S.; Thunemann, A.F.; Taubert, A.; Luch, A.; Arlinghaus, H.F. TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment. Surf. Interface Anal. 2013, 45, 483–485. [Google Scholar] [CrossRef]
- Booth, A.; Storseth, T.; Altin, D.; Fornara, A.; Ahniyaz, A.; Jungnickel, H.; Laux, P.; Luch, A.; Sorensen, L. Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata. Sci. Total Environ. 2015, 505, 596–605. [Google Scholar] [CrossRef] [Green Version]
- Haase, A.; Arlinghaus, H.F.; Tentschert, J.; Jungnickel, H.; Graf, P.; Mantion, A.; Draude, F.; Galla, S.; Plendl, J.; Goetz, M.E.; et al. Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses. ACS Nano 2011, 5, 3059–3068. [Google Scholar] [CrossRef]
- Jungnickel, H.; Jones, E.A.; Lockyer, N.P.; Oliver, S.G.; Stephens, G.M.; Vickerman, J.C. Application of TOF-SIMS with chemometrics to discriminate between four different yeast strains from the species Candida glabrata and Saccharomyces cerevisiae. Anal. Chem. 2005, 77, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.E.; Jungnickel, H.; Lockyer, N.P.; Stephens, G.M.; Vickerman, J.C. ToF-SIMS studies as a tool to discriminate between spores and vegetative cells of bacteria. Appl. Surf. Sci. 2004, 231–232, 420–423. [Google Scholar] [CrossRef]
Methods | Al0 NM | Al2O3 NM |
---|---|---|
TEM | Primary particle size and shape: 2–50 nm, nearly spherical | Primary particle size and shape: 10 × 20–50 nm, grain-like shape |
EELS-TEM | Core-shell structure, thin (2–5 nm) oxide layer | Fully oxidized particle |
XRD | Aluminum surface; partially oxidized | Fully oxidized surface |
SAXS | Particle size: >20 nm | Primary particle size: 14.2 nm Aggregates’ size: >20 nm |
SP-ICP-MS | Primary particle size: 54–80 nm | Primary particle size: 50–80 nm |
ICP-MS | Ion release: 0.2–0.5% (in 0.05% BSA) | Ion release: 0.2–0.4% (in 0.05% BSA) |
Retinol | Low Vitamin D3 | High Vitamin D3 |
---|---|---|
diacylglycerols | phosphatidylethanolamines | lyso-phosphatidylcholines |
lyso-phosphatidic acids | -/- | -/- |
Retinol | Low Vitamin D3 | High Vitamin D3 |
---|---|---|
diacylglycerols | diacylglycerols | Diacylglycerols |
lyso-phosphatidic acids | lyso-phosphatidylcholines | phosphatidic acids |
-/- | dihydroceramides | diacylglycerol phosphates |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kriegel, F.L.; Krause, B.-C.; Reichardt, P.; Singh, A.V.; Tentschert, J.; Laux, P.; Jungnickel, H.; Luch, A. The Vitamin A and D Exposure of Cells Affects the Intracellular Uptake of Aluminum Nanomaterials and Its Agglomeration Behavior: A Chemo-Analytic Investigation. Int. J. Mol. Sci. 2020, 21, 1278. https://doi.org/10.3390/ijms21041278
Kriegel FL, Krause B-C, Reichardt P, Singh AV, Tentschert J, Laux P, Jungnickel H, Luch A. The Vitamin A and D Exposure of Cells Affects the Intracellular Uptake of Aluminum Nanomaterials and Its Agglomeration Behavior: A Chemo-Analytic Investigation. International Journal of Molecular Sciences. 2020; 21(4):1278. https://doi.org/10.3390/ijms21041278
Chicago/Turabian StyleKriegel, Fabian L., Benjamin-Christoph Krause, Philipp Reichardt, Ajay Vikram Singh, Jutta Tentschert, Peter Laux, Harald Jungnickel, and Andreas Luch. 2020. "The Vitamin A and D Exposure of Cells Affects the Intracellular Uptake of Aluminum Nanomaterials and Its Agglomeration Behavior: A Chemo-Analytic Investigation" International Journal of Molecular Sciences 21, no. 4: 1278. https://doi.org/10.3390/ijms21041278
APA StyleKriegel, F. L., Krause, B.-C., Reichardt, P., Singh, A. V., Tentschert, J., Laux, P., Jungnickel, H., & Luch, A. (2020). The Vitamin A and D Exposure of Cells Affects the Intracellular Uptake of Aluminum Nanomaterials and Its Agglomeration Behavior: A Chemo-Analytic Investigation. International Journal of Molecular Sciences, 21(4), 1278. https://doi.org/10.3390/ijms21041278