Pathomechanisms of Immunological Disturbances in β-Thalassemia
Abstract
:1. Introduction
2. Molecular Pathogenesis of Beta-Thalassemia
3. Pathogenesis of Immune Defects in Thalassemia
3.1. Phenotypical and Functional Abnormalities
3.2. Polymorphonuclear Neutrophils (PMN)/Granulocytes (Neutrophils, Eosinophilic Cells, Basophilic Cells)
3.3. Lymphocytes (T Cell, B Cell, NK Cells)
4. The Causes Leading to Changes in the Immune System
4.1. Disease-Related Factor
4.2. External Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaninoni, A.; Fermo, E.; Vercellati, C.; Marcello, A.P.; Barcellini, W.; Bianchi, P. Congenital Hemolytic Anemias: Is There a Role for the Immune System? Front. Immunol. 2020, 11, 1309. [Google Scholar] [CrossRef]
- Baharlou, R.; Davami, M.H.; Ahmadi Vasmehjani, A.; Ebrahimi, M. Increased IL-17 and TGF-β serum levels in peripheral blood of patients with β-thalassemia major: Implication for continual transfusions role in T helper17-mediated proinflammatory responses. Turk. J. Med. Sci. 2016, 46, 749–755. [Google Scholar] [CrossRef]
- Nithichanon, A.; Tussakhon, I.; Samer, W.; Kewcharoenwong, C.; Ato, M.; Bancroft, G.J.; Lertmemongkolchai, G. Immune responses in beta-thalassaemia: Heme oxygenase 1 reduces cytokine production and bactericidal activity of human leucocytes. Sci. Rep. 2020, 10, 10297. [Google Scholar] [CrossRef]
- Fabrice, D.; Franco, A.; Renzo, G. Beta-thalassemia: From genotype to phenotype. Haematologica 2011, 96, 1573–1575. [Google Scholar] [CrossRef] [Green Version]
- Higgs, D.R.; Engel, J.D.; Stamatoyannopoulos, G. Thalassaemia. Lancet 2012, 379, 373–383. [Google Scholar] [CrossRef]
- Taher, A.T.; Saliba, A.N. Iron overload in thalassemia: Different organs at different rates. Hematology Am. Soc. Hematol. Educ. Program 2017, 2017, 265–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmakis, D.; Giakoumis, A.; Polymeropoulos, E.; Aessopos, A. Pathogenetic aspects of immune deficiency associated with beta-thalassemia. Med. Sci. Monit. 2003, 9, Ra19–Ra22. [Google Scholar] [PubMed]
- Asadov, C. Immunologic Abnormalities in β-Thalassemia. In Prime Archives in Immunology; Vide Leaf: Santa Monica, CA, USA, 2020; p. 224. [Google Scholar] [CrossRef]
- Buttari, B.; Profumo, E.; Caprari, P.; Massimi, S.; Sorrentino, F.; Maffei, L.; Gabbianelli, M.; Riganò, R. Phenotypical and functional abnormalities of circulating neutrophils in patients with β-thalassemia. Ann. Hematol. 2020, 99, 2265–2277. [Google Scholar] [CrossRef]
- Ricerca, B.M.; Di Girolamo, A.; Rund, D. Infections in thalassemia and hemoglobinopathies: Focus on therapy-related complications. Mediterr. J. Hematol. Infect. Dis. 2009, 1, e2009028. [Google Scholar] [CrossRef] [PubMed]
- Elsayh, K.I.; Mohammed, W.S.; Zahran, A.M.; Saad, K. Leukocytes apoptosis and adipocytokines in children with beta thalassemia major. Clin. Exp. Med. 2016, 16, 345–350. [Google Scholar] [CrossRef]
- Siwaponanan, P.; Siegers, J.Y.; Ghazali, R.; Ng, T.; McColl, B.; Ng, G.Z.; Sutton, P.; Wang, N.; Ooi, I.; Thiengtavor, C.; et al. Reduced PU.1 expression underlies aberrant neutrophil maturation and function in β-thalassemia mice and patients. Blood 2017, 129, 3087–3099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgna-Pignatti, C.; Rugolotto, S.; De Stefano, P.; Piga, A.; Di Gregorio, F.; Gamberini, M.R.; Sabato, V.; Melevendi, C.; Cappellini, M.D.; Verlato, G. Survival and disease complications in thalassemia major. Ann. N. Y. Acad. Sci. 1998, 850, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, N.F.; Brittenham, G.M. Iron-chelating therapy and the treatment of thalassemia. Blood 1997, 89, 739–761. [Google Scholar] [CrossRef] [Green Version]
- Leecharoenkiat, K.; Lithanatudom, P.; Sornjai, W.; Smith, D.R. Iron dysregulation in beta-thalassemia. Asian Pac. J. Trop. Med. 2016, 9, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, N.F. The β-thalassemias. N. Engl. J. Med. 1999, 341, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Mathias, L.A.; Fisher, T.C.; Zeng, L.; Meiselman, H.J.; Weinberg, K.I.; Hiti, A.L.; Malik, P. Ineffective erythropoiesis in β-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp. Hematol. 2000, 28, 1343–1353. [Google Scholar] [CrossRef]
- Schrier, S.L. Pathophysiology of thalassemia. Curr. Opin. Hematol. 2002, 9, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Arlet, J.-B.; Dussiot, M.; Moura, I.C.; Hermine, O.; Courtois, G. Novel players in β-thalassemia dyserythropoiesis and new therapeutic strategies. Curr. Opin. Hematol. 2016, 23, 181–188. [Google Scholar] [CrossRef]
- Rachmilewitz, E.; Peisach, J.; Bradley, T.; Blumberg, W. Role of haemichromes in the formation of inclusion bodies in haemoglobin H disease. Nature 1969, 222, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Mai, A.; Jelicic, K.; Rotili, D.; Di Noia, A.; Alfani, E.; Valente, S.; Altucci, L.; Nebbioso, A.; Massa, S.; Galanello, R. Identification of two new synthetic histone deacetylase inhibitors that modulate globin gene expression in erythroid cells from healthy donors and patients with thalassemia. Mol. Pharmacol. 2007, 72, 1111–1123. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, M.H.; Forget, B.G.; Higgs, D.R.; Weatherall, D.J. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Weatherall, D.J.; Clegg, J.B. The Thalassaemia Syndromes; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Paritpokee, N.; Wiwanitkit, V.; Bhokaisawan, N.; Boonchalermvichian, C.; Preechakas, P. Serum erythropoietin levels in pediatric patients with beta-thalassemia/hemoglobin E. Clin. Lab. 2002, 48, 631–634. [Google Scholar]
- Bazi, A.; Shahramian, I.; Yaghoobi, H.; Naderi, M.; Azizi, H. The Role of Immune System in Thalassemia Major: A Narrative Review. J. Pediatr. Rev. 2017, 6, 29–36. [Google Scholar] [CrossRef]
- Vento, S.; Cainelli, F.; Cesario, F. Infections and thalassaemia. Lancet Infect. Dis. 2006, 6, 226–233. [Google Scholar] [CrossRef]
- Sinniah, D.; Yadav, M. Elevated IgG and decreased complement component C3 and factor B in B-thalassaemia major. Acta Paediatr. Scand. 1981, 70, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G. Iron and immunity: A double-edged sword. Eur. J. Clin. Invest. 2002, 32 (Suppl. 1), 70–78. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, J.; Vahidshahi, K.; Kosaryan, M.; Parvinnejad, N.; Mahdavi, M.; Karami, H. Nitroblue tetrazolium test in patients with beta-thalassemia major. Saudi. Med. J. 2008, 29, 1601–1605. [Google Scholar] [PubMed]
- Kyriakou, D.S.; Alexandrakis, M.G.; Kyriakou, E.S.; Liapi, D.; Kourelis, T.V.; Passam, F.; Papadakis, A. Activated peripheral blood and endothelial cells in thalassemia patients. Ann. Hematol. 2001, 80, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Amer, J.; Fibach, E. Chronic oxidative stress reduces the respiratory burst response of neutrophils from beta-thalassaemia patients. Br. J. Haematol. 2005, 129, 435–441. [Google Scholar] [CrossRef]
- Walter, P.B.; Porter, J.; Evans, P.; Kwiatkowski, J.L.; Neufeld, E.J.; Coates, T.; Giardina, P.J.; Grady, R.W.; Vichinsky, E.; Olivieri, N.; et al. Increased leucocyte apoptosis in transfused β-thalassaemia patients. Br. J. Haematol. 2013, 160, 399–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef]
- Del Rio, L.; Bennouna, S.; Salinas, J.; Denkers, E.Y. CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. J. Immunol. 2001, 167, 6503–6509. [Google Scholar] [CrossRef] [Green Version]
- Ampel, N.M.; Van Wyck, D.B.; Aguirre, M.L.; Willis, D.G.; Popp, R.A. Resistance to infection in murine beta-thalassemia. Infect. Immun. 1989, 57, 1011–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, B.; McCrory, M.A.; Pass, C.; Bullard, D.C.; Ballantyne, C.M.; Xu, Y.; Briles, D.E.; Szalai, A.J. The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection. J. Immunol. 2004, 173, 7506–7512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef]
- Amulic, B.; Cazalet, C.; Hayes, G.L.; Metzler, K.D.; Zychlinsky, A. Neutrophil function: From mechanisms to disease. Annu. Rev. Immunol. 2012, 30, 459–489. [Google Scholar] [CrossRef]
- Reeves, E.P.; Lu, H.; Jacobs, H.L.; Messina, C.G.; Bolsover, S.; Gabella, G.; Potma, E.O.; Warley, A.; Roes, J.; Segal, A.W. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 2002, 416, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Roos, D.; van Bruggen, R.; Meischl, C. Oxidative killing of microbes by neutrophils. Microbes Infect. 2003, 5, 1307–1315. [Google Scholar] [CrossRef]
- Dahlgren, C.; Karlsson, A. Respiratory burst in human neutrophils. J. Immunol. Methods 1999, 232, 3–14. [Google Scholar] [CrossRef]
- Amer, J.; Goldfarb, A.; Fibach, E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur. J. Haematol. 2003, 70, 84–90. [Google Scholar] [CrossRef]
- Amer, J.; Fibach, E. Oxidative status of platelets in normal and thalassemic blood. Thromb. Haemost. 2004, 92, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Cantinieaux, B.; Hariga, C.; Ferster, A.; Toppet, M.; Fondu, P. Desferrioxamine improves neutrophil phagocytosis in thalassemia major. Am. J. Hematol. 1990, 35, 13–17. [Google Scholar] [CrossRef]
- Leliefeld, P.H.; Wessels, C.M.; Leenen, L.P.; Koenderman, L.; Pillay, J. The role of neutrophils in immune dysfunction during severe inflammation. Crit. Care 2016, 20, 73. [Google Scholar] [CrossRef] [Green Version]
- Dakic, A.; Metcalf, D.; Di Rago, L.; Mifsud, S.; Wu, L.; Nutt, S.L. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 2005, 201, 1487–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Will, B.; Vogler, T.O.; Narayanagari, S.; Bartholdy, B.; Todorova, T.I.; da Silva Ferreira, M.; Chen, J.; Yu, Y.; Mayer, J.; Barreyro, L.; et al. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat. Med. 2015, 21, 1172–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.L.; Smith, K.A.; Pio, F.; Torbett, B.E.; Maki, R.A. Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent. Blood 1998, 92, 1576–1585. [Google Scholar] [CrossRef]
- Li, S.L.; Valente, A.J.; Qiang, M.; Schlegel, W.; Gamez, M.; Clark, R.A. Multiple PU.1 sites cooperate in the regulation of p40(phox) transcription during granulocytic differentiation of myeloid cells. Blood 2002, 99, 4578–4587. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.T.; Hohaus, S.; Gonzalez, D.A.; Dziennis, S.E.; Tenen, D.G. PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 1996, 88, 1234–1247. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Rivera, C.; Kaplan, M.J. Low-density granulocytes: A distinct class of neutrophils in systemic autoimmunity. Semin. Immunopathol. 2013, 35, 455–463. [Google Scholar] [CrossRef]
- Al-Awadhi, A.M.; Alfadhli, S.M.; Al-Khaldi, D.; Borhama, M.; Borusly, M. Investigation of the distribution of lymphocyte subsets and zinc levels in multitransfused beta-thalassemia major patients. Int. J. Lab. Hematol. 2010, 32, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Noulsri, E.; Lerdwana, S.; Fucharoen, S.; Pattanapanyasat, K. Phenotypic characterization of circulating CD4/CD8 T-lymphocytes in β-thalassemia patients. Asian Pac. J. Allergy Immunol. 2014, 32, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Pattanapanyasat, K.; Thepthai, C.; Lamchiagdhase, P.; Lerdwana, S.; Tachavanich, K.; Thanomsuk, P.; Wanachiwanawin, W.; Fucharoen, S.; Darden, J.M. Lymphocyte subsets and specific T-cell immune response in thalassemia. Cytometry 2000, 42, 11–17. [Google Scholar] [CrossRef]
- Pourgheysari, B.; Karimi, L.; Beshkar, P. Alteration of T Cell Subtypes in Beta-Thalassaemia Major: Impact of Ferritin Level. J. Clin. Diagn. Res. 2016, 10, Dc14–Dc18. [Google Scholar] [CrossRef]
- Bozdogan, G.; Erdem, E.; Demirel, G.Y.; Yildirmak, Y. The role of Treg cells and FoxP3 expression in immunity of β-thalassemia major AND β-thalassemia trait patients. Pediatr. Hematol. Oncol. 2010, 27, 534–545. [Google Scholar] [CrossRef]
- Corthay, A. How do regulatory T cells work? Scand. J. Immunol. 2009, 70, 326–336. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Miyara, M.; Costantino, C.M.; Hafler, D.A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 2010, 10, 490–500. [Google Scholar] [CrossRef]
- Gharagozloo, M.; Karimi, M.; Amirghofran, Z. Double-faced cell-mediated immunity in beta-thalassemia major: Stimulated phenotype versus suppressed activity. Ann. Hematol. 2009, 88, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Atasever, B.; Ertan, N.Z.; Erdem-Kuruca, S.; Karakas, Z. In vitro effects of vitamin C and selenium on NK activity of patients with beta-thalassemia major. Pediatr. Hematol. Oncol. 2006, 23, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Ghatreh-Samani, M.; Esmaeili, N.; Soleimani, M.; Asadi-Samani, M.; Ghatreh-Samani, K.; Shirzad, H. Oxidative stress and age-related changes in T cells: Is thalassemia a model of accelerated immune system aging? Cent. Eur. J. Immunol. 2016, 41, 116–124. [Google Scholar] [CrossRef]
- Ghaffari, J.; Vahidshahi, K.; Kosaryan, M.; Soltantooyeh, Z.; Mohamadi, M. Humoral immune system state in ß thalassemia major. Med. Glas 2011, 8, 192–196. [Google Scholar]
- Gharagozloo, M.; Bagherpour, B.; Tahanian, M.; Oreizy, F.; Amirghofran, Z.; Sadeghi, H.M.; Hourfar, H.; Moayedi, B. Premature senescence of T lymphocytes from patients with beta-thalassemia major. Immunol. Lett. 2009, 122, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Saurwein-Teissl, M.; Lung, T.L.; Marx, F.; Gschösser, C.; Asch, E.; Blasko, I.; Parson, W.; Böck, G.; Schönitzer, D.; Trannoy, E.; et al. Lack of antibody production following immunization in old age: Association with CD8(+)CD28(-) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J. Immunol. 2002, 168, 5893–5899. [Google Scholar] [CrossRef] [Green Version]
- Goronzy, J.J.; Fulbright, J.W.; Crowson, C.S.; Poland, G.A.; O’Fallon, W.M.; Weyand, C.M. Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J. Virol. 2001, 75, 12182–12187. [Google Scholar] [CrossRef] [Green Version]
- Ciubotariu, R.; Colovai, A.I.; Pennesi, G.; Liu, Z.; Smith, D.; Berlocco, P.; Cortesini, R.; Suciu-Foca, N. Specific suppression of human CD4+ Th cell responses to pig MHC antigens by CD8+CD28- regulatory T cells. J. Immunol. 1998, 161, 5193–5202. [Google Scholar]
- Fann, M.; Chiu, W.K.; Wood, W.H., 3rd; Levine, B.L.; Becker, K.G.; Weng, N.P. Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T-cell aging. Immunol. Rev. 2005, 205, 190–206. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.C.; Scott, D.K.; Mountz, J.D. Impaired apoptosis and immune senescence—Cause or effect? Immunol. Rev. 2005, 205, 130–146. [Google Scholar] [CrossRef] [PubMed]
- Makarenkova, V.P.; Bansal, V.; Matta, B.M.; Perez, L.A.; Ochoa, J.B. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol. 2006, 176, 2085–2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, M.L.; Lu, L.; Ramachandran, I.; Gabrilovich, D.I. Myeloid-derived suppressor cells in the development of lung cancer. Cancer Immunol. Res. 2014, 2, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmona-Rivera, C.; Zhao, W.; Yalavarthi, S.; Kaplan, M.J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum. Dis. 2015, 74, 1417–1424. [Google Scholar] [CrossRef] [Green Version]
- Wanachiwanawin, W.; Siripanyaphinyo, U.; Fucharoen, S.; Wasi, P.; Mawas, F.; Wiener, E.; Wickramasinghe, S.N. Activation of monocytes for the immune clearance of red cells in beta zero-thalassaemia/HbE. Br. J. Haematol. 1993, 85, 773–777. [Google Scholar] [CrossRef]
- Singer, S.T.; Wu, V.; Mignacca, R.; Kuypers, F.A.; Morel, P.; Vichinsky, E.P. Alloimmunization and erythrocyte autoimmunization in transfusion-dependent thalassemia patients of predominantly Asian descent. Blood 2000, 96, 3369–3373. [Google Scholar] [CrossRef] [PubMed]
- Tanno, T.; Bhanu, N.V.; A Oneal, P.; Goh, S.-H.; Staker, P.; Lee, Y.T.; Moroney, J.W.; Reed, C.H.; Luban, N.L.C.; Wang, R.-H.; et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat. Med. 2007, 13, 1096–1101. [Google Scholar] [CrossRef]
- Cherayil, B.J. Iron and Immunity: Immunological Consequences of Iron Deficiency and Overload. Arch. Immunol. Ther. Exp. 2010, 58, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srole, D.N.; Ganz, T. Erythroferrone structure, function, and physiology: Iron homeostasis and beyond. J. Cell. Physiol. 2021, 236, 4888–4901. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.M., Jr.; Walker, S.M. Effects of iron overload on the immune system. Ann. Clin. Lab. Sci. 2000, 30, 354–365. [Google Scholar]
- Cantinieaux, B.; Janssens, A.; Boelaert, J.R.; Lejeune, M.; Vermylen, C.; Kerrels, V.; Cornu, G.; Winand, J.; Fondu, P. Ferritin-associated iron induces neutrophil dysfunction in hemosiderosis. J. Lab. Clin. Med. 1999, 133, 353–361. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Cohen, A.; Eleftheriou, A.; Piga, A.; Porter, J.; Taher, A. Blood Transfusion Therapy in β-Thalassaemia Major. In Guidelines for the Clinical Management of Thalassaemia; Thalassaemia International Federation: Nicosia, Cyprus, 2008. [Google Scholar]
- Dutra, F.F.; Bozza, M.T. Heme on innate immunity and inflammation. Front. Pharmacol. 2014, 5, 115. [Google Scholar] [CrossRef] [Green Version]
- Fortes, G.B.; Alves, L.S.; de Oliveira, R.; Dutra, F.F.; Rodrigues, D.; Fernandez, P.L.; Souto-Padron, T.; De Rosa, M.J.; Kelliher, M.; Golenbock, D.; et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 2012, 119, 2368–2375. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Yin, Q.; Zhong, Q.; Lv, F.L.; Zhou, Y.; Li, J.Q.; Wang, J.Z.; Su, B.Y.; Yang, Q.W. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J. Neuroinflamm. 2012, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, R.; Maier, J.; Gorki, A.D.; Huber, K.V.; Sharif, O.; Starkl, P.; Saluzzo, S.; Quattrone, F.; Gawish, R.; Lakovits, K.; et al. Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat. Immunol. 2016, 17, 1361–1372. [Google Scholar] [CrossRef]
- Phumala, N.; Porasuphatana, S.; Unchern, S.; Pootrakul, P.; Fucharoen, S.; Chantharaksri, U. Hemin: A possible cause of oxidative stress in blood circulation of beta-thalassemia/hemoglobin E disease. Free Radic. Res. 2003, 37, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Scharn, C.R.; Collins, A.C.; Nair, V.R.; Stamm, C.E.; Marciano, D.K.; Graviss, E.A.; Shiloh, M.U. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection. J. Immunol. 2016, 196, 4641–4649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdalla, M.Y.; Ahmad, I.M.; Switzer, B.; Britigan, B.E. Induction of heme oxygenase-1 contributes to survival of Mycobacterium abscessus in human macrophages-like THP-1 cells. Redox Biol. 2015, 4, 328–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, D.G.; Mikhael, M.; Rivella, S.; Horvathova, M.; Ponka, P. Heme Oxygenase 1 Plays a Role in the Pathophysiology of β-Thalassemia. American Society of Hematology: Washington, DC, USA, 2013. [Google Scholar]
- Zhong, H.; Bao, W.; Friedman, D.; Yazdanbakhsh, K. Hemin controls T cell polarization in sickle cell alloimmunization. J. Immunol. 2014, 193, 102–110. [Google Scholar] [CrossRef]
- Zhao, Y.; Jia, Y.; Wang, L.; Chen, S.; Huang, X.; Xu, B.; Zhao, G.; Xiang, Y.; Yang, J.; Chen, G. Upregulation of Heme Oxygenase-1 Endues Immature Dendritic Cells with More Potent and Durable Immunoregulatory Properties and Promotes Engraftment in a Stringent Mouse Cardiac Allotransplant Model. Front. Immunol. 2018, 9, 1515. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Kim, S.J.; Lee, S.M. Overexpression of HO-1 Contributes to Sepsis-Induced Immunosuppression by Modulating the Th1/Th2 Balance and Regulatory T-Cell Function. J. Infect. Dis. 2017, 215, 1608–1618. [Google Scholar] [CrossRef]
- Erdoğan, E.; Canatan, D.; Ormeci, A.R.; Vural, H.; Aylak, F. The effects of chelators on zinc levels in patients with thalassemia major. J. Trace Elem. Med. Biol. 2013, 27, 109–111. [Google Scholar] [CrossRef]
- Consolini, R.; Calleri, A.; Legitimo, A.; Massei, F. Immunological evaluation of patients with beta-thalassemia major. Acta Haematol. 2001, 105, 7–12. [Google Scholar] [CrossRef]
- Tienboon, P. Effect of nutrition support on immunity in paediatric patients with beta-thalassaemia major. Asia Pac. J. Clin. Nutr. 2003, 12, 61–65. [Google Scholar]
- Wonke, B. Clinical management of beta-thalassemia major. Semin. Hematol. 2001, 38, 350–359. [Google Scholar] [CrossRef]
- Ahluwalia, J.; Datta, U.; Marwaha, R.K.; Sehgal, S. Immune functions in splenectomized thalassaemic children. Indian J. Pediatr. 2000, 67, 871–876. [Google Scholar] [CrossRef]
- Sari, T.T.; Gatot, D.; Akib, A.A.; Bardosono, S.; Hadinegoro, S.R.; Harahap, A.R.; Idjradinata, P.S. Immune response of thalassemia major patients in Indonesia with and without splenectomy. Acta Med. Indones. 2014, 46, 217–225. [Google Scholar] [PubMed]
- Al-Ofairi, B.A.; Barakat, A.B.; Ghanim Hel, D.; Shehata, I.H.; El-Sayed, M.H. A study of innate and adaptive immune responses in beta-thalassemic patients with chronic hepatitis C virus infection. Egypt. J. Immunol. 2011, 18, 61–76. [Google Scholar] [PubMed]
- Darzi, A.A.; Kamali, S.; Khakzad, M. Influence of splenectomy on immunoglobulins and complement components in major thalassemia. Caspian J. Intern. Med. 2015, 6, 30–33. [Google Scholar] [PubMed]
- Ammar, S.; Elsayh, K.; Zahran, A.; Embaby, M. Splenectomy for patients with β-thalassemia major: Long-term outcomes. Egypt. J. Surg. 2014, 33, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Weill, J.-C.; Reynaud, C.-A. IgM memory B cells: Specific effectors of innate-like and adaptive responses. Curr. Opin. Immunol. 2020, 63, 1–6. [Google Scholar] [CrossRef]
- Kadimova, E. Immune system of splenectomized thalassemia patients in different periods after splenectomy. Georgian Med. News 2007, 151, 47–52. [Google Scholar]
- Kurtoğllu, A.U.; Koçtekin, B.; Kurtoğlu, E.; Yildiz, M. The effect of splenectomy on complement regulatory proteins in erythrocytes in β-thalassemia major. Arch. Med Sci. 2019, 15, 191–195. [Google Scholar] [CrossRef]
- Czaikoski, P.G.; Mota, J.M.; Nascimento, D.C.; Sônego, F.; Castanheira, F.V.; Melo, P.H.; Scortegagna, G.T.; Silva, R.L.; Barroso-Sousa, R.; Souto, F.O.; et al. Neutrophil Extracellular Traps Induce Organ Damage during Experimental and Clinical Sepsis. PLoS ONE 2016, 11, e0148142. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, S.; Rosowski, E.E.; Huttenlocher, A. Neutrophil migration in infection and wound repair: Going forward in reverse. Nat. Rev. Immunol. 2016, 16, 378–391. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gluba-Brzózka, A.; Franczyk, B.; Rysz-Górzyńska, M.; Rokicki, R.; Koziarska-Rościszewska, M.; Rysz, J. Pathomechanisms of Immunological Disturbances in β-Thalassemia. Int. J. Mol. Sci. 2021, 22, 9677. https://doi.org/10.3390/ijms22189677
Gluba-Brzózka A, Franczyk B, Rysz-Górzyńska M, Rokicki R, Koziarska-Rościszewska M, Rysz J. Pathomechanisms of Immunological Disturbances in β-Thalassemia. International Journal of Molecular Sciences. 2021; 22(18):9677. https://doi.org/10.3390/ijms22189677
Chicago/Turabian StyleGluba-Brzózka, Anna, Beata Franczyk, Magdalena Rysz-Górzyńska, Robert Rokicki, Małgorzata Koziarska-Rościszewska, and Jacek Rysz. 2021. "Pathomechanisms of Immunological Disturbances in β-Thalassemia" International Journal of Molecular Sciences 22, no. 18: 9677. https://doi.org/10.3390/ijms22189677
APA StyleGluba-Brzózka, A., Franczyk, B., Rysz-Górzyńska, M., Rokicki, R., Koziarska-Rościszewska, M., & Rysz, J. (2021). Pathomechanisms of Immunological Disturbances in β-Thalassemia. International Journal of Molecular Sciences, 22(18), 9677. https://doi.org/10.3390/ijms22189677