Duodenal Dysbiosis and Relation to the Efficacy of Proton Pump Inhibitors in Functional Dyspepsia
Abstract
:1. Introduction
2. Results
2.1. Study Cohort and Sample Overview
2.2. Duodenal Microbiome Is Altered in FD Patients with PPI Effects
2.3. Specific Effects on Genera and Diversity after Short-Term PPI
2.4. Persisting Microbiota Alterations after Withdrawal of Long-Term PPI
2.5. Duodenal Dysbiosis in Relation to Efficacy of PPI in FD Patients and Controls
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Sample Collection
4.3. Sample and Data Processing
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
BABD | Brisbane Aseptic Biopsy Device |
BMI | body mass index |
BS | bile salt |
CLR | centered log-ratio |
dbRDA | distance-based redundancy analysis |
EPS | epigastric pain syndrome |
FD | functional dyspepsia |
FDR | false discovery rate |
GI | gastrointestinal |
IQR | interquartile range |
PAGI-SYM | patient assessment of upper GI symptom severity index |
PDS | postprandial distress syndrome |
PPI | proton pump inhibitor |
SD | standard deviation |
References
- Stanghellini, V.; Chan, F.K.L.; Hasler, W.L.; Malagelada, J.R.; Suzuki, H.; Tack, J.; Talley, N.J. Gastroduodenal Disorders. Gastroenterology 2016, 150, 1380–1392. [Google Scholar] [CrossRef]
- Wauters, L.; Talley, N.J.; Walker, M.M.; Tack, J.; Vanuytsel, T. Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut 2020, 69, 591–600. [Google Scholar] [CrossRef]
- Talley, N.J. What Causes Functional Gastrointestinal Disorders? A Proposed Disease Model. Am. J. Gastroenterol. 2020, 115, 41–48. [Google Scholar] [CrossRef]
- Shin, A.; Preidis, G.A.; Shulman, R.; Kashyap, P.C. The Gut Microbiome in Adult and Pediatric Functional Gastrointestinal Disorders. Clin. Gastroenterol. Hepatol. 2019, 17, 256–274. [Google Scholar] [CrossRef] [PubMed]
- Minalyan, A.; Gabrielyan, L.; Scott, D.; Jacobs, J.; Pisegna, J.R. The Gastric and Intestinal Microbiome: Role of Proton Pump Inhibitors. Curr. Gastroenterol. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016, 14, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2021, 160, 99–114.e3. [Google Scholar] [CrossRef]
- Sundin, O.H.; Mendoza-Ladd, A.; Zeng, M.; Diaz-Arévalo, D.; Morales, E.; Fagan, B.M.; Ordoñez, J.; Velez, P.; Antony, N.; McCallum, R.W. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol. 2017, 17, 160. [Google Scholar] [CrossRef] [Green Version]
- Shanahan, E.R.; Zhong, L.; Talley, N.J.; Morrison, M.; Holtmann, G. Characterisation of the gastrointestinal mucosa-associated microbiota: A novel technique to prevent cross-contamination during endoscopic procedures. Aliment. Pharmacol. Ther. 2016, 43, 1186–1196. [Google Scholar] [CrossRef]
- Zhong, L.; Shanahan, E.R.; Raj, A.; Koloski, N.A.; Fletcher, L.; Morrison, M.; Walker, M.M.; Talley, N.J.; Holtmann, G. Dyspepsia and the microbiome: Time to focus on the small intestine. Gut 2017, 66, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- Freedberg, D.E.; Toussaint, N.C.; Chen, S.P.; Ratner, A.J.; Whittier, S.; Wang, T.C.; Wang, H.H.; Abrams, J.A. Proton Pump Inhibitors Alter Specific Taxa in the Human Gastrointestinal Microbiome: A Crossover Trial. Gastroenterology 2015, 149, 883–885.e9. [Google Scholar] [CrossRef] [Green Version]
- Paroni Sterbini, F.; Palladini, A.; Masucci, L.; Cannistraci, C.V.; Pastorino, R.; Ianiro, G.; Bugli, F.; Martini, C.; Ricciardi, W.; Gasbarrini, A.; et al. Effects of Proton Pump Inhibitors on the Gastric Mucosa-Associated Microbiota in Dyspeptic Patients. Appl. Environ. Microbiol. 2016, 82, 6633–6644. [Google Scholar] [CrossRef] [Green Version]
- Moayyedi, P.; Eikelboom, J.W.; Bosch, J.; Connolly, S.J.; Dyal, L.; Shestakovska, O.; Leong, D.; Anand, S.S.; Störk, S.; Branch, K.R.H.; et al. Safety of Proton Pump Inhibitors Based on a Large, Multi-Year, Randomized Trial of Patients Receiving Rivaroxaban or Aspirin. Gastroenterology 2019, 157, 682–691.e2. [Google Scholar] [CrossRef] [Green Version]
- Moayyedi, P.M.; Lacy, B.E.; Andrews, C.N.; Enns, R.A.; Howden, C.W.; Vakil, N. ACG and CAG Clinical Guideline: Management of Dyspepsia. Am. J. Gastroenterol. 2017, 112, 988–1013. [Google Scholar] [CrossRef] [PubMed]
- Wauters, L.; Ceulemans, M.; Frings, D.; Lambaerts, M.; Accarie, A.; Toth, J.; Mols, R.; Augustijns, P.; De Hertogh, G.; Van Oudenhove, L.; et al. Proton pump inhibitors reduce duodenal eosinophilia, mast cells and permeability in patients with functional dyspepsia. Gastroenterology 2021, 160, 1521–1531.e9. [Google Scholar] [CrossRef] [PubMed]
- Fukui, A.; Takagi, T.; Naito, Y.; Inoue, R.; Kashiwagi, S.; Mizushima, K.; Inada, Y.; Inoue, K.; Harusato, A.; Dohi, O.; et al. Higher Levels of Streptococcus in Upper Gastrointestinal Mucosa Associated with Symptoms in Patients with Functional Dyspepsia. Digestion 2020, 101, 38–45. [Google Scholar] [CrossRef]
- Saffouri, G.B.; Shields-Cutler, R.R.; Chen, J.; Yang, Y.; Lekatz, H.R.; Hale, V.L.; Cho, J.M.; Battaglioli, E.J.; Bhattarai, Y.; Thompson, K.J.; et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat. Commun. 2019, 10, 2012. [Google Scholar] [CrossRef] [Green Version]
- Sundin, J.; Aziz, I.; Nordlander, S.; Polster, A.; Hu, Y.O.O.; Hugerth, L.W.; Pennhag, A.A.L.; Engstrand, L.; Törnblom, H.; Simrén, M.; et al. Evidence of altered mucosa-associated and fecal microbiota composition in patients with Irritable Bowel Syndrome. Sci. Rep. 2020, 10, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, B.L.; Fernandez-Becker, N.Q.; Kambham, N.; Purington, N.; Cao, S.; Tupa, D.; Zhang, W.; Sindher, S.B.; Rank, M.A.; Kita, H.; et al. Gastrointestinal Eosinophil Responses in a Longitudinal, Randomized Trial of Peanut Oral Immunotherapy. Clin. Gastroenterol. Hepatol. 2021, 19, 1151–1159.e14. [Google Scholar] [CrossRef]
- Jordakieva, G.; Kundi, M.; Untersmayr, E.; Pali-Schöll, I.; Reichardt, B.; Jensen-Jarolim, E. Country-wide medical records infer increased allergy risk of gastric acid inhibition. Nat. Commun. 2019, 10, 3298. [Google Scholar] [CrossRef] [Green Version]
- Wauters, L.; Burns, G.; Ceulemans, M.; Walker, M.M.; Vanuytsel, T.; Keely, S.; Talley, N.J. Duodenal inflammation: An emerging target for functional dyspepsia? Expert Opin. Ther. Targets 2020, 24, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Wauters, L.; Dickman, R.; Drug, V.; Mulak, A.; Serra, J.; Enck, P.; Tack, J.; Accarino, A.; Barbara, G.; Bor, S.; et al. United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on functional dyspepsia. United Eur. Gastroenterol. J. 2021, 9, 307–331. [Google Scholar] [CrossRef] [PubMed]
- Aziz, I.; Palsson, O.S.; Törnblom, H.; Sperber, A.D.; Whitehead, W.E.; Simrén, M. Epidemiology, clinical characteristics, and associations for symptom-based Rome IV functional dyspepsia in adults in the USA, Canada, and the UK: A cross-sectional population-based study. Lancet Gastroenterol. Hepatol. 2018, 3, 252–262. [Google Scholar] [CrossRef]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jervis-Bardy, J.; Leong, L.E.X.; Marri, S.; Smith, R.J.; Choo, J.M.; Smith-Vaughan, H.C.; Nosworthy, E.; Morris, P.S.; O’Leary, S.; Rogers, G.B.; et al. Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data. Microbiome 2015, 3, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tito, R.Y.; Cypers, H.; Joossens, M.; Varkas, G.; Van Praet, L.; Glorieus, E.; Van den Bosch, F.; De Vos, M.; Raes, J.; Elewaut, D. Brief Report: Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis Rheumatol. 2017, 69, 114–121. [Google Scholar] [CrossRef]
- Kim, D.; Hofstaedter, C.E.; Zhao, C.; Mattei, L.; Tanes, C.; Clarke, E.; Lauder, A.; Sherrill-Mix, S.; Chehoud, C.; Kelsen, J.; et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome 2017, 5, 52. [Google Scholar] [CrossRef]
- Hildebrand, F.; Tadeo, R.; Voigt, A.Y.; Bork, P.; Raes, J. LotuS: An efficient and user-friendly OTU processing pipeline. Microbiome 2014, 2, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Healthy Controls (n = 30) | FD-Starters (n = 28) | FD-Stoppers (n = 19) | p-Value |
---|---|---|---|---|
Demographic: | ||||
Age (years) | 27 (24–33.5) | 27 (23.5–34.5) | 32 (26.8–49.5) | 0.18 |
Female (%) | 21 (70) | 24 (86) | 14 (74) | 0.35 |
BMI (kg/m2) | 23 (20–25.3) | 22 (19–24) | 21.5 (20.8–24.3) | 0.56 |
FD subtypes: | ||||
PDS subtype (%) | NA | 15 (54) | 10 (53) | 0.95 |
EPS subtype (%) | NA | 3 (11) | 6 (32) | 0.07 |
Overlap (%) | NA | 10 (35) | 3 (15) | 0.13 |
Daily food intake: | ||||
Energy (kcal/day) | 1419 (1308–1627) | 1186 (974.9–1621) | 1284 (937.7–1617) | 0.35 |
Sugars (g/day) | 175.7 (148.2–187.5) | 148.3 (115.1–222.5) | 143.9 (93.42–194.4) | 0.25 |
Fat (g/day) | 46.87 (41.7–57.1) | 40.8 (34.4–52.5) | 45.7 (31.2–61.5) | 0.51 |
Fiber (g/day) | 18.4 (15.2–21.5) | 15.9 (9.3–23) | 12.8 (8.3–17.4) * | 0.02 |
Protein (g/day) | 175.7 (148.2–187.5) | 148.3 (115.1–222.5) * | 143.9 (93.4–194.4) * | <0.01 |
Univariate dbRDA | Mucus-Associated (Brush) | Epithelium-Associated (Biopsy) | ||||||
---|---|---|---|---|---|---|---|---|
F-Value | R2 (%) | p-Value | padj-Value | F-Value | R2 (%) | p-Value | padj-Value | |
subject | 1.47 | 16 | 0.001 | 0.006 | 1.16 | 5.4 | 0.002 | 0.01 |
group | 2.1 | 1.16 | 0.002 | 0.006 | 1.52 | 0.51 | 0.03 | 0.09 |
PPI | 1.64 | 0.34 | <0.05 | 0.09 | 0.92 | 0 | 0.41 | 0.51 |
gender | 1.02 | 0.01 | 0.38 | 0.38 | 1.05 | 0.03 | 0.4 | 0.4 |
age | 1.16 | 0.09 | 0.23 | 0.28 | 1.47 | 0.25 | 0.06 | 0.12 |
BMI | 1.52 | 0.28 | 0.07 | 0.1 | 1.05 | 0.03 | 0.32 | 0.4 |
Group | Controls | FD-Starters | padj Value | ||
---|---|---|---|---|---|
Treatment | Off-PPI (n = 30) | On-PPI (n = 30) | Off-PPI (n = 28) | Off-PPI (n = 30) | |
Brush | |||||
Observed | 42.03 ± 1.36 | 37.79 ± 1.9 * | 36.81 ± 1.6 | 34.79 ± 1.67 | 1 |
Chao1 | 48.98 ± 1.91 | 44.81 ± 2.71 | 43.24 ± 2.28 | 44.89 ± 2.75 | 0.62 |
Shannon | 2.32 ± 0.05 | 2.05 ± 0.08 ** | 2.24 ± 0.07 | 1.92 ± 0.1 ** | 0.66 |
Simpson | 0.79 ± 0.01 | 0.72 ± 0.02 ** | 0.78 ± 0.02 | 0.68 ± 0.03 ** | 0.71 |
Biopsy | |||||
Observed | 43.07 ± 3.33 | 41.43 ± 6.12 | 43.36 ± 7.08 | 42.37 ± 7.32 | 0.97 |
Chao1 | 45.43 ± 3.82 | 43.58 ± 6.95 | 47.74 ± 8.62 | 45.36 ± 8.53 | 0.99 |
Shannon | 2.82 ± 0.07 | 2.8 ± 0.1 | 2.69 ± 0.12 | 2.69 ± 0.12 | 1 |
Simpson | 0.88 ± 0.01 | 0.89 ± 0.01 | 0.86 ± 0.02 | 0.87 ± 0.02 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wauters, L.; Tito, R.Y.; Ceulemans, M.; Lambaerts, M.; Accarie, A.; Rymenans, L.; Verspecht, C.; Toth, J.; Mols, R.; Augustijns, P.; et al. Duodenal Dysbiosis and Relation to the Efficacy of Proton Pump Inhibitors in Functional Dyspepsia. Int. J. Mol. Sci. 2021, 22, 13609. https://doi.org/10.3390/ijms222413609
Wauters L, Tito RY, Ceulemans M, Lambaerts M, Accarie A, Rymenans L, Verspecht C, Toth J, Mols R, Augustijns P, et al. Duodenal Dysbiosis and Relation to the Efficacy of Proton Pump Inhibitors in Functional Dyspepsia. International Journal of Molecular Sciences. 2021; 22(24):13609. https://doi.org/10.3390/ijms222413609
Chicago/Turabian StyleWauters, Lucas, Raúl Y. Tito, Matthias Ceulemans, Maarten Lambaerts, Alison Accarie, Leen Rymenans, Chloë Verspecht, Joran Toth, Raf Mols, Patrick Augustijns, and et al. 2021. "Duodenal Dysbiosis and Relation to the Efficacy of Proton Pump Inhibitors in Functional Dyspepsia" International Journal of Molecular Sciences 22, no. 24: 13609. https://doi.org/10.3390/ijms222413609
APA StyleWauters, L., Tito, R. Y., Ceulemans, M., Lambaerts, M., Accarie, A., Rymenans, L., Verspecht, C., Toth, J., Mols, R., Augustijns, P., Tack, J., Vanuytsel, T., & Raes, J. (2021). Duodenal Dysbiosis and Relation to the Efficacy of Proton Pump Inhibitors in Functional Dyspepsia. International Journal of Molecular Sciences, 22(24), 13609. https://doi.org/10.3390/ijms222413609