Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B
Abstract
:1. Introduction
2. Results
2.1. Development of a NanoBiT Assay to Monitor the Interaction of Human GGTase-I and Rap1B
2.2. Effect of the Competitive CAAX Peptidomimetic GGTase-I Inhibitor N-[4-[2(R)-amino-3-mercaptopropyl]amino-2-(1-naphthalenylbenzoyl]-L-leucine methyl ester trifluoroacetate salt (GGTI-298) on the Interaction of GGTase-I and Rap1B and the Formation of A2AAR Homodimers
2.3. Interaction of GGTase-I with Prenylation-Deficient Rap1B Mutants C181G, C181S, and ΔCQLL
2.4. Effect of A2BAR Agonists and Antagonists on the Interaction of GGTase-I and Rap1B WT
2.5. Effect of A2AAR Agonists and Antagonists on the Interaction of GGTase-I and Rap1B
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Expression Vectors and Molecular Cloning
- f-Rap1B WT-Sgf1: 5′-ggacGCGATCGCCCGTGAGTATAAGCTAGTCGTTC
- r-Rap1B WT-PmeI: 5′-gtccGTTTAAACTTAAAGCAGCTGACATGATGAC
- r-Rap1B-(C181G)-PmeI: 5′-gtccGTTTAAACTTAAAGCAGCTGACCTGATGAC
- r-Rap1B-(C181S)-PmeI: 5′-gtccGTTTAAACTTAAAGCAGCTGACTTGATGAC
- r-Rap1B-(ΔCQLL)-PmeI: 5′-gtccGTTTAAACTTATGATGACTTTTTGCGAGCC
- f-GGTase-I-β-Sgf1: 5′-ggacGCGATCGCCGCGGCCACTGAGGATGAGAG
- r-GGTase-I-β-PmeI: 5′-gtccGTTTAAACTCATGTGGAGATATGTACATTCTC
- f-FTase α-Sgf1: 5′-ggacGCGATCGCCGCGGCCACCGAGGG
- r-FTase α-PmeI: 5′-gtccGTTTAAACTTATTGCTGTACATTTGTTGGTG.
- pFN217k LgBiT→forward: 5′ GGAACGGCAACAAAATTATCGAC
- pFN217k LgBiT→reverse: 5′ CATGCCTGCAGGTCGACTCTAG
- pFN218k SmBiT→forward: 5′ CAGTTCAATTACAGCTCTTAAGGCTAGAG
- pFN218k SmBiT→reverse: 5′ CAGCTTGCATGCCTGCAG
- f-hA2A-SgfI: 5′-ggacGCGATCGCCATGCCCATCATGGGCTCCTC
- r-hA2A-PmeI: 5′-gtccGTTTAAACGGACACTCCTGCTCCATCCTG
- pFC219K LgBiT→forward: 5′ CTGGTTTAGTGAACCGTCAGATC
- pFC219K LgBiT→reverse: 5′ GCAATACGTCGACGTTATCAGCTG
- pFC220K SmBiT→forward: 5′ CAGTTCAATTACAGCTCTTAAGGCTAGAG
- pFC220K SmBiT→reverse: 5′ CAGCTTGCATGCCTGCAG
- f-: TTTGAATTCATGGCGGCCACCGAG
- r-: AAAGGATCCTTATTGCTGTACATTTGTTGG.
4.3. Cell Culture
4.4. Transient Transfection of HEK293 Cells Stably Expressing the Human A2BAR
4.5. NanoBiT Assays
4.6. Treatment with the Cell-Permeable and Selective GGTase-I Inhibitor GGTI-298
4.7. Treatment with Adenosine A2A- and A2B-Receptor Agonists and Antagonists
4.8. Transient Transfection of HEK-A2B Cells for Western Blot Analysis
4.9. Preparation of Cytosolic Extract and Whole Cell Lysate of Transfected HEK-A2B Cells
4.10. Bradford Protein Determination
4.11. SDS-Page and Western Blotting
4.12. cAMP Accumulation Experiments
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A2AAR | adenosine A2A receptor |
A2BAR | adenosine A2B receptor |
ADA | adenosine deaminase |
AR | adenosine receptor |
BAY60-6583 | [2-((6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-yl)sulfanyl)acetamide] |
BiFC | bimolecular fluorescence complementation |
BSA | bovine serum albumin |
cAMP | cyclic adenosine monophosphate |
CGS-21680 | 2-[p-(2-carboxyethyl)phenylethyl-amino]-5′-N-ethylcarboxamido adenosine |
DMEM | Dulbecco’s Modified Eagle Medium |
DMSO | dimethyl sulfoxide |
FCS | fetal calf serum |
FPP | farnesyl diphosphate |
FTase | farnesyltransferase |
G418 | geneticin |
GAPDH | glyceraldehyde 3-phosphate dehydrogenase |
GGPP | geranylgeranyl diphosphate |
GGTase-I | geranylgeranyltransferase type-I |
GGTase-II | geranylgeranyltransferase type II |
GGTase-III | geranylgeranyltransferase type III |
GGTI-298 | N-[4-[2(R)-amino-3-mercaptopropyl]amino-2-(1-naphthalenylbenzoyl]-L-leucine methyl ester trifluoroacetate salt |
GPCR | G protein-coupled receptor |
HA | hemagglutinin |
HEK | human embryonic kidney |
IC50 | half maximal inhibitory concentration |
MSX-2 | (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) |
NECA | 5′-N-ethylcarboxamidoadenosine |
PBR | polybasic region |
PKA | protein kinase A |
PS | penicillin-streptomycin |
PSB-603 | 8-(4-(4-(4-chlorophenyl)piperazine-1-sulfonyl)phenyl)-1-propylxanthine |
SDS-PAGE | sodium dodecyl sulfate gel electrophoresis |
TBS | Tris-buffered saline |
WT | wild-type |
References
- Wang, M.; Casey, P.J. Protein prenylation: Unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 2016, 17, 110–122. [Google Scholar] [CrossRef]
- Shen, M.; Pan, P.; Li, Y.; Li, D.; Yu, H.; Hou, T. Farnesyltransferase and geranylgeranyltransferase I: Structures, mechanism, inhibitors and molecular modeling. Drug Discov. Today 2015, 20, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.S.; Reid, T.S.; Terry, K.L.; Casey, P.J.; Beese, L.S. Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J. 2003, 22, 5963–5974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubala, M.H.; Norwood, S.J.; Gomez, G.A.; Jones, A.; Johnston, W.; Yap, A.S.; Mureev, S.; Alexandrov, K. Mammalian farnesyltransferase α subunit regulates vacuolar protein sorting-associated protein 4A (Vps4A)—Dependent intracellular trafficking through recycling endosomes. Biochem. Biophys. Res. Commun. 2015, 468, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, A.; Müller, G.; Manthey, I.; Bachmann, H.S. Exploring the putative self-binding property of the human farnesyltransferase alpha-subunit. FEBS Lett. 2017, 591, 3637–3648. [Google Scholar] [CrossRef] [Green Version]
- Kuchay, S.; Wang, H.; Marzio, A.; Jain, K.; Homer, H.; Fehrenbacher, N.; Philips, M.R.; Zheng, N.; Pagano, M. GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase. Nat. Struct. Mol. Biol. 2019, 26, 628–636. [Google Scholar] [CrossRef]
- Reid, T.S.; Terry, K.L.; Casey, P.J.; Beese, L.S. Crystallographic Analysis of CaaX Prenyltransferases Complexed with Substrates Defines Rules of Protein Substrate Selectivity. J. Mol. Biol. 2004, 343, 417–433. [Google Scholar] [CrossRef]
- Bos, J.L.; De Rooij, J.; Reedquist, K.A. Rap1 signalling: Adhering to new models. Nat. Rev. Mol. Cell Biol. 2001, 2, 369–377. [Google Scholar] [CrossRef]
- Mitra, R.S.; Zhang, Z.; Henson, B.S.; Kurnit, D.M.; Carey, T.E.; D’Silva, N.J. Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: Nuclear translocation of GTP-bound active form. Oncogene 2003, 22, 6243–6256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Cui, M.; Song, L.; Zhang, M.; Zhang, J. Function, Significance, and Regulation of Rap1b in Malignancy. Crit. Rev. Eukaryot. Gene Expr. 2019, 29, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Gu, J.; Wang, K.; Shang, J.; Wang, W. miR-206 inhibits thyroid cancer proliferation and invasion by targeting RAP1B. J. Cell. Biochem. 2019, 120, 18927–18936. [Google Scholar] [CrossRef]
- Wang, C.; Wu, C.; Yang, Q.; Ding, M.; Zhong, J.; Zhang, C.-Y.; Ge, J.; Wang, J.; Zhang, C. miR-28-5p acts as a tumor suppressor in renal cell carcinoma for multiple antitumor effects by targeting RAP1B. Oncotarget 2016, 7, 73888–73902. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.-T.; Yeh, Y.-M.; Chuang, C.-M.; Yang, S.Y.; Chang, J.-W.; Sun, S.-P.; Wang, Y.-S.; Chao, K.-C.; Wang, L.-H. Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. Nat. Commun. 2015, 6, 5917. [Google Scholar] [CrossRef] [Green Version]
- Ullah, N.; Mansha, M.; Casey, P.J. Protein Geranylgeranyltransferase Type 1 as a Target in Cancer. Curr. Cancer Drug Targets 2016, 16, 563–571. [Google Scholar] [CrossRef]
- Philips, M.R.; Cox, A.D. Geranylgeranyltransferase I as a target for anti-cancer drugs. J. Clin. Investig. 2007, 117, 1223–1225. [Google Scholar] [CrossRef]
- Sane, K.M.; Mynderse, M.; LaLonde, D.T.; Dean, I.S.; Wojtkowiak, J.W.; Fouad, F.; Borch, R.F.; Reiners, J.J., Jr.; Gibbs, R.A.; Mattingly, R.R. A Novel Geranylgeranyl Transferase Inhibitor in Combination with Lovastatin Inhibits Proliferation and Induces Autophagy in STS-26T MPNST Cells. J. Pharmacol. Exp. Ther. 2010, 333, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, Y.K.; Wang, X.S.; Casey, P.J.; Tropsha, A. Discovery of Geranylgeranyltransferase-I Inhibitors with Novel Scaffolds by the Means of Quantitative Structure−Activity Relationship Modeling, Virtual Screening, and Experimental Validation. J. Med. Chem. 2009, 52, 4210–4220. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Chan, L.; Fiji, H.D.; Dahl, R.; Kwon, O.; Tamanoi, F. In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Mol. Cancer Ther. 2009, 8, 1218–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazet, J.-L.; Padieu, M.; Osman, H.; Maume, G.; Mailliet, P.; Dereu, N.; Hamilton, A.D.; Lavelle, F.; Sebti, S.M.; Maume, B.F. Combination of the novel farnesyltransferase inhibitor RPR130401 and the geranylgeranyltransferase-1 inhibitor GGTI-298 disrupts MAP kinase activation and G(1)-S transition in Ki-Ras-overexpressing transformed adrenocortical cells. FEBS Lett. 1999, 460, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Kazi, A.; Xiang, S.; Yang, H.; Chen, L.; Kennedy, P.; Ayaz, M.; Fletcher, S.; Cummings, C.; Lawrence, H.R.; Beato, F.; et al. Dual Farnesyl and Geranylgeranyl Transferase Inhibitor Thwarts Mutant KRAS-Driven Patient-Derived Pancreatic Tumors. Clin. Cancer Res. 2019, 25, 5984–5996. [Google Scholar] [CrossRef] [PubMed]
- Karasic, T.B.; Chiorean, E.G.; Sebti, S.M.; O’Dwyer, P.J. A Phase I Study of GGTI-2418 (Geranylgeranyl Transferase I Inhibitor) in Patients with Advanced Solid Tumors. Target. Oncol. 2019, 14, 613–618. [Google Scholar] [CrossRef]
- El Oualid, F.; Cohen, L.H.; Van Der Marel, G.; Overhand, M. Inhibitors of Protein: Geranylgeranyl Transferases. Curr. Med. Chem. 2006, 13, 2385–2427. [Google Scholar] [CrossRef]
- Kodama, Y.; Hu, C.-D. Bimolecular fluorescence complementation (BiFC): A 5-year update and future perspectives. BioTechniques 2012, 53, 285–298. [Google Scholar] [CrossRef]
- Dixon, A.S.; Schwinn, M.K.; Hall, M.P.; Zimmerman, K.; Otto, P.; Lubben, T.H.; Butler, B.L.; Binkowski, B.F.; Machleidt, T.; Kirkland, T.A.; et al. NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem. Biol. 2016, 11, 400–408. [Google Scholar] [CrossRef]
- Wiertelak, W.; Sosicka, P.; Olczak, M.; Maszczak-Seneczko, D. Analysis of homologous and heterologous interactions between UDP-galactose transporter and beta-1,4-galactosyltransferase 1 using NanoBiT. Anal. Biochem. 2020, 593, 113599. [Google Scholar] [CrossRef]
- Song, X.; Yu, Y.; Shen, C.; Wang, Y.; Wang, N. Dimerization/oligomerization of the extracellular domain of the GLP-1 receptor and the negative cooperativity in its ligand binding revealed by the improved NanoBiT. FASEB J. 2020, 34, 4348–4368. [Google Scholar] [CrossRef] [Green Version]
- Soave, M.; Kellam, B.; Woolard, J.; Briddon, S.J.; Hill, S.J. NanoBiT Complementation to Monitor Agonist-Induced Adenosine A1 Receptor Internalization. SLAS Discov. 2020, 25, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Soave, M.; Heukers, R.; Kellam, B.; Woolard, J.; Smit, M.J.; Briddon, S.J.; Hill, S.J. Monitoring Allosteric Interactions with CXCR4 Using NanoBiT Conjugated Nanobodies. Cell Chem. Biol. 2020, 27, 1250–1261.e5. [Google Scholar] [CrossRef]
- Shetty, S.K.; Walzem, R.L.; Davies, B.S.J. A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time. J. Lipid Res. 2020, 61, 546–559. [Google Scholar] [CrossRef] [Green Version]
- Crowley, E.; Leung, E.; Reynisson, J.; Richardson, A. Rapid changes in the ATG5-ATG16L1 complex following nutrient deprivation measured using NanoLuc Binary Technology (NanoBIT). FEBS J. 2020, 287, 4917–4932. [Google Scholar] [CrossRef]
- Inoue, A.; Raimondi, F.; Kadji, F.M.N.; Singh, G.; Kishi, T.; Uwamizu, A.; Ono, Y.; Shinjo, Y.; Ishida, S.; Arang, N.; et al. Illuminating G-Protein-Coupling Selectivity of GPCRs. Cell 2019, 177, 1933–1947.e25. [Google Scholar] [CrossRef]
- Allard, D.; Turcotte, M.; Stagg, J. Targeting A2 adenosine receptors in cancer. Immunol. Cell Biol. 2017, 95, 333–339. [Google Scholar] [CrossRef]
- Gao, Z.-G.; Jacobson, K.A. A2B Adenosine Receptor and Cancer. Int. J. Mol. Sci. 2019, 20, 5139. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, E.A.; White, P.J.; May, L.T. The adenosine A2B G protein-coupled receptor: Recent advances and therapeutic implications. Pharmacol. Ther. 2019, 198, 20–33. [Google Scholar] [CrossRef]
- Yi, Y.; Zhou, Y.; Chu, X.; Zheng, X.; Fei, D.; Lei, J.; Qi, H.; Dai, Y. Blockade of Adenosine A2b Receptor Reduces Tumor Growth and Migration in Renal Cell Carcinoma. J. Cancer 2020, 11, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Kitabatake, K.; Yoshida, E.; Kaji, T.; Tsukimoto, M. Involvement of adenosine A2B receptor in radiation-induced translocation of epidermal growth factor receptor and DNA damage response leading to radioresistance in human lung cancer cells. Biochim. Biophys. Acta (BBA) Gen. Subj. 2020, 1864, 129457. [Google Scholar] [CrossRef]
- Sousa, J.B.; Fresco, P.; Diniz, C.; Goncalves, J. Adenosine Receptor Ligands on Cancer Therapy: A Review of Patent Literature. Recent Patents AntiCancer Drug Discov. 2018, 13, 40–69. [Google Scholar] [CrossRef]
- Sek, K.; Mølck, C.; Stewart, G.D.; Kats, L.; Darcy, P.K.; Beavis, P.A. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int. J. Mol. Sci. 2018, 19, 3837. [Google Scholar] [CrossRef] [Green Version]
- Gnad, T.; Navarro, G.; Lahesmaa, M.; Reverte-Salisa, L.; Copperi, F.; Cordomi, A.; Naumann, J.; Hochhäuser, A.; Haufs-Brusberg, S.; Wenzel, D.; et al. Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metab. 2020, 32, 56–70.e7. [Google Scholar] [CrossRef]
- Hinz, S.; Navarro, G.; Borroto-Escuela, D.; Seibt, B.F.; Ammon, Y.-C.; De Filippo, E.; Danish, A.; Lacher, S.K.; Cervinkova, B.; Rafehi, M.; et al. Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget 2018, 9, 13593–13611. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.-G.; Inoue, A.; Jacobson, K.A. On the G protein-coupling selectivity of the native A2B adenosine receptor. Biochem. Pharmacol. 2018, 151, 201–213. [Google Scholar] [CrossRef]
- Koussémou, M.; Klotz, K.-N. Agonists activate different A2B adenosine receptor signaling pathways in MBA-MD-231 breast cancer cells with distinct potencies. Naunyn Schmiedeberg Arch. Pharmacol. 2019, 392, 1515–1521. [Google Scholar] [CrossRef]
- Hinz, S.; Lacher, S.K.; Seibt, B.F.; Müller, C.E. BAY60-6583 Acts as a Partial Agonist at Adenosine A2B Receptors. J. Pharmacol. Exp. Ther. 2014, 349, 427–436. [Google Scholar] [CrossRef]
- Linden, J.; Thai, T.; Figler, H.; Jin, X.; Robeva, A.S. Characterization of human A(2B) adenosine receptors: Radioligand binding, western blotting, and coupling to G(q) in human embryonic kidney 293 cells and HMC-1 mast cells. Mol. Pharmacol. 1999, 56, 705–713. [Google Scholar] [PubMed]
- Ntantie, E.; Gonyo, P.; Lorimer, E.L.; Hauser, A.D.; Schuld, N.; McAllister, D.; Kalyanaraman, B.; Dwinell, M.B.; Auchampach, J.A.; Williams, C.L. An Adenosine-Mediated Signaling Pathway Suppresses Prenylation of the GTPase Rap1B and Promotes Cell Scattering. Sci. Signal. 2013, 6, ra39. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.L. A new signaling paradigm to control the prenylation and trafficking of small GTPases. Cell Cycle 2013, 12, 2933–2934. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.; Hill, S.J.; Alexander, S.P. An endogenous A2B adenosine receptor coupled to cyclic AMP generation in human embryonic kidney (HEK 293) cells. Br. J. Pharmacol. 1997, 122, 546–550. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.-G.; Balasubramanian, R.; Kiselev, E.; Wei, Q.; Jacobson, K.A. Probing biased/partial agonism at the G protein-coupled A2B adenosine receptor. Biochem. Pharmacol. 2014, 90, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Goulding, J.; May, L.T.; Hill, S.J. Characterisation of endogenous A2A and A2B receptor-mediated cyclic AMP responses in HEK 293 cells using the GloSensor™ biosensor: Evidence for an allosteric mechanism of action for the A2B-selective antagonist PSB 603. Biochem. Pharmacol. 2018, 147, 55–66. [Google Scholar] [CrossRef]
- Altschuler, D.L.; Peterson, S.N.; Ostrowski, M.C.; Lapetina, E.G. Cyclic AMP-dependent Activation of Rap1b. J. Biol. Chem. 1995, 270, 10373–10376. [Google Scholar] [CrossRef] [Green Version]
- Smalera, I.; Williamson, J.M.; Baginsky, W.; Leiting, B.; Mazur, P. Expression and characterization of protein geranylgeranyltransferase type I from the pathogenic yeast Candida albicans and identification of yeast selective enzyme inhibitors. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzym. 2000, 1480, 132–144. [Google Scholar] [CrossRef]
- Kim, H.; Yang, C.-H. Active site determination of yeast geranylgeranyl protein transferase type I expressed in Escherichia coli. JBIC J. Biol. Inorg. Chem. 1999, 265, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canals, M.; Burgueño, J.; Marcellino, D.; Cabello, N.; Canela, E.I.; Mallol, J.; Agnati, L.; Ferré, S.; Bouvier, M.; Fuxe, K.; et al. Homodimerization of adenosine A2A receptors: Qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Neurochem. 2004, 88, 726–734. [Google Scholar] [CrossRef] [PubMed]
- McGuire, T.F.; Qian, Y.; Vogt, A.; Hamilton, A.D.; Sebti, S.M. Platelet-derived Growth Factor Receptor Tyrosine Phosphorylation Requires Protein Geranylgeranylation but not Farnesylation. J. Biol. Chem. 1996, 271, 27402–27407. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Qian, Y.; Chen, Z.; Marfurt, J.; Hamilton, A.D.; Sebti, S.M. The Geranylgeranyltransferase I Inhibitor GGTI-298 Induces Hypophosphorylation of Retinoblastoma and Partner Switching of Cyclin-dependent Kinase Inhibitors. A potential mechanism for GGTI-298 antitumor activity. J. Biol. Chem. 1999, 274, 6930–6934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochocki, J.D.; Distefano, M.D. Prenyltransferase inhibitors: Treating human ailments from cancer to parasitic infections. MedChemComm 2013, 4, 476–492. [Google Scholar] [CrossRef] [Green Version]
- Hata, Y.; Kaibuchi, K.; Kawamura, S.; Hiroyoshi, M.; Shirataki, H.; Takai, Y. Enhancement of the actions of smg p21 GDP/GTP exchange protein by the protein kinase A-catalyzed phosphorylation of smg p21. J. Biol. Chem. 1991, 266, 6571–6577. [Google Scholar] [CrossRef]
- Wilson, J.M.; Lorimer, E.; Tyburski, M.D.; Williams, C.L. Beta-Adrenergic receptors suppress Rap1B prenylation and promote the metastatic phenotype in breast cancer cells. Cancer Biol. Ther. 2015, 16, 1364–1374. [Google Scholar] [CrossRef] [Green Version]
- Linden, J. Adenosine Promotes Tumor Metastasis. Sci. Signal. 2013, 6, pe20. [Google Scholar] [CrossRef]
- Borrmann, T.; Hinz, S.; Bertarelli, D.C.; Li, W.; Florin, N.C.; Scheiff, A.B.; Muller, C.E. 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: Development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J. Med. Chem. 2009, 52, 3994–4006. [Google Scholar] [CrossRef] [PubMed]
- Alnouri, M.W.; Jepards, S.; Casari, A.; Schiedel, A.C.; Hinz, S.; Müller, C.E. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal. 2015, 11, 389–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredholm, B.B.; Ijzerman, A.P.; Jacobson, K.A.; Linden, J.; Müller, C.E. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update. Pharmacol. Rev. 2011, 63, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.S.; Dai, X.Y.; Xia, H.W.; Xu, H.J.; Tang, Q.L.; Gong, Q.Y.; Nie, Y.Z.; Bi, F. Geranylgeranyl transferase 1 inhibitor GGTI-298 enhances the anticancer effect of gefitinib. Mol. Med. Rep. 2018, 18, 4023–4029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Ohkanda, J.; Coppola, D.; Yin, H.; Kothare, M.; Busciglio, B.; Hamilton, A.D.; Sebti, S.M. Geranylgeranyltransferase I inhibitor GGTI-2154 induces breast carcinoma apoptosis and tumor regression in H-Ras transgenic mice. Cancer Res. 2003, 63, 8922–8929. [Google Scholar]
- Chhonker, Y.S.; Haney, S.L.; Bala, V.; Holstein, S.A.; Murry, D.J. Simultaneous Quantitation of Isoprenoid Pyrophosphates in Plasma and Cancer Cells Using LC-MS/MS. Molecules 2018, 23, 3275. [Google Scholar] [CrossRef] [Green Version]
- Lane, K.T.; Beese, L.S. Thematic review series: Lipid Posttranslational Modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J. Lipid Res. 2006, 47, 681–699. [Google Scholar] [CrossRef] [Green Version]
- Gandia, J.; Galino, J.; Amaral, O.B.; Soriano, A.; Lluis, C.; Franco, R.; Ciruela, F. Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. FEBS Lett. 2008, 582, 2979–2984. [Google Scholar] [CrossRef] [Green Version]
- Bonaventura, J.; Navarro, G.; Casadó-Anguera, V.; Azdad, K.; Rea, W.; Moreno, E.; Brugarolas, M.; Mallol, J.; Canela, E.I.; Lluis, C.; et al. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proc. Natl. Acad. Sci. USA 2015, 112, E3609–E3618. [Google Scholar] [CrossRef] [Green Version]
- Hilger, D.; Masureel, M.; Kobilka, B.K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 2018, 25, 4–12. [Google Scholar] [CrossRef]
- García-Torres, D.; Fierke, C.A. The chaperone SmgGDS-607 has a dual role, both activating and inhibiting farnesylation of small GTPases. J. Biol. Chem. 2019, 294, 11793–11804. [Google Scholar] [CrossRef]
- Bachmann, H.S.; Meier, W.; Du Bois, A.; Kimmig, R.; Kuhlmann, J.D.; Siffert, W.; Sehouli, J.; Wollschlaeger, K.; Huober, J.; Hillemanns, P.; et al. The FNTB promoter polymorphism rs11623866 as a potential predictive biomarker for lonafarnib treatment of ovarian cancer patients. Br. J. Clin. Pharmacol. 2015, 80, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, E.; Hinz, S.; Pellizzari, V.; Deganutti, G.; El-Tayeb, A.; Navarro, G.; Franco, R.; Moro, S.; Schiedel, A.C.; Müller, C.E. A2A and A2B adenosine receptors: The extracellular loop 2 determines high (A2A) or low affinity (A2B) for adenosine. Biochem. Pharmacol. 2020, 172, 113718. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinz, S.; Jung, D.; Hauert, D.; Bachmann, H.S. Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B. Int. J. Mol. Sci. 2021, 22, 2501. https://doi.org/10.3390/ijms22052501
Hinz S, Jung D, Hauert D, Bachmann HS. Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B. International Journal of Molecular Sciences. 2021; 22(5):2501. https://doi.org/10.3390/ijms22052501
Chicago/Turabian StyleHinz, Sonja, Dominik Jung, Dorota Hauert, and Hagen S. Bachmann. 2021. "Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B" International Journal of Molecular Sciences 22, no. 5: 2501. https://doi.org/10.3390/ijms22052501
APA StyleHinz, S., Jung, D., Hauert, D., & Bachmann, H. S. (2021). Molecular and Pharmacological Characterization of the Interaction between Human Geranylgeranyltransferase Type I and Ras-Related Protein Rap1B. International Journal of Molecular Sciences, 22(5), 2501. https://doi.org/10.3390/ijms22052501