Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Histopathological Findings
2.3. Gene Expression Profile in Healthy Aortas
2.4. Differential Expression and Pathway Analysis
2.4.1. FBN1 Expression Is Highly Variable and Not Significantly Different from Healthy Aortas
2.4.2. Overrepresentation of Inflammatory and Mitochondrial Pathways in MFS Patients
2.5. Immunohistochemistry
2.6. Proteomics Analysis
2.7. Mitochondrial Respiration
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Sample Collection and Selection
4.3. Histology and Immunohistochemistry
4.4. RNA Sample Preparation and Sequencing
4.5. Differential Expression Analysis
4.6. Liquid Chromatography-Mass Spectrometry Proteomics Measurements
4.7. Protein Identification
4.8. Cellular Respiration Experiments
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albornoz, G.; Coady, M.A.; Roberts, M.; Davies, R.R.; Tranquilli, M.; Rizzo, J.A.; Elefteriades, J.A. Familial thoracic aortic aneurysms and dissections—Incidence, modes of inheritance, and phenotypic patterns. Ann. Thorac. Surg. 2006, 82, 1400–1405. [Google Scholar] [CrossRef]
- Milewicz, D.M.; Regalado, E. Heritable Thoracic Aortic Disease Overview; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Dietz, H.C.; Cutting, G.R.; Pyeritz, R.E.; Maslen, C.L.; Sakai, L.Y.; Corson, G.M.; Puffenberger, E.G.; Hamosh, A.; Nanthakumar, E.J.; Curristin, S.M.; et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991, 352, 337–339. [Google Scholar] [CrossRef]
- Loeys, B.L.; Dietz, H.C.; Braverman, A.C.; Callewaert, B.L.; De Backer, J.; Devereux, R.B.; Hilhorst-Hofstee, Y.; Jondeau, G.; Faivre, L.; Milewicz, D.M.; et al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 2010, 47, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Baetens, M.; Van Laer, L.; De Leeneer, K.; Hellemans, J.; De Schrijver, J.; Van De Voorde, H.; Renard, M.; Dietz, H.; Lacro, R.V.; Menten, B.; et al. Applying massive parallel sequencing to molecular diagnosis of Marfan and Loeys-Dietz syndromes. Hum. Mutat. 2011, 32, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Pedroza, A.J.; Tashima, Y.; Shad, R.; Cheng, P.; Wirka, R.; Churovich, S.; Nakamura, K.; Yokoyama, N.; Cui, J.Z.; Iosef, C.; et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2195–2211. [Google Scholar] [CrossRef]
- Oller, J.; Gabandé-Rodríguez, E.; Ruiz-Rodriguez, M.J.; Desdín-Micó, G.; Aranda, J.F.; Rodrigues-Diez, R.; Ballesteros-Martínez, C.; Blanco, E.M.; Roldan-Montero, R.; Acuña, P.; et al. Extracellular tuning of mitochondrial respiration leads to aortic aneurysm. Circulation 2021, 143, 2091–2109. [Google Scholar] [CrossRef] [PubMed]
- Halushka, M.K.; Angelini, A.; Bartoloni, G.; Basso, C.; Batoroeva, L.; Bruneval, P.; Buja, L.M.; Butany, J.; d’Amati, G.; Fallon, J.T.; et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: II. Noninflammatory degenerative diseases—Nomenclature and diagnostic criteria. Cardiovasc. Pathol. 2016, 25, 247–257. [Google Scholar] [CrossRef]
- Waters, K.M.; Rooper, L.M.; Guajardo, A.; Halushka, M.K. Histopathologic differences partially distinguish syndromic aortic diseases. Cardiovasc. Pathol. 2017, 30, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.C.; Pannu, H.; Tran-Fadulu, V.; Papke, C.L.; Yu, R.K.; Avidan, N.; Bourgeois, S.; Estrera, A.L.; Safi, H.J.; Sparks, E.; et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat. Genet. 2007, 39, 1488–1493. [Google Scholar] [CrossRef]
- Meester, J.A.; Vandeweyer, G.; Pintelon, I.; Lammens, M.; Van Hoorick, L.; De Belder, S.; Waitzman, K.; Young, L.; Markham, L.W.; Vogt, J.; et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet. Med. 2017, 19, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Kuivaniemi, H.; Ryer, E.J.; Elmore, J.R.; Tromp, G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev. Cardiovasc. Ther. 2015, 13, 975–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Guo, D.C.; Sun, W.; Papke, C.L.; Duraisamy, S.; Estrera, A.L.; Safi, H.J.; Ahn, C.; Buja, L.M.; Arnett, F.C.; et al. Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms. J. Thorac. Cardiovasc. Surg. 2008, 136, 922–929. [Google Scholar] [CrossRef] [Green Version]
- Cifani, N.; Proietta, M.; Tritapepe, L.; Di Gioia, C.; Ferri, L.; Taurino, M.; Del Porto, F.; Stanford, A. Acute aortic dissection, inflammation, and metalloproteinases: A review. Ann. Med. 2015, 47, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Pisano, C.; Balistreri, C.R.; Ricasoli, A.; Ruvolo, G. Cardiovascular disease in ageing: An overview on thoracic aortic aneurysm as an emerging inflammatory disease. Mediat. Inflamm. 2017, 2017, 1274034. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Shkurat, T.P.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018, 50, 121–127. [Google Scholar] [CrossRef]
- Clempus, R.E.; Griendling, K.K. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 2006, 71, 216–225. [Google Scholar] [CrossRef]
- Van Der Pluijm, I.; Burger, J.; Van Heijningen, P.M.; IJpma, A.; Van Vliet, N.; Milanese, C.; Schoonderwoerd, K.; Sluiter, W.; Ringuette, L.J.; Dekkers, D.H.; et al. Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation. Cardiovasc. Res. 2018, 114, 1776–1793. [Google Scholar] [CrossRef] [Green Version]
- Tjeldhorn, L.; Amundsen, S.S.; Baroy, T.; Rand-Hendriksen, S.; Geiran, O.; Frengen, E.; Paus, B. Qualitative and quantitative analysis of FBN1 mRNA from 16 patients with Marfan Syndrome. BMC Med. Genet. 2015, 16, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubart, M.; Gazal, S.; Arnaud, P.; Benarroch, L.; Gross, M.S.; Buratti, J.; Boland, A.; Meyer, V.; Zouali, H.; Hanna, N.; et al. Association of modifiers and other genetic factors explain Marfan syndrome clinical variability. Eur. J. Hum. Genet. 2018, 26, 1759–1772. [Google Scholar] [CrossRef] [Green Version]
- Hollister, D.W.; Godfrey, M.; Sakai, L.Y.; Pyeritz, R.E. Immunohistologic abnormalities of the microfibrillar-fiber system in the Marfan syndrome. N. Engl. J. Med. 1990, 323, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; van Vliet, N.; van Heijningen, P.; Kumra, H.; Kremers, G.J.; Alves, M.; van Cappellen, G.; Yanagisawa, H.; Reinhardt, D.P.; Kanaar, R.; et al. Fibulin-4 deficiency differentially affects cytoskeleton structure and dynamics as well as TGFβ signaling. Cell Signal. 2019, 58, 65–78. [Google Scholar] [CrossRef]
- Cook, J.R.; Clayton, N.P.; Carta, L.; Galatioto, J.; Chiu, E.; Smaldone, S.; Nelson, C.A.; Cheng, S.H.; Wentworth, B.M.; Ramirez, F. Dimorphic effects of transforming growth factor-β signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Van Dorst, D.C.H.; de Wagenaar, N.P.; van der Pluijm, I.; Roos-Hesselink, J.W.; Essers, J.; Danser, A.H.J. Transforming growth factor-β and the renin-angiotensin system in syndromic thoracic aortic aneurysms: Implications for treatment. Cardiovasc. Drugs Ther. 2021, 35, 1233–1252. [Google Scholar] [CrossRef]
- Kim, K.L.; Choi, C.; Suh, W. Analysis of disease progression-associated gene expression profile in fibrillin-1 mutant mice: New insight into molecular pathogenesis of marfan syndrome. Biomol. Ther. 2014, 22, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’Acierno, L.; Giordano, R.; et al. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr. Atheroscler. Rep. 2014, 16, 435. [Google Scholar] [CrossRef] [PubMed]
- Salata, K.; Syed, M.; Hussain, M.A.; de Mestral, C.; Greco, E.; Mamdani, M.; Tu, J.V.; Forbes, T.L.; Bhatt, D.L.; Verma, S.; et al. Statins reduce abdominal aortic aneurysm growth, rupture, and perioperative mortality: A systematic review and meta-analysis. J. Am. Heart Assoc. 2018, 7, e008657. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Nagasawa, A.; Kudo, J.; Onoda, M.; Morikage, N.; Furutani, A.; Aoki, H.; Hamano, K. Inhibitory effect of statins on inflammation-related pathways in human abdominal aortic aneurysm tissue. Int. J. Mol. Sci. 2015, 16, 11213–11228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, L.H.; Berger, J.; Tranquilli, M.; Elefteraides, J.A. Effect of statin drugs on thoracic aortic aneurysms. Am. J. Cardiol. 2013, 112, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, E.; Vitaterna, A.; Pirelli, M.; Refice, S. Effects of statin therapy on ascending aorta aneurysms growth: A propensity-matched analysis. Int. J. Cardiol. 2015, 191, 52–55. [Google Scholar] [CrossRef]
- Pfeffer, G.; Majamaa, K.; Turnbull, D.M.; Thorburn, D.; Chinnery, P.F. Treatment for mitochondrial disorders. Cochrane Database Syst. Rev. 2012, CD004426. [Google Scholar] [CrossRef]
- Hirano, M.; Emmanuele, V.; Quinzii, C.M. Emerging therapies for mitochondrial diseases. Essays Biochem. 2018, 62, 467–481. [Google Scholar]
- Singh, S.P.; Schragenheim, J.; Cao, J.; Falck, J.R.; Abraham, N.G.; Bellner, L. PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat. 2016, 125, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Gott, V.L.; Greene, P.S.; Alejo, D.E.; Cameron, D.E.; Naftel, D.C.; Miller, C.; Gillinov, A.M.; Laschinger, J.C.; Pyeritz, R.E. Replacement of the aortic root in patients with Marfan’s syndrome. N. Engl. J. Med. 1999, 340, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.; Goldstein, A.; Karaa, A.; Koenig, M.K.; Anselm, I.; Brunel-Guitton, C.; Christodoulou, J.; Cohen, B.H.; Dimmock, D.; Enns, G.M.; et al. Patient care standards for primary mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet. Med. 2017, 19, 1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szczesniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. Erratum to: A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franken, R.; den Hartog, A.W.; Radonic, T.; Micha, D.; Maugeri, A.; van Dijk, F.S.; Meijers-Heijboer, H.E.; Timmermans, J.; Scholte, A.J.; van den Berg, M.P.; et al. Beneficial outcome of Losartan therapy depends on type of FBN1 mutation in Marfan syndrome. Circ. Cardiovasc. Genet. 2015, 8, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Stone, J.R.; Bruneval, P.; Angelini, A.; Bartoloni, G.; Basso, C.; Batoroeva, L.; Buja, L.M.; Butany, J.; d’Amati, G.; Fallon, J.T.; et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases. Cardiovasc. Pathol. 2015, 24, 267–278. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Van Huizen, N.A.; van den Braak, R.R.C.; Doukas, M.; Dekker, L.J.; IJzermans, J.N.; Luider, T.M. Up-regulation of collagen proteins in colorectal liver metastasis compared with normal liver tissue. J. Biol. Chem. 2019, 294, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Part A: Clinical Features | ||||||
Age at operation (years) | 32 | 16 | 49 | 23 | 37 | 24 |
Aortic diameter (mm) | 55 | 49 | 50 | 48 | 49 | 58 |
Aortic z-score | 8.14 | 6.89 | 5.82 | 5.89 | 4.37 | 11.07 |
Ectopia lentis | + | + | − | + | + | + |
Systemic score | 8 | 4 | 7 | 5 | 8 | 8 |
Part B: Genetic Features | ||||||
cDNA change | c..2368_2369insC | c.3646G>T | 15q21 deletion (including FBN1) ‡ | c.3506G>T | c.4954T>C | c.7003C>T |
Protein change | p.Cys790Serfs*12 | p.Glu1216* | p.Gly1169Val | p.Cys1652Arg | p.Arg2335Trp | |
Zygosity | Heterozygous | Heterozygous | Heterozygous | Heterozygous | Heterozygous | Homozygous |
Predicted effect | HI | HI | HI | DN | DN | DN |
Mutant allele | 0/141 (0%) | 5/82 (6%) | Absent (0%) | 78/199 (39%) | 52/120 (43%) | 400/400 (100%) |
FBN1 mRNA level † | 57% | 46% | 38% | 93% | 59% | 150% |
FBN1 protein level †† | 55% | NA | 98% | 106% | 80% | 96% |
Symbol | Description | Location | FC | FDR |
---|---|---|---|---|
Upregulated Genes | ||||
MTRNR2L12 | MT-RNR2 like 12 | Cytoplasm | 18.3 | 1.94E-56 |
LINC00965 | Long intergenic non-protein coding RNA 965 | No data available | 13.1 | 3.47E-18 |
GOLGA8I | Golgin A8 family, member I | Golgi apparatus | 12.5 | 2.19E-17 |
SCXA | Scleraxis bHLH transcription factor | Nucleus | 11.2 | 1.11E-15 |
GOLGA8S | Golgin A8 family, member S | Other | 10.7 | 3.13E-15 |
NBPF24 | NBPF member 24 | Other | 10.1 | 3.99E-33 |
RASA4 | RAS p21 protein activator 4 | Cytosplasm | 8.1 | 2.57E-16 |
ARL17A | ADP Ribosylation Factor Like GTPase 17A | Golgi apparatus | 6.9 | 1.19E-17 |
ZNF84 | Zinc finger protein 84 | Nucleus | 6.8 | 1.26E-15 |
PRND | Prion like protein doppel | Plasma membrane | 5.8 | 4.96E-07 |
Downregulated Genes | ||||
RPL18A | Ribosomal protein L18a | Cytoplasm | −102.4 | 3.89E-210 |
RPL21 | Ribosomal protein L21 | Cytoplasm | −42.7 | 7.10E-280 |
RPS26 | Ribosomal protein S26 | Cytoplasm | −33.9 | 2.12E-103 |
ADH1A | Alcohol dehydrogenase 1A (class I), alpha polypeptide | Cytoplasm | −33.1 | 7.95E-52 |
NAMPTL | Nicotinamide phosphoribosyltransferase-like | No data available | −16.9 | 4.54E-20 |
EIF3CL | Eukaryotic translation initiation factor 3 subunit C like | Other | −14.2 | 1.06E-35 |
F8A3 | Coagulation factor VIII associated 3 | Nucleus | −7.1 | 2.24E-10 |
H3-3A | H3.3 histone A | Nucleus | −5.8 | 4.71E-28 |
MAGED4B | MAGE family member D4B | Other | −5.3 | 3.18E-06 |
RPL9 | Ribosomal protein L9 | Nucleus | −5.2 | 3.78E-07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verhagen, J.M.A.; Burger, J.; Bekkers, J.A.; den Dekker, A.T.; von der Thüsen, J.H.; Zajec, M.; Brüggenwirth, H.T.; van der Sterre, M.L.T.; van den Born, M.; Luider, T.M.; et al. Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease. Int. J. Mol. Sci. 2022, 23, 438. https://doi.org/10.3390/ijms23010438
Verhagen JMA, Burger J, Bekkers JA, den Dekker AT, von der Thüsen JH, Zajec M, Brüggenwirth HT, van der Sterre MLT, van den Born M, Luider TM, et al. Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease. International Journal of Molecular Sciences. 2022; 23(1):438. https://doi.org/10.3390/ijms23010438
Chicago/Turabian StyleVerhagen, Judith M. A., Joyce Burger, Jos A. Bekkers, Alexander T. den Dekker, Jan H. von der Thüsen, Marina Zajec, Hennie T. Brüggenwirth, Marianne L. T. van der Sterre, Myrthe van den Born, Theo M. Luider, and et al. 2022. "Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease" International Journal of Molecular Sciences 23, no. 1: 438. https://doi.org/10.3390/ijms23010438
APA StyleVerhagen, J. M. A., Burger, J., Bekkers, J. A., den Dekker, A. T., von der Thüsen, J. H., Zajec, M., Brüggenwirth, H. T., van der Sterre, M. L. T., van den Born, M., Luider, T. M., van IJcken, W. F. J., Wessels, M. W., Essers, J., Roos-Hesselink, J. W., van der Pluijm, I., van de Laar, I. M. B. H., & Brosens, E. (2022). Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease. International Journal of Molecular Sciences, 23(1), 438. https://doi.org/10.3390/ijms23010438