Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization
Abstract
:1. Introduction
2. Results
2.1. Decolorization of Eumelanin from Sepia Officinalis by Laccase Mediator System (LMS)
2.2. Decolorization of Eumelanin by Laccase Mediator Cocktail System (LMCS)
2.3. Analysis of LMCS Oxidative Pathway
2.4. Structural and Morphological Characterization of Eumelanin after Treatment with LMCS
2.5. Preparation of LMCS Based Whitening Cream Formulations
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Degradation of Melanin by Laccase Mediator System (LMS)
4.3. Degradation of Melanin by Laccase Mediator Cocktail System (LMCS)
4.4. Analysis of LMCS Oxidative Pathway by Gas Chromatography/Mass Spectrometry (GC/MS) Analysis
4.5. FE-SEM Characterization
4.6. Fourier Transform Infrared Spectra (FT-IR)
4.7. Activity Assay of Laccase
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortonne, J.P.; Bissett, D.L. Latest Insights into Skin Hyperpigmentation. J. Investig. Dermatol. Symp. Proc. 2008, 13, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, W.; Yin, L.; Smuda, C.; Batzer, J.; Hearing, V.J.; Kolbe, L. Molecular and histological characterization of age spots. Exp. Dermatol. 2017, 26, 242–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, S.; Taylor, S.; Oyerinde, O.; Nurmohamed, S.; Dlova, N.; Sarkar, R.; Kourosh, A.S. The dark side of skin lightening: An international collaboration and review of a public health issue affecting dermatology. Int. J. Womens Dermatol. 2021, 7, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Sadaqat, B.; Khatoon, N.; Malik, A.Y.; Jamal, A.; Farooq, U.; Ali, M.I.; Huang, Z. Enzymatic decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium. Sci. Rep. 2020, 10, 20240. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, B.; Courselle, P.; De Beer, J.O.; Rogiers, V.; Grosber, M.; Deconinck, E.; De Paepe, K. Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.M.; Zhou, Q.; Lei, T.C.; Ding, S.F.; Xu, S.Z. Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: Biosafety as skin whitening agents. J. Dermatol. Sci. 2009, 55, 179–184. [Google Scholar] [CrossRef]
- Jones, K.; Hughes, J.; Hong, M.; Jia, Q.; Orndorff, S. Modulation of Melanogenesis by Aloesin: A Competitive Inhibitor of Tyrosinase. Pigment Cell Res. 2002, 15, 335–340. [Google Scholar] [CrossRef]
- Katsambas, A.D.; Stratigos, A.J. Depigmenting and bleaching agents: Coping with hyperpigmentation. Clin. Dermatol. 2001, 19, 483–488. [Google Scholar] [CrossRef]
- Podda, M.; Zollner, T.M.; Grundmann, K.M.; Thiele, J.J.; Packer, L.; Kaufmann, R. Activity of Alpha-Lipoic Acid in the Protection against Oxidative Stress in Skin. Curr. Probl. Dermatol. 2001, 29, 43–51. [Google Scholar] [CrossRef]
- Ladizinski, B.; Mistry, N.; Kundu, R.V. Widespread Use of Toxic Skin Lightening Compounds: Medical and Psychosocial Aspects. Dermatol. Clin. 2011, 29, 111–123. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gover, M.D.; Nouri, K.; Taylor, S. The treatment of melasma: A review of clinical trials. J. Am. Acad. Dermatol. 2006, 55, 1048–1065. [Google Scholar] [CrossRef] [PubMed]
- Solano, F.; Briganti, S.; Picardo, M.; Ghanem, G. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res. 2006, 19, 550–571. [Google Scholar] [CrossRef] [PubMed]
- Olumide, Y.M.; Akinkugbe, A.O.; Altraide, D.; Mohammed, T.; Ahamefule, N.; Ayanlowo, S.; Essen, N. Complications of chronic use of skin lightening cosmetics. Int. J. Dermatol. 2008, 47, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Dahal, R.H.; Shim, D.S.; Kim, J. Development of actinobacterial resources for functional cosmetics. J. Cosmet. Dermatol. 2017, 16, 243–252. [Google Scholar] [CrossRef]
- Liu, L.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Broadening the Catalytic Role of Enzymes in Cosmeceutical Sector: A Robust Tool from White Biotechnology. Catal. Lett. 2021, 152, 707–719. [Google Scholar] [CrossRef]
- Shin, S.K.; Hyeon, J.E.; Joo, Y.C.; Jeong, D.W.; You, S.K.; Han, S.O. Effective melanin degradation by a synergistic laccase-peroxidase enzyme complex for skin whitening and other practical applications. Int. J. Biol. Macromol. 2019, 129, 181–186. [Google Scholar] [CrossRef]
- Jia, W.; Li, H.; Wang, Q.; Zheng, K.; Lin, H.; Li, X.; Shu, Z. Screening of perhydrolases to optimize glucose oxidase-perhydrolase-in situ chemical oxidation cascade reaction system and its application in melanin decolorization. J. Biotechnol. 2021, 328, 106–114. [Google Scholar] [CrossRef]
- Jeon, G.; Kim, C.; Cho, U.M. Melanin-Decolorizing Activity of Antioxidant Enzymes, Glutathione Peroxidase, Thiol Peroxidase, and Catalase. Mol. Biotechnol. 2021, 63, 150–155. [Google Scholar] [CrossRef]
- Falade, A.O.; Nwodo, U.U.; Iweriebor, B.C.; Green, E.; Mabinya, L.V.; Okoh, A.I. Lignin peroxidase functionalities and prospective applications. Microbiologyopen 2016, 6, e00394. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S.; Blaghen, M.; Hong, H.-S.; Lee, K.M. Purification and characterization of a melanin biodegradation enzyme fromGeotrichumsp. Int. J. Cosmet. Sci. 2016, 38, 622–626. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, Y.H.; Ahn, J.Y.; Lee, H.C.; Oh, S.J.; Chung, B.W.; Min, J. Melanin reduction by peroxidase activity in lysosome-related organelle extracts from hen egg whites, HeLa cells, and Saccharomyces cerevisiae. Mol. Cell. Toxicol. 2015, 11, 441–447. [Google Scholar] [CrossRef]
- Mohorčič, M.; Friedrich, J.; Renimel, I.; André, P.; Mandin, D.; Chaumont, J.P. Production of melanin bleaching enzyme of fungal origin and its application in cosmetics. Biotechnol. Bioprocess Eng. 2007, 12, 200–206. [Google Scholar] [CrossRef]
- Sung, H.J.; Khan, M.F.; Kim, Y.H. Recombinant lignin peroxidase-catalyzed decolorization of melanin using in-situ generated H2O2 for application in whitening cosmetics. Int. J. Biol. Macromol. 2019, 136, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Haller, G.; Faltin, T.E.; Faltin, D.; Kern, C. Oxygen embolism after hydrogen peroxide irrigation of a vulvar abscess. Br. J. Anaesth. 2002, 88, 597–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, B.E.; Proudfoot, A.T.; Vale, J.A. Hydrogen Peroxide Poisoning. Toxicol. Rev. 2004, 23, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Jain, K.K.; Jain, A.; Kidwai, M.; Kuhad, R.C. Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Appl. Microbiol. Biotechnol. 2018, 102, 10327–10343. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.R.; Baldrian, P.; Murugesan, K.; Chang, Y.S. Laccase-catalysed oxidations of naturally occurring phenols: From in vivo biosynthetic pathways to green synthetic applications. Microb. Biotechnol. 2012, 5, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Khammuang, S.; Sarnthima, R. Decolorization of synthetic melanins by crude laccases of Lentinus polychrous Lév. Folia Microbiol. 2012, 58, 1–7. [Google Scholar] [CrossRef]
- Jeon, S.J.; Kim, T.Y. Production, Purification and Characterization of a Melanin Bleaching Enzyme from Trametes velutina JS18. Microbiol. Biotechnol. Lett. 2020, 48, 463–470. [Google Scholar] [CrossRef]
- Minjeong, S.; Yeonhee, K.; Suwan, N.; Sungjong, J. Optimization of Media Composition on the Production of Melanin Bleaching Enzyme from Peniophora sp. JS17. Microbiol. Biotechnol. Lett. 2019, 47, 250–258. [Google Scholar]
- Park, S.; Jung, D.; Do, H.; Yun, J.; Lee, D.; Hwang, S.; Lee, S.H. Laccase-Mediator System Using a Natural Mediator as a Whitening Agent for the Decolorization of Melanin. Polymers 2021, 13, 3671. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.R.; Murugesan, K.; Kim, Y.M.; Kim, E.J.; Chang, Y.S. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl. Microbiol. Biotechnol. 2008, 81, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Pickard, M.A.; Roman, R.; Tinoco, R.; Vazquez, D.R. Polycyclic Aromatic Hydrocarbon Metabolism by White Rot Fungi and Oxidation by Coriolopsis gallica. Appl. Environ. Microbiol. 1999, 65, 3805–3809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Xie, T.; Liu, Z.; Sun, F.; Wang, G. The development of CotA mediator cocktail system for dyes decolorization. J. Appl. Microbiol. 2018, 124, 1164–1174. [Google Scholar] [CrossRef]
- Jamshidinia, Z.; Mashayekhimazar, F.; Ahmadi, M.; Molaeirad, A.; Alijanianzadeh, M.; Janfaza, S. Investigation of Direct and Mediated Electron Transfer of Laccase-Based Biocathode. J. Electrochem. Sci. Technol. 2017, 8, 87–95. [Google Scholar] [CrossRef]
- Dao, R.; Zhao, C.; Yao, J.; Li, H. Distinguishing ionic and radical mechanisms of hydroxylamine mediated electrocatalytic alcohol oxidation using NO–H bond dissociation energies. Phys. Chem. Chem. Phys. 2018, 20, 28249–28256. [Google Scholar] [CrossRef]
- Capaldo, L.; Ravelli, D. Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis. Eur. J. Org. Chem. 2017, 2017, 2056–2071. [Google Scholar] [CrossRef] [Green Version]
- Okuda, K.; Yoshino, K.; Wakamatsu, S.; Sota, T. Degree of polymerization of 5,6-dihydroxyindole- derived eumelanin from chemical degradation study. Pigment Cell Melanoma Res. 2014, 27, 664–667. [Google Scholar] [CrossRef]
- Ito, S.; Wakamatsu, K. Chemical degradation of melanins: Application to identification of dopamine-melanin. Pigment Cell Res. 1998, 11, 120–126. [Google Scholar] [CrossRef]
- Napolitano, A.; Pezzella, A.; Vincensi, M.R.; Prota, G. Oxidative degradation of melanins to pyrrole acids: A model study. Tetrahedron 1995, 51, 5913–5920. [Google Scholar] [CrossRef]
- Piattelli, M.; Nicolaus, R.A. The structure of melanins and melanogenesis—I: The structure of melanin in Sepia. Tetrahedron 1961, 15, 66–75. [Google Scholar] [CrossRef]
- Ito, S.; Nakanishi, Y.; Valenzuela, R.K.; Brilliant, M.H.; Kolbe, L.; Wakamatsu, K. Usefulness of alkaline hydro- gen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: Application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res. 2011, 24, 605–613. [Google Scholar] [CrossRef] [PubMed]
- d’Ischia, M.; Wakamatsu, K.; Napolitano, A.; Briganti, S.; Garcia, B.J.C.; Kovacs, D. Melanins and melanogenesis: Methods, standards, protocols. Pigment Cell Melanoma Res. 2013, 26, 616–633. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, K.; Nakanishi, Y.; Miyazaki, N.; Kolbe, L.; Ito, S. UVA-induced oxidative degradation of melanins: Fission of indole moiety in eumelanin and conversion to benzothiazole moiety in pheomelanin. Pigment Cell Melanoma Res. 2012, 25, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Camarero, S.; Ibarra, D.; Martínez, M.J.; Martínez, A.T. Lignin-Derived Compounds as Efficient Laccase Mediators for Decolorization of Different Types of Recalcitrant Dyes. Appl. Environ. Microbiol. 2005, 71, 1775–1784. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Stamatas, G.; Kollias, N. Spectral Responses of Melanin to Ultraviolet A Irradiation. J. Investig. Dermatol. 2004, 122, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, H.M.; Abdul Latif, M.H.; Attiya, H.G. Characterization and determination of lignin in different types of Iraqi phoenix date palm pruning woods. Int. J. Biol. Macromol. 2013, 61, 340–346. [Google Scholar] [CrossRef]
- Magarelli, M.; Passamonti, P.; Renieri, C. Purification, characterization and analysis of sepia melanin from commercial sepia ink (Sepia Officinalis). Rev. CES Med. Vet. Zootec. 2010, 5, 18–28. [Google Scholar]
- Li, Q.; Ge, L.; Cai, J.; Pei, J.; Xie, J.; Zhao, L. Comparison of Two Laccases from Trametes versicolor for Application in the Decolorization of Dyes. J. Microbiol. Biotechnol. 2014, 24, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Jarenmark, M.; Sjövall, P.; Ito, S.; Wakamatsu, K.; Lindgren, J. Chemical Evaluation of Eumelanin Maturation by ToF-SIMS and Alkaline Peroxide Oxidation HPLC Analysis. Int. J. Mol. Sci. 2020, 22, 161. [Google Scholar] [CrossRef]
- Ito, S.; Kikuta, M.; Koike, S.; Szewczyk, G.; Sarna, M.; Zadlo, A.; Wakamatsu, K. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method. Pigment Cell Melanoma Res. 2016, 29, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Pralea, I.E.; Moldovan, R.C.; Petrache, A.M.; Ilieș, M.; Hegheș, S.C.; Ielciu, I.; Iuga, C.A. From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis. Int. J. Mol. Sci. 2019, 20, 3943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, K.Y.; Degan, S.; Fischer, M.C.; Zhou, K.C. Unraveling the molecular nature of melanin changes in metastatic cancer. J. Biomed. Opt. 2019, 24, 051414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Wakamatsu, K.; Glass, K.; Simon, J.D. High-performance liquid chromatography estimation of cross-linking of dihydroxyindol. Anal. Biochem. 2013, 434, 221–225. [Google Scholar] [CrossRef]
- Mbonyiryivuze, A.; Nuru, Z.Y.; Diop Ngom, B.; Mwakikunga, B.; Mokhotjwa, D.S.; Park, E.; Maaza, M. Morphological and Chemical Composition Characterization of Commercial Sepia Melanin. A. J. Nanomater. 2015, 3, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Strube, O.I.; Büngeler, A.; Bremser, W. Enzyme-Mediated In Situ Synthesis and Deposition of Nonaggregated Melanin Protoparticles. Macromol Mater. Eng. 2016, 301, 801–804. [Google Scholar] [CrossRef]
- Nenadis, N.; Lazaridou, O.; Tsimidou, M.Z. Use of Reference Compounds in Antioxidant Activity Assessment. J. Agric. Food Chem. 2007, 55, 5452–5460. [Google Scholar] [CrossRef]
- Ritter, D.M. Oxidation Potentials of Some Compounds Related to Vanillin. J. Am. Chem. Soc. 1947, 69, 46–50. [Google Scholar] [CrossRef]
- Mani, P.; Kumar, V.T.F.; Keshavaraz, T.; Chandra, T.S.; Kyazze, G. The Role of Natural Laccase Redox Mediators in Simultaneous Dye Decolorization and Power Production in Microbial Fuel Cells. Energies 2018, 11, 3455. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.J.; Smith, J.; Rice, C. Apoplast redox metabolism: Effect of acetovanillone (apocynin) and acetosyringone, on their co-oxidation and redox properties. Physiol. Mol. Plant Pathol. 2020, 110, 101481. [Google Scholar] [CrossRef]
- Blaison, M.C.C.; Padilla, N.M. Topical Skin Care Composition. European Patent Office EP2884985A1, 24 June 2015. [Google Scholar]
- Mate, D.M.; Alcalde, M. Laccase: A multi-purpose biocatalyst at the forefront of biotechnology. Microb. Biotechnol. 2016, 10, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, C.B.; Ataide, J.A.; Cefali, L.C.; Novaes, L.C.; Moriel, P.; Silveira, E.; Mazzola, P.G. Evaluation of the enzymatic activity and stability of commercial bromelain incorporated in topical formulations. Int. J. Cosmet. Sci. 2016, 38, 535–540. [Google Scholar] [CrossRef] [PubMed]
Entry | LMS | μmol | DE% |
---|---|---|---|
1 | ABTS | (0.4) (0.8)(1.6) | (10) 1 (18) 2 (26) 3 |
2 | TEMPO | (0.4) (0.8) (1.6) | (20) 1 (21) 2 (16) 3 |
3 | V | (0.4) (0.8)(1.6) | (12) 1 (13) 2 (36) 3 |
4 | Syr | (0.4) (0.8) (1.6) | (17) 1 (25) 2 (10) 3 |
5 | As | (0.4) (0.8) (1.6) | (16) 1 (9) 2 (9) 3 |
6 | Av | (0.4) (0.8) (1.6) | (8) 1 (14) 2 (16) 3 |
7 | Va | (0.4) (0.8) (1.6) | (15) 1 (16) 2 (28) 3 |
Entry | LMCS | Molar Ratio 1 | DE%(4 h) 2 | DE%(24 h) 2 | DE%(48 h) 2 |
---|---|---|---|---|---|
1 | ABTS/V | 0.5:1 | 15 | - | - |
2 | ABTS/V | 1:1 | 50 | 70 (76) 3 | 67 |
3 | ABTS/V | 2:1 | 18 | - | - |
4 | TEMPO/V | 0.5:1 | 22 | - | - |
5 | TEMPO/V | 1:1 | 46 | 63 (76) 3 | 66 |
6 | TEMPO/V | 2:1 | 26 | - | - |
7 | Syr/V | 0.5:1 | 24 | - | - |
8 | Syr/V | 1:1 | 55 | 67 (78) 3 | 67 |
9 | Syr/V | 2:1 | 28 | - | - |
10 | As/V | 0.5:1 | 19 | - | - |
11 | As/V | 1:1 | 39 | 51 (61) 3 | 69 |
12 | As/V | 2:1 | 12 | - | - |
13 | Av/V | 0.5:1 | 12 | - | - |
14 | Av/V | 1:1 | 31 | 46 | 47 |
15 | Av/V | 2:1 | 14 | - | - |
16 | Va/V | 0.5:1 | 28 | - | - |
17 | Va/V | 1:1 | 67 | 87 (96) 3 | 71 |
18 | Va/V | 2:1 | 32 | - | - |
19 | As/Av | 0.5:1 | 15 | - | - |
20 | As/Av | 1:1 | 34 | 38 | 38 |
21 | As/Av | 2:1 | 10 | - | - |
22 | Av/Syr | 0.5:1 | 2 | - | - |
23 | Av/Syr | 1:1 | 3 | 9 | 6 |
24 | Av/Syr | 2:1 | 1 | - | - |
25 | As/Syr | 0.5:1 | 8 | - | - |
26 | As/Syr | 1:1 | 16 | 28 | 38 |
27 | As/Syr | 2:1 | 11 | - | - |
Entry | LMCS | PTCA (μg/mgmelanin) | PDCA (μg/mgmelanin) | Ratio PTCA/PDCA |
---|---|---|---|---|
1 | ABTS/V | 26.16 | 12.72 | 2.05 |
2 | TEMPO/V | 21.47 | 9.40 | 2.28 |
3 | Syr/V | 11.12 | 8.92 | 1.25 |
4 | As/V | 21.52 | 18.70 | 1.15 |
5 | Va/V | 6.11 | 5.14 | 1.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gigli, V.; Piccinino, D.; Avitabile, D.; Antiochia, R.; Capecchi, E.; Saladino, R. Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization. Int. J. Mol. Sci. 2022, 23, 6238. https://doi.org/10.3390/ijms23116238
Gigli V, Piccinino D, Avitabile D, Antiochia R, Capecchi E, Saladino R. Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization. International Journal of Molecular Sciences. 2022; 23(11):6238. https://doi.org/10.3390/ijms23116238
Chicago/Turabian StyleGigli, Valeria, Davide Piccinino, Daniele Avitabile, Riccarda Antiochia, Eliana Capecchi, and Raffaele Saladino. 2022. "Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization" International Journal of Molecular Sciences 23, no. 11: 6238. https://doi.org/10.3390/ijms23116238
APA StyleGigli, V., Piccinino, D., Avitabile, D., Antiochia, R., Capecchi, E., & Saladino, R. (2022). Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization. International Journal of Molecular Sciences, 23(11), 6238. https://doi.org/10.3390/ijms23116238