The Development of FAK Inhibitors: A Five-Year Update
Abstract
:1. Introduction
- (1)
- Rho/Rac/PAK and RAF/Janus kinase (JNK) signalling activation, strictly related to cell mobility [7];
- (2)
- activation of STAT3, a transcription factor with a fundamental role in normal cell growth, but also constitutively activated in about 70% of solid and haematological tumors [8];
- (3)
- PI3K/AKT activation pathway, which is normally hyperactivated in a lot of solid cancers. In fact, in recent years, in-depth studies have demonstrated that PI3K/AKT signalling is strictly related to cancer onset, tumor progression and proliferation, metastasis development, apoptosis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells [9];
- (4)
- suppression of apoptosis p53-mediated and reduction of p53-transcriptional activity, pathways closely related to tumor survival, migration, invasion, and growth. In detail, through the ubiquitination process, FAK promotes p53 degradation, thus leading to tumor cell growth and proliferation [10].
2. FAK Role in Cancer Development
3. FAK Inhibitors
3.1. FAK Inhibitors in Clinical Development
3.2. FAK Inhibitors in Pre-Clinical Development
3.3. FAK Inhibitors under Study
3.3.1. Diphenylpyrimidines (DPPYs)
3.3.2. 1,2,4-Triazines
3.3.3. 7H-Pyrrolo [2,3-d]pyrimidines
3.3.4. Thieno[3,2-d]pyrimidines
3.3.5. 1,3,4-Oxadiazoles
3.3.6. 1,2,4-Triazole and Benzotriazole Derivatives
3.3.7. Arylquinolines
3.3.8. Thiosemicarbazones
4. PROTAC Molecules
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ALK | Anaplastic lymphoma kinase |
AML | Acute myeloid leukemia |
BTK | Bruton’s tyrosine kinase |
Car-DPPYs | carbonyl-substituted diphenylpyrimidine derivatives |
DFG | (Asp-Phe-Gly) motif |
DPPYs | Diphenylpyrimidine analogs |
EGFR | Endothelial growth factor receptor |
ERK | Extracellular signal-regulated kinases |
FAK | Focal adhesion kinase |
FAKIs | FAK inhibitors |
FAT | Focal Adhesion Targeting |
GBM | Malignant glioblastoma |
Grb2 | Growth factor receptor-bound protein 2 |
HCC | Hepatocellular carcinoma cell |
HDAC | histone deacetylases |
HUVEC | Human Umbilical Vein Endothelial Cells |
IGF-IR | Insulin-like growth factor-I receptor |
JNK | Janus kinase |
MAPK | Mitogen-activated protein kinase kinase |
NSCLC | Non-small cell lung cancer |
NF-kB | Nuclear factor-κB |
PA-DPPYs | phosphamide-containing diphenylpyrimidine analogs |
PC | pancreatic cells |
PDGFR | Platelet-derived growth factor receptor |
PET | Positron emission tomography |
PROTAC | Proteolysis targeting chimera |
PRP | Poly-prolin- rich sequences |
Pyk2 | Proline-rich tyrosine kinase 2 |
ROS | reactive oxygen species |
Sul-DPPYs | sulphonamide-substituted diphenylpyrimidine derivatives |
TOP1 | Topoisomerase I |
VEGFR | Vascular endothelial growth factor receptor |
VHL | Von Hippel-Lindau |
References
- Guan, J.L.; E Trevithick, J.; O Hynes, R. Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul. 1991, 2, 951–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Chatzizacharias, N.; Kouraklis, G.P.; E Theocharis, S. Focal adhesion kinase: A promising target for anticancer therapy. Expert Opin. Ther. Targets 2007, 11, 1315–1328. [Google Scholar] [CrossRef]
- Mitra, S.K.; Hanson, D.A.; Schlaepfer, D.D. Focal adhesion kinase: In command and control of cell motility. Nat. Rev. Mol. Cell Biol. 2005, 6, 56–68. [Google Scholar] [CrossRef]
- Brullo, C. New Insights on Fak and Fak Inhibitors. Curr. Med. Chem. 2021, 28, 3318–3338. [Google Scholar] [CrossRef]
- McLean, G.W.; Carragher, N.O.; Avizienyte, E.; Evans, J.; Brunton, V.G.; Frame, M.C. The role of focal-adhesion kinase in cancer—A new therapeutic opportunity. Nat. Cancer 2005, 5, 505–515. [Google Scholar] [CrossRef]
- Tai, Y.-L.; Chen, L.-C.; Shen, T.-L. Emerging Roles of Focal Adhesion Kinase in Cancer. BioMed Res. Int. 2015, 2015, 690690. [Google Scholar] [CrossRef]
- Ritt, M.; Guan, J.L.; Sivaramakrishnan, S. Visualizing and Manipulating Focal Adhesion Kinase Regulation in Live Cells. J. Biol. Chem. 2013, 288, 8875–8886. [Google Scholar] [CrossRef] [Green Version]
- Fagard, R.; Metelev, V.; Souissi, I.; Baran-Marszak, F. STAT3 inhibitors for cancer therapy: Have all roads been explored? JAK-STAT 2013, 2, e22882. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Mol. Biol. Rep. 2020, 47, 4587–4629. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yi, Q.; Tang, L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: A focused review. J. Exp. Clin. Cancer Res. 2019, 38, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Nimwegen, M.J.; van de Water, B. Focal adhesion kinase: A potential target in cancer therapy. Biochem. Pharmacol. 2007, 73, 597–609. [Google Scholar] [CrossRef]
- Sood, A.K.; Coffin, J.E.; Schneider, G.B.; Fletcher, M.S.; DeYoung, B.R.; Gruman, L.M.; Gershenson, D.M.; Schaller, M.D.; Hendrix, M.J. Biological Significance of Focal Adhesion Kinase in Ovarian Cancer: Role in Migration and Invasion. Am. J. Pathol. 2004, 165, 1087–1095. [Google Scholar] [CrossRef]
- Kanteti, R.; Mirzapoiazova, T.; Riehm, J.J.; Dhanasingh, I.; Mambetsariev, B.; Wang, J.; Kulkarni, P.; Kaushik, G.; Seshacharyulu, P.; Ponnusamy, M.P.; et al. Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biol. Ther. 2018, 19, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Guan, J.-L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009, 28, 35–49. [Google Scholar] [CrossRef]
- Nowakowski, J.; Cronin, C.N.; McRee, D.E.; Knuth, M.W.; Nelson, C.G.; Pavletich, N.P.; Rogers, J.; Sang, B.-C.; Scheibe, D.N.; Swanson, R.; et al. Structures of the Cancer-Related Aurora-A, FAK, and EphA2 Protein Kinases from Nanovolume Crystallography. Structure 2002, 10, 1659–1667. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.; El-Hafeez, A.A.A.; A Abdelhafeez, D.; Abdelhamid, D.; A Mostafa, Y.; Ghosh, P.; Hayallah, A.M.; A Abuo-Rahma, G.E.-D. FAK inhibitors as promising anticancer targets: Present and future directions. Futur. Med. Chem. 2021, 13, 1559–1590. [Google Scholar] [CrossRef]
- Chauhan, A.; Khan, T. Focal adhesion kinase—An emerging viable target in cancer and development of focal adhesion kinase inhibitors. Chem. Biol. Drug Des. 2020, 97, 774–794. [Google Scholar] [CrossRef]
- Ma, W.W. Development of focal adhesion kinase inhibitors in cancer therapy. Anti-Cancer Agents Med. Chem. 2011, 11, 638–642. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, H. Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). J. Med. Chem. 2020, 63, 14382–14403. [Google Scholar] [CrossRef]
- Lv, P.; Pengcheng, L.; Zhu, H.-L. Recent Advances of Small Molecule Focal Adhesion Kinase (FAK) Inhibitors as Promising Anticancer Therapeutics. Curr. Med. Chem. 2021, 28, 6977–6989. [Google Scholar] [CrossRef]
- Golubovskaya, V.M.; Nyberg, C.; Zheng, M.; Kweh, F.; Magis, A.; Ostrov, D.; Cance, W.G. A Small Molecule Inhibitor, 1,2,4,5-Benzenetetraamine Tetrahydrochloride, Targeting the Y397 Site of Focal Adhesion Kinase Decreases Tumor Growth. J. Med. Chem. 2008, 51, 7405–7416. [Google Scholar] [CrossRef] [Green Version]
- Golubovskaya, V.; Curtin, L.; Groman, A.; Sexton, S.; Cance, W.G. In vivo toxicity, metabolism and pharmacokinetic properties of FAK inhibitor 14 or Y15 1, 2, 4, 5-benzenetetramine tetrahydrochloride. Arch. Toxicol. 2015, 89, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Golubovskaya, V.M.; Figel, S.; Ho, B.T.; Johnson, C.P.; Yemma, M.; Huang, G.; Zheng, M.; Nyberg, C.; Magis, A.; Ostrov, D.A.; et al. A small molecule focal adhesion kinase (FAK) inhibitor, targeting Y397 site: 1-(2-hydroxyethyl) -3, 5, 7-triaza-1-azoniatricyclo [3.3.1.13,7]decane; bromide effectively inhibits FAK autophosphorylation activity and decreases cancer cell viability, clonogenicity and tumor growth in vivo. Carcinogenesis 2012, 33, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Grädler, U.; Bomke, J.; Musil, D.; Dresing, V.; Lehmann, M.; Hölzemann, G.; Greiner, H.; Esdar, C.; Krier, M.; Heinrich, T. Fragment-based discovery of focal adhesion kinase inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 5401–5409. [Google Scholar] [CrossRef]
- Liu, H.; Qu, M.; Xu, L.; Han, X.; Wang, C.; Shu, X.; Yao, J.; Liu, K.; Peng, J.; Li, Y.; et al. Design and synthesis of sulfonamide-substituted diphenylpyrimidines (SFA-DPPYs) as potent Bruton’s tyrosine kinase (BTK) inhibitors with improved activity toward B-cell lymphoblastic leukemia. Eur. J. Med. Chem. 2017, 135, 60–69. [Google Scholar] [CrossRef]
- Qu, M.; Liu, Z.; Zhao, D.; Wang, C.; Zhang, J.; Tang, Z.; Liu, K.; Shu, X.; Yuan, H.; Ma, X. Design, synthesis and biological evaluation of sulfonamide-substituted diphenylpyrimidine derivatives (Sul-DPPYs) as potent focal adhesion kinase (FAK) inhibitors with antitumor activity. Bioorg. Med. Chem. 2017, 25, 3989–3996. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, B.; Ge, Y.; Huang, J.; Song, S.; Wang, C.; Yao, J.; Liu, K.; Li, Y.; Li, Y.; et al. Phosphamide-containing diphenylpyrimidine analogues (PA-DPPYs) as potent focal adhesion kinase (FAK) inhibitors with enhanced activity against pancreatic cancer cell lines. Bioorg. Med. Chem. 2017, 25, 6313–6321. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ai, M.; Yu, J.; Jin, L.; Wang, C.; Liu, Z.; Shu, X.; Tang, Z.; Liu, K.; Luo, H.; et al. Structure-based modification of carbonyl-diphenylpyrimidines (Car-DPPYs) as a novel focal adhesion kinase (FAK) inhibitor against various stubborn cancer cells. Eur. J. Med. Chem. 2019, 172, 154–162. [Google Scholar] [CrossRef]
- Han, C.; Shen, K.; Wang, S.; Wang, Z.; Su, F.; Wu, X.; Hu, X.; Li, M.; Han, J.; Wu, L. Discovery of Novel 2,4-Dianilinopyrimidine Derivatives Containing 4-(Morpholinomethyl)phenyl and N-Substituted Benzamides as Potential FAK Inhibitors and Anticancer Agents. Molecules 2021, 26, 4187. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, R.-H.; Zhang, H.; Wang, Y.-C.; Yang, D.; Zhao, Y.-L.; Yan, G.-Y.; Xu, G.-B.; Guan, H.-Y.; Zhou, Y.-H.; et al. Design, synthesis, and biological evaluation of 2,4-diamino pyrimidine derivatives as potent FAK inhibitors with anti-cancer and anti-angiogenesis activities. Eur. J. Med. Chem. 2021, 222, 113573. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.; Wang, C.; Tang, Z.; Liu, K.; Sun, X.; Ma, T.; Li, Y.; Ma, X.; Li, L.; Chen, L. Design and synthesis of diphenylpyrimidine derivatives (DPPYs) as potential dual EGFR T790M and FAK inhibitors against a diverse range of cancer cell lines. Bioorg. Chem. 2019, 94, 103408. [Google Scholar] [CrossRef]
- Su, Y.; Li, R.; Ning, X.; Lin, Z.; Zhao, X.; Zhou, J.; Liu, J.; Jin, Y.; Yin, Y. Discovery of 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety as novel FAK inhibitors with antitumor and anti-angiogenesis activities. Eur. J. Med. Chem. 2019, 177, 32–46. [Google Scholar] [CrossRef]
- Wang, D.; Fang, Y.; Wang, H.; Xu, X.; Liu, J.; Zhang, H. Synthesis and evaluation of novel F-18-labeled pyrimidine derivatives: Potential FAK inhibitors and PET imaging agents for cancer detection. RSC Adv. 2017, 7, 22388–22399. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Li, Y.; Fang, Y.; Qiang, B.; Gao, H.; Wang, S.; Zhang, H. Design, synthesis, and biological evaluation of F-18-labelled 2, 4-diaminopyrimidine-type FAK-targeted inhibitors as potential tumour imaging agents. Bioorg. Med. Chem. Lett. 2020, 30, 127452. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Y.; Fang, Y.; Gao, H.; Qiang, B.; Wang, S.; Zhang, H. Design, Synthesis, Biological Evaluation, and Molecular Docking of 2,4-Diaminopyrimidine Derivatives Targeting Focal Adhesion Kinase as Tumor Radiotracers. Mol. Pharm. 2021, 18, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Lin, X.; Zhang, Y.; Tan, F.; Chi, B.; Peng, Z.; Dong, W.; An, D. Design, synthesis and biological evaluation of ring-fused pyrazoloamino pyridine/pyrimidine derivatives as potential FAK inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 127459. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Y.; Liu, J.; Tang, M.; Huang, H.; Bai, C.; Si, W.; Yang, T.; Yuan, X.; Wen, Y.; et al. Design, synthesis and biological evaluation of novel FAK inhibitors with better selectivity over IR than TAE226. Bioorg. Chem. 2022, 124, 105790. [Google Scholar] [CrossRef] [PubMed]
- Yen-Pon, E.; Li, B.; Acebrón-Garcia-De-Eulate, M.; Tomkiewicz-Raulet, C.; Dawson, J.; Lietha, D.; Frame, M.C.; Coumoul, X.; Garbay, C.; Etheve-Quelquejeu, M.; et al. Structure-Based Design, Synthesis, and Characterization of the First Irreversible Inhibitor of Focal Adhesion Kinase. ACS Chem. Biol. 2018, 13, 2067–2073. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Tomkiewicz-Raulet, C.; Dao, P.; Lietha, D.; Yen-Pon, E.; Du, Z.; Coumoul, X.; Garbay, C.; Etheve-Quelquejeu, M.; et al. Design, Synthesis, and Biological Evaluation of Covalent Inhibitors of Focal Adhesion Kinase (FAK) against Human Malignant Glioblastoma. J. Med. Chem. 2020, 63, 12707–12724. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, D.; Wang, Q.; Yang, J.; Zhang, Q.; Le, Y.; Liu, L. Synthesis and Biological Evaluation of New Pyrimidine Derivatives as FAK Inhibitors for Development of Antitumor Agents. HETEROCYCLES 2021, 102, 2319. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Y.; Shi, M.; Tang, M.; Si, W.; Yuan, X.; Wen, Y.; Chen, L. Design, synthesis, and biological evaluation of novel covalent inhibitors targeting focal adhesion kinase. Bioorg. Med. Chem. Lett. 2021, 54, 128433. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yu, S.; Qin, Q.; Wu, T.; Wang, R.; Zhao, D. Design, synthesis and biological activity of 2,4-disubstituted-5- (trifluoromethyl) pyridine based FAK inhibitors. Chin. J. Med. Chem. 2021, 31, 19–28. [Google Scholar] [CrossRef]
- Dao, P.; Jarray, R.; Le Coq, J.; Lietha, D.; Loukaci, A.; Lepelletier, Y.; Hadj-Slimane, R.; Garbay, C.; Raynaud, F.; Chen, H. Synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK inhibitors with anti-angiogenic activity. Bioorg. Med. Chem. Lett. 2013, 23, 4552–4556. [Google Scholar] [CrossRef]
- Dao, P.; Jarray, R.; Smith, N.; Lepelletier, Y.; Le Coq, J.; Lietha, D.; Hadj-Slimane, R.; Herbeuval, J.-P.; Garbay, C.; Raynaud, F.; et al. Inhibition of both focal adhesion kinase and fibroblast growth factor receptor 2 pathways induces anti-tumor and anti-angiogenic activities. Cancer Lett. 2014, 348, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Dao, P.; Smith, N.; Tomkiewicz-Raulet, C.; Yen-Pon, E.; Camacho-Artacho, M.; Lietha, D.; Herbeuval, J.-P.; Coumoul, X.; Garbay, C.; Chen, H. Design, Synthesis, and Evaluation of Novel Imidazo[1,2-a][1,3,5]triazines and Their Derivatives as Focal Adhesion Kinase Inhibitors with Antitumor Activity. J. Med. Chem. 2014, 58, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Dao, P.; Lietha, D.; Etheve-Quelquejeu, M.; Garbay, C.; Chen, H. Synthesis of novel 1,2,4-triazine scaffold as FAK inhibitors with antitumor activity. Bioorg. Med. Chem. Lett. 2017, 27, 1727–1730. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-S.; Wang, Z.; Richmond, W.; He, X.; Yang, K.; Jiang, T.; Sim, T.; Karanewsky, D.; Gu, X.-J.; Zhou, V.; et al. Design and synthesis of 7H-pyrrolo[2,3-d]pyrimidines as focal adhesion kinase inhibitors. Part 1. Bioorg. Med. Chem. Lett. 2006, 16, 2173–2176. [Google Scholar] [CrossRef]
- Wang, R.; Chen, Y.; Zhao, X.; Yu, S.; Yang, B.; Wu, T.; Guo, J.; Hao, C.; Zhao, D.; Cheng, M. Design, synthesis and biological evaluation of novel 7H-pyrrolo[2,3-d]pyrimidine derivatives as potential FAK inhibitors and anticancer agents. Eur. J. Med. Chem. 2019, 183, 111716. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, X.; Yu, S.; Chen, Y.; Cui, H.; Wu, T.; Hao, C.; Zhao, D.; Cheng, M. Discovery of 7H-pyrrolo[2,3-d]pyridine derivatives as potent FAK inhibitors: Design, synthesis, biological evaluation and molecular docking study. Bioorg. Chem. 2020, 102, 104092. [Google Scholar] [CrossRef]
- Tan, H.; Liu, Y.; Gong, C.; Zhang, J.; Huang, J.; Zhang, Q. Synthesis and evaluation of FAK inhibitors with a 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine scaffold as anti-hepatocellular carcinoma agents. Eur. J. Med. Chem. 2021, 223, 113670. [Google Scholar] [CrossRef]
- Stone, R.L.; A Baggerly, K.; Armaiz-Pena, G.N.; Kang, Y.; Sanguino, A.M.; Thanapprapasr, D.; Dalton, H.J.; Bottsford-Miller, J.; Zand, B.; Akbani, R.; et al. Focal adhesion kinase. Cancer Biol. Ther. 2014, 15, 919–929. [Google Scholar] [CrossRef] [Green Version]
- Ward, K.; Tancioni, I.; Lawson, C.; Miller, N.L.G.; Jean, C.; Chen, X.L.; Uryu, S.; Kim, J.; Tarin, D.; Stupack, D.G.; et al. Inhibition of focal adhesion kinase (FAK) activity prevents anchorage-independent ovarian carcinoma cell growth and tumor progression. Clin. Exp. Metastasis 2012, 30, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Feng, Z.; Liu, Z.; Li, X.; He, H.; Ran, K.; Shi, Y.; Zhu, Y.; Ye, T.; Gao, C.; et al. Design, synthesis and biological evaluation of 7-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy)-2,3-dihydro-1H-inden-1-one derivatives as potent FAK inhibitors for the treatment of ovarian cancer. Eur. J. Med. Chem. 2021, 228, 113978. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, S.; Zhao, X.; Chen, Y.; Yang, B.; Wu, T.; Hao, C.; Zhao, D.; Cheng, M. Design, synthesis, biological evaluation and molecular docking study of novel thieno[3,2-d]pyrimidine derivatives as potent FAK inhibitors. Eur. J. Med. Chem. 2019, 188, 112024. [Google Scholar] [CrossRef]
- Cho, H.; Shin, I.; Yoon, H.; Jeon, E.; Lee, J.; Kim, Y.; Ryu, S.; Song, C.; Kwon, N.H.; Moon, Y.; et al. Identification of Thieno[3,2-d]pyrimidine Derivatives as Dual Inhibitors of Focal Adhesion Kinase and FMS-like Tyrosine Kinase 3. J. Med. Chem. 2021, 64, 11934–11957. [Google Scholar] [CrossRef]
- Zhang, X.-M.; Qiu, M.; Sun, J.; Zhang, Y.-B.; Yang, Y.-S.; Wang, X.-L.; Tang, J.-F.; Zhu, H.-L. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents. Bioorg. Med. Chem. 2011, 19, 6518–6524. [Google Scholar] [CrossRef]
- Sun, J.; Ren, S.-Z.; Lu, X.-Y.; Li, J.-J.; Shen, F.-Q.; Xu, C.; Zhu, H.-L. Discovery of a series of 1,3,4-oxadiazole-2(3 H )-thione derivatives containing piperazine skeleton as potential FAK inhibitors. Bioorg. Med. Chem. 2017, 25, 2593–2600. [Google Scholar] [CrossRef] [PubMed]
- Altıntop, M.D.; Sever, B.; Çiftçi, G.A.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Özdemir, A. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. Eur. J. Med. Chem. 2018, 155, 905–924. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; El-Hafeez, A.A.A.; Abdelhamid, D.; Katkar, G.D.; Mostafa, Y.A.; Ghosh, P.; Hayallah, A.M.; Abuo-Rahma, G.E.-D.A. A first-in-class anticancer dual HDAC2/FAK inhibitors bearing hydroxamates/benzamides capped by pyridinyl-1,2,4-triazoles. Eur. J. Med. Chem. 2021, 222, 113569. [Google Scholar] [CrossRef]
- Mustafa, M.; Abuo-Rahma, G.E.-D.A.; El-Hafeez, A.A.A.; Ahmed, E.R.; Abdelhamid, D.; Ghosh, P.; Hayallah, A.M. Discovery of antiproliferative and anti-FAK inhibitory activity of 1,2,4-triazole derivatives containing acetamido carboxylic acid skeleton. Bioorg. Med. Chem. Lett. 2021, 40, 127965. [Google Scholar] [CrossRef] [PubMed]
- Kassab, A.E.; Hassan, R.A. Novel benzotriazole N-acylarylhydrazone hybrids: Design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition. Bioorg. Chem. 2018, 80, 531–544. [Google Scholar] [CrossRef]
- Luo, Q.-Y.; Zhou, S.-N.; Pan, W.-T.; Sun, J.; Yang, L.-Q.; Zhang, L.; Qiu, M.-Z.; Yang, D.-J. A multi-kinase inhibitor APG-2449 enhances the antitumor effect of ibrutinib in esophageal squamous cell carcinoma via EGFR/FAK pathway inhibition. Biochem. Pharmacol. 2020, 183, 114318. [Google Scholar] [CrossRef]
- Elbadawi, M.M.; Eldehna, W.M.; El-Hafeez, A.A.A.; Somaa, W.R.; Albohy, A.; Al-Rashood, S.T.; Agama, K.K.; Elkaeed, E.B.; Ghosh, P.; Pommier, Y.; et al. 2-Arylquinolines as novel anticancer agents with dual EGFR/FAK kinase inhibitory activity: Synthesis, biological evaluation, and molecular modelling insights. J. Enzym. Inhib. Med. Chem. 2021, 37, 355–378. [Google Scholar] [CrossRef]
- Mahendiran, D.; Amuthakala, S.; Bhuvanesh, N.S.P.; Kumar, R.S.; Rahiman, A.K. Copper complexes as prospective anticancer agents: In vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest. RSC Adv. 2018, 8, 16973–16990. [Google Scholar] [CrossRef] [Green Version]
- Cromm, P.M.; Samarasinghe, K.T.G.; Hines, J.; Crews, C.M. Addressing Kinase-Independent Functions of Fak via PROTAC-Mediated Degradation. J. Am. Chem. Soc. 2018, 140, 17019–17026. [Google Scholar] [CrossRef]
- Popow, J.; Arnhof, H.; Bader, G.; Berger, H.; Ciulli, A.; Covini, D.; Dank, C.; Gmaschitz, T.; Greb, P.; Karolyi-Oezguer, J.; et al. Highly Selective PTK2 Proteolysis Targeting Chimeras to Probe Focal Adhesion Kinase Scaffolding Functions. J. Med. Chem. 2019, 62, 2508–2520. [Google Scholar] [CrossRef]
- Gao, H.; Wu, Y.; Sun, Y.; Yang, Y.; Zhou, G.; Rao, Y. Design, Synthesis, and Evaluation of Highly Potent FAK-Targeting PROTACs. ACS Med. Chem. Lett. 2019, 11, 1855–1862. [Google Scholar] [CrossRef]
- Law, R.P.; Nunes, J.; Chung, C.; Bantscheff, M.; Buda, K.; Dai, H.; Evans, J.P.; Flinders, A.; Klimaszewska, D.; Lewis, A.J.; et al. Discovery and Characterisation of Highly Cooperative FAK-Degrading PROTACs. Angew. Chem. Int. Ed. 2021, 60, 23327–23334. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, R.; Cheng, M.; Yu, S.; Zhao, X.; Wu, T.; Qin, Q.; Chen, Y. Preparation of Pyrazine Derivatives and Used as Degradation of Focal Adhesion Kinase and Antitumor Agents. WO2022028372 2 August 2021. [Google Scholar]
- Zhao, D.; Wang, R.; Cheng, M.; Chen, Y.; Zhao, X.; Yu, S.; Wu, T. Compound for Targeted Degradation of Focal Adhesion Kinased (FAK), and Its Application in Preparation of FAK Inhibitor and Drug for Treating or Preventing Tumor-Related Disease. WO2021190413 19 March 2021. [Google Scholar]
- Wang, Z.; Zhang, J.; Jiang, J. Use of Fak Inhibitor in Preparation of Drug for Treating Tumors Having NRAS Mutation. WO2021098679 17 November 2020. [Google Scholar]
- Gutkind, J.; Schlaepfer, D.; Paradis, J.; Kishore, A.; Acosta, M.; Arang, N. Treatment of Uveal Melanoma with Focal Adhesion Kinase (FAK) Protein Inhibitors. US20200323863 19 March 2020. [Google Scholar]
- Yang, D.; Qiu, M.; Luo, Q.; Zhou, S.; Zhang, L.; Yan, X.; Yuan, L.; Zhang, Y. Combination of FAK Inhibitor and BTK Inhibitor for Treating a Disease. WO 2020259553 24 June 2020. [Google Scholar]
- Meta, E.; Brullo, C.; Sidibé, A.; Imhof, B.A.; Bruno, O. Design, synthesis and biological evaluation of new pyrazolyl-ureas and imidazopyrazolecarboxamides able to interfere with MAPK and PI3K upstream signaling involved in the angiogenesis. Eur. J. Med. Chem. 2017, 133, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Meta, E.; Imhof, B.A.; Ropraz, P.; Fish, R.J.; Brullo, C.; Bruno, O.; Sidibé, A. The pyrazolyl-urea GeGe3 inhibits tumor angiogenesis and reveals dystrophia myotonica protein kinase (DMPK)1 as a novel angiogenesis target. Oncotarget 2017, 8, 108195–108212. [Google Scholar] [CrossRef] [Green Version]
- Morretta, E.; Belvedere, R.; Petrella, A.; Spallarossa, A.; Rapetti, F.; Bruno, O.; Brullo, C.; Monti, M.C. Novel insights on the molecular mechanism of action of the anti-angiogenic pyrazolyl-urea GeGe-3 by functional proteomics. Bioorg. Chem. 2021, 115, 105168. [Google Scholar] [CrossRef] [PubMed]
- Belvedere, R.; Morretta, E.; Novizio, N.; Morello, S.; Bruno, O.; Brullo, C.; Petrella, A. The Pyrazolyl-Urea Gege3 Inhibits the Activity of ANXA1 in the Angiogenesis Induced by the Pancreatic Cancer Derived EVs. Biomolecules 2021, 11, 1758. [Google Scholar] [CrossRef] [PubMed]
Name | Chemical Structure | Phase | Number of Clinical Trial | IC50 on FAK |
---|---|---|---|---|
Defactinib | II | 21 | 0.6 nM | |
PF-562271 VS-6062 | I | 1 | 1.5 nM | |
CEP-37440 | I | 1 | 2 nM | |
Conteltinib (CT-707) | II | 2 | 1.6 nM | |
VS-4718 | I | 3 | 1.5 nM | |
GSK-2256098 | II | 6 | 1.5 nM | |
BI-853520 | I | 3 | 1 nM |
Name | Chemical Structure | Type of Inhibitors | Cancer Type | IC50 on FAK |
---|---|---|---|---|
TAE226 | ATP competitive inhibitor | Pancreatic, prostatic, head, neck cancer | 5.5 nM | |
Y11 | FAK-FERM inhibitor | Breast, colon cancer | 50 nM | |
Y15 | FAK-FERM Inhibitor | Breast, colon, thyroid, pancreatic cancer | 1 μM | |
PF-573228 | ATP-competitive inhibitor | Breast, lung cancer | 4 nM | |
PF-43196 | ATP-competitive inhibitor | Haematological cancers | 2 nM |
Chemical Scaffold | Type of Inhibitors | Compounds | Ref. |
---|---|---|---|
diphenylpyrimidine | Reversible ATP-competitive inhibitor | 1–12 | [24,25,26,27,28,29,30,31,32,33,34,35,36,37] |
diphenylpyrimidine | Irreversible ATP-competitive inhibitor | 13–16 | [38,39,40,41,42] |
triazine | Reversible ATP-competitive inhibitor | 17 | [43,44,45,46] |
Pirrolo-pyrimidine | Reversible ATP-competitive inhibitor | 18–21 | [47,48,49,50,51,52,53] |
Thieno-pyrimidine | Reversible ATP-competitive inhibitor | 22,23 | [54,55] |
1,3,4-oxadiazole | Reversible ATP-competitive inhibitor | 24,25 | [56,57,58] |
1,2,4-triazole | Dual HDAC/FAKIs | 26,27 | [59,60] |
benzotriazole | FAK/Pyk2/chelating inhibitors | 28 | [61] |
quinoline | Dual EFGR/FAKIs | 29 | [62,63] |
thiosemicarbazone | Not reported | 30 | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spallarossa, A.; Tasso, B.; Russo, E.; Villa, C.; Brullo, C. The Development of FAK Inhibitors: A Five-Year Update. Int. J. Mol. Sci. 2022, 23, 6381. https://doi.org/10.3390/ijms23126381
Spallarossa A, Tasso B, Russo E, Villa C, Brullo C. The Development of FAK Inhibitors: A Five-Year Update. International Journal of Molecular Sciences. 2022; 23(12):6381. https://doi.org/10.3390/ijms23126381
Chicago/Turabian StyleSpallarossa, Andrea, Bruno Tasso, Eleonora Russo, Carla Villa, and Chiara Brullo. 2022. "The Development of FAK Inhibitors: A Five-Year Update" International Journal of Molecular Sciences 23, no. 12: 6381. https://doi.org/10.3390/ijms23126381
APA StyleSpallarossa, A., Tasso, B., Russo, E., Villa, C., & Brullo, C. (2022). The Development of FAK Inhibitors: A Five-Year Update. International Journal of Molecular Sciences, 23(12), 6381. https://doi.org/10.3390/ijms23126381