Experimental and Theoretical Study of N2 Adsorption on Hydrogenated Y2C4H− and Dehydrogenated Y2C4− Cluster Anions at Room Temperature
Abstract
:1. Introduction
2. Results and Discussion
3. Methods
3.1. Experimental Methods
3.2. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burford, R.J.; Fryzuk, M.D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 2017, 1, 0026. [Google Scholar] [CrossRef]
- Chen, J.G.; Crooks, R.M.; Seefeldt, L.C.; Bren, K.L.; Bullock, R.M.; Darensbourg, M.Y.; Holland, P.L.; Hoffman, B.; Janik, M.J.; Jones, A.K.; et al. Beyond fossil fuel–driven nitrogen transformations. Science 2018, 360, eaar6611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Légaré, A.; Rang, M.; Bélanger-Chabot, G.; Schweizer, J.I.; Krummenacher, I.; Bertermann, R.; Arrowsmith, M.; Holthausen, M.C.; Braunschweig, H. The reductive coupling of dinitrogen. Science 2019, 363, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, R. Citations to chemical resources in scholarly articles: CRC handbook of chemistry and physics and the merck index. Scientometrics 2017, 112, 1865–1879. [Google Scholar] [CrossRef]
- Avenier, P.; Taoufik, M.; Lesage, A.; Solans-Monfort, X.; Baudouin, A.; de Mallmann, A.; Veyre, L.; Basset, J.M.; Eisenstein, O.; Emsley, L.; et al. Dinitrogen dissociation on an isolated surface tantalum atom. Science 2007, 317, 1056–1060. [Google Scholar] [CrossRef]
- Shima, T.; Hu, S.; Luo, G.; Kang, X.; Luo, Y.; Hou, Z. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 2013, 340, 1549–1552. [Google Scholar] [CrossRef]
- Qiu, P.Y.; Wang, J.W.; Liang, Z.Q.; Xue, Y.J.; Zhou, Y.L.; Zhang, X.L.; Cui, H.Z.; Cheng, G.Q.; Tian, J. The metallic 1T-WS2 as cocatalysts for promoting photocatalytic N2 fixation performance of Bi5O7Br nanosheets. Chin. Chem. Lett. 2021, 32, 3501–3504. [Google Scholar] [CrossRef]
- Deng, G.; Pan, S.; Wang, G.; Zhao, L.; Zhou, M.; Frenking, G. Beryllium atom mediated dinitrogen activation via coupling with carbon monoxide. Angew. Chem. Int. Ed. 2020, 59, 18201–18207. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Ding, X.L.; Israel Gurti, J.; Chen, Y.; Li, W.; Wang, X.; Wang, W.J.; Deng, J.J. Non-dissociative activation of chemisorbed dinitrogen on one or two vanadium atoms supported by a Mo6S8 cluster. Chem. Phys. Chem. 2021, 22, 1645–1654. [Google Scholar] [CrossRef]
- Qing, G.; Ghazfar, R.; Jackowski, S.T.; Habibzadeh, F.; Ashtiani, M.M.; Chen, C.P.; Smith, M.R., III; Hamann, T.W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516. [Google Scholar] [CrossRef]
- Cherkasov, N.; Ibhadon, A.O.; Fitzpatrick, P. A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. 2015, 90, 24–33. [Google Scholar] [CrossRef]
- van der Ham, C.J.M.; Koper, M.T.M.; Hetterscheid, D.G.H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.P.; Quadrelli, E.A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, S. Energetics and mechanism of dinitrogen cleavage at a mononuclear surface tantalum center: A new way of dinitrogen reduction. Angew. Chem. Int. Ed. 2008, 47, 8040–8043. [Google Scholar] [CrossRef]
- Chow, C.; Taoufik, M.; Quadrelli, E.A. Cheminform abstract: Ammonia and dinitrogen activation by surface organometallic chemistry on silica-grafted tantalum hydrides. Eur. J. Inorg. Chem. 2011, 2011, 1349–1359. [Google Scholar] [CrossRef]
- Lang, S.M.; Bernhardt, T.M. Gas phase metal cluster model systems for heterogeneous catalysis. Phys. Chem. Chem. Phys. 2012, 14, 9255–9269. [Google Scholar] [CrossRef]
- O’Hair, R.A.J.; Khairallah, G.N. Gas phase ion chemistry of transition metal clusters: Production, reactivity, and catalysis. J. Clust. Sci. 2004, 15, 331–363. [Google Scholar] [CrossRef]
- Schwarz, H. Menage-a-Trois: Single-atom catalysis, mass spectrometry, and computational chemistry. Catal. Sci. Technol. 2017, 7, 4302–4314. [Google Scholar] [CrossRef]
- Schwarz, H. How and why do cluster size, charge state, and ligands affect the course of metal-mediated gas-phase activation of methane? Isr. J. Chem. 2014, 54, 1413–1431. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, Y.Y.; Zhou, M.F. Formation and characterization of the tetranuclear scandium nitride: Sc4N4. J. Phys. Chem. A 2007, 111, 6204–6207. [Google Scholar] [CrossRef]
- Geng, C.; Li, J.L.; Weiske, T.; Schwarz, H. Ta2+-Mediated ammonia synthesis from N2 and H2 at ambient temperature. Proc. Natl. Acad. Sci. USA 2018, 115, 11680–11687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.Y.; Li, Y.; Mou, L.H.; Chen, J.J.; Liu, Q.Y.; He, S.G.; Chen, H. A facile N≡N bond cleavage by the trinuclear metal center in vanadium carbide cluster anions V3C4–. J. Am. Chem. Soc. 2020, 142, 10747–10754. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Mou, L.H.; Wei, G.P.; Ren, Y.; Zhang, M.Q.; Liu, Q.Y.; He, S.G. C–N coupling in N2 fixation by the ditantalum carbide cluster anions Ta2C4–. Inorg. Chem. 2019, 58, 4701–4705. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chu, L.Y.; Li, Z.Y.; Messinis, A.M.; Ding, Y.Q.; Hu, L.R.; Ma, J.B. Dinitrogen and carbon dioxide activation to form C–N bonds at room temperature: A new mechanism revealed by experimental and theoretical studies. J. Phys. Chem. Lett. 2021, 12, 3490–3496. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, J.T.; Wang, M.; Valdivielso, D.Y.; Fielicke, A.; Hu, L.R.; Ma, J.B. Dinitrogen fixation and reduction by Ta3N3H0,1– cluster anions at room temperature: Hydrogen-assisted enhancement of reactivity. J. Am. Chem. Soc. 2019, 141, 12592–12600. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, C.Y.; Zhou, H.Y.; Zhao, Y.; Li, Y.K.; Ma, J.B. The sequential activation of H2 and N2 mediated by the gas-phase Sc3N+ clusters: Formation of amido unit. J. Chem. Phys. 2021, 154, 054307. [Google Scholar] [CrossRef]
- Mou, L.H.; Li, Y.; Li, Z.Y.; Liu, Q.Y.; Chen, H.; He, S.G. Dinitrogen activation by heteronuclear metal carbide cluster anions FeTaC2−: A 5d early and 3d late transition metal strategy. J. Am. Chem. Soc. 2021, 143, 19224–19234. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.Q.; Zhou, S.D.; Ma, J.B. Dinitrogen activation by dihydrogen and quaternary cluster anions AuNbBO−: Nb− and B−Mediated N2 activation and Au-assisted nitrogen transfer. J. Phys. Chem. Lett. 2022, 13, 4058–4063. [Google Scholar] [CrossRef]
- Mou, L.H.; Li, Z.Y.; Liu, Q.Y.; He, S.G. Size-dependent association of cobalt deuteride cluster anions Co3Dn− (n = 0–4) with dinitrogen. J. Am. Soc. Mass Spectrom. 2019, 30, 1956. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Z.Y.; Mou, L.H. Size-dependent reactivity of rhodium deuteride cluster anions Rh3Dn− (n = 0–3) toward dinitrogen: The prominent role of σ donation. J. Chem. Phys. 2022, 156, 064303. [Google Scholar] [CrossRef]
- Gioumousis, G.; Stevenson, D.P. Reactions of gaseous molecule ions with gaseous molecules. J. Chem. Phys. 1958, 29, 294–299. [Google Scholar] [CrossRef]
- Kummerlöwe, G.; Beyer, M.K. Rate estimates for collisions of ionic clusters with neutral reactant molecules. Int. J. Mass Spectrom. 2005, 244, 84–90. [Google Scholar] [CrossRef]
- Steinfeld, J.I.; Francisco, J.S.; Hase, W.L. Chemical Kinetics and Dynamics; Prentice-Hall: Hobboken, NJ, USA, 1999; p. 231. [Google Scholar]
- Yuan, Z.; Zhao, Y.X.; Li, X.N.; He, S.G. Reactions of V4O10+ cluster ions with simple inorganic and organic molecules. Int. J. Mass Spectrom. 2013, 354–355, 105–112. [Google Scholar] [CrossRef]
- Jiang, L.X.; Liu, Q.Y.; Li, X.N.; He, S.G. Design and application of a high-temperature linear ion trap reactor. J. Am. Soc. Mass Spectrom. 2018, 29, 78–84. [Google Scholar] [CrossRef]
- Wu, X.N.; Xu, B.; Meng, J.H.; He, S.G. C−H bond activation by nanosized scandium oxide clusters in gas-phase. Int. J. Mass Spectrom. 2012, 310, 57–64. [Google Scholar] [CrossRef]
- Li, Z.Y.; Yuan, Z.; Li, X.N.; Zhao, Y.X.; He, S.G. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J. Am. Chem. Soc. 2014, 136, 14307–14313. [Google Scholar] [CrossRef]
- Chan, B.; Gill, P.M.W.; Kimura, M. Assessment of DFT methods for transition metals with the TMC151 compilation of data sets and comparison with accuracies for main group chemistry. J. Chem. Theory. Comput. 2019, 15, 3610–3622. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, revision A.1; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the collesalvetti correlation-energy formula into a functional of the electrondensity. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional Thermochemistry III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Chem. Phys. 1990, 94, 5523–5527. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular-orbital methods 0.20. basis set for correlated wave-functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient diffuse function-augmented basis sets for anion calculations. III.* The 3-21+G Basis set for first-row elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Ma, J.B.; Wang, Z.C.; Schlangen, M.; He, S.G.; Schwarz, H. On the Origin of the Surprisingly Sluggish Redox Reaction of the N2O/CO Couple Mediated by [Y2O2]+• and [YAlO2]+• Cluster Ions in the Gas Phase. Angew. Chem. Int. Ed. 2013, 52, 1226–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berente, I.; Náray-Szabó, G. Multicoordinate driven method for approximating enzymatic reaction paths: Automatic definition of the reaction coordinate using a subset of chemical coordinates. J. Phys. Chem. A. 2006, 110, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161. [Google Scholar] [CrossRef]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Landis, C.R.; Weinhold, F. NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2013; Available online: http://nbo6.chem.wisc.edu/ (accessed on 20 January 2022).
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Beyer, T.; Swinehart, D.F. Algorithm 448: Number of Multiply-Restricted Partitions. Commun. ACM 1973, 16, 379. [Google Scholar] [CrossRef]
- Simoes, J.A.M.; Beauchamp, J.L. Transition metal-hydrogen and metal-carbon bond strengths: The keys to catalysis. Chem. Rev. 1990, 90, 629–688. [Google Scholar] [CrossRef]
- Mallard, W.G. (Ed.) NIST Chemistry Webbook; August 1990. Available online: http://webbook.nist.gov (accessed on 20 January 2022).
- Gurvich, L.V.; Karachevtsev, G.V. Bond Energies of Chemical Bonds, Ionization Potentials and Electron Affinities; Nauka: Moscow, Russia, 1974. [Google Scholar]
- Tang, X.N.; Hou, Y.; Ng, C.Y.; Ruscic, B. Pulsed field-ionization photoelectronphotoion coincidence study of the process N2 + hν → N+ + N + e−: Bond dissociation energies of N2 and N2+. J. Chem. Phys. 2011, 123, 074330. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Ding, Y.-Q.; Ma, J.-B. Experimental and Theoretical Study of N2 Adsorption on Hydrogenated Y2C4H− and Dehydrogenated Y2C4− Cluster Anions at Room Temperature. Int. J. Mol. Sci. 2022, 23, 6976. https://doi.org/10.3390/ijms23136976
Gao M, Ding Y-Q, Ma J-B. Experimental and Theoretical Study of N2 Adsorption on Hydrogenated Y2C4H− and Dehydrogenated Y2C4− Cluster Anions at Room Temperature. International Journal of Molecular Sciences. 2022; 23(13):6976. https://doi.org/10.3390/ijms23136976
Chicago/Turabian StyleGao, Min, Yong-Qi Ding, and Jia-Bi Ma. 2022. "Experimental and Theoretical Study of N2 Adsorption on Hydrogenated Y2C4H− and Dehydrogenated Y2C4− Cluster Anions at Room Temperature" International Journal of Molecular Sciences 23, no. 13: 6976. https://doi.org/10.3390/ijms23136976
APA StyleGao, M., Ding, Y. -Q., & Ma, J. -B. (2022). Experimental and Theoretical Study of N2 Adsorption on Hydrogenated Y2C4H− and Dehydrogenated Y2C4− Cluster Anions at Room Temperature. International Journal of Molecular Sciences, 23(13), 6976. https://doi.org/10.3390/ijms23136976