The LAMMER Kinase MoKns1 Regulates Growth, Conidiation and Pathogenicity in Magnaporthe oryzae
Abstract
:1. Introduction
2. Results
2.1. MoKns1 Is a Homolog of Kns1 in Saccharomyces cerevisiae
2.2. MoKns1 Is Required for Conidiation and Virulence
2.3. MoKns1 Is Required for the Response to DNA Replicative Stress
2.4. MoKns1 Interacts with MoAtg18 and Is Involved in Autophagy
3. Discussion
4. Methods and Materials
4.1. Strains and Culture Conditions
4.2. Gene Deletion and Complementation and Plasmid Constructions
4.3. Pathogenicity Assay
4.4. Quantification of Gene Expression by qRT−PCR
4.5. Autophagy Assays
4.6. Sensitivity Test to Chemical Agents and Physical Stresses
4.7. Yeast Library Screen and Yeast Two-Hybrid Assay
4.8. In Vitro Pull-Down Assays
4.9. Determination of Conidiation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ebbole, D.J. Magnaporthe as a Model for Understanding Host-Pathogen Interactions. Annu. Rev. Phytopathol. 2007, 45, 437–456. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.A.; Li, G.T.; Liu, Y.; Liu, M.G.; Zhang, S.J.; Yang, J.; Zhou, X.Y.; Peng, Y.L.; Xu, J.R. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Fungal Genet. Biol. 2013, 56, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Hamer, J.E.; Talbot, N.J. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 1998, 1, 693–697. [Google Scholar] [CrossRef]
- Liu, X.-H.; Lin, F.-C. Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae. J. Zhejiang Univ. Sci. B 2008, 9, 793–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marroquin-Guzman, M.; Sun, G.; Wilson, R.A. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation. PLoS Genet. 2017, 13, e1006557. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, R.A.; Quinn, A.M.; Hunter, T. Dual-specificity protein kinases: Will any hydroxyl do? Trends Biochem. Sci. 1992, 17, 114–119. [Google Scholar] [CrossRef]
- Yun, B.; Farkas, R.; Lee, K.; Rabinow, L. The Doa locus encodes a member of a new protein kinase family and is essential for eye and embryonic development in Drosophila melanogaster. Genes Dev. 1994, 8, 1160–1173. [Google Scholar] [CrossRef] [Green Version]
- Padmanabha, R.; Gehrung, S.; Snyder, M. The KNS1 gene of Saccharomyces cerevisiae encodes a nonessential protein kinase homologue that is distantly related to members of the CDC28/cdc2 gene family. Mol. Gen. Genet. 1991, 229, 1–9. [Google Scholar] [CrossRef]
- Lee, J.; Moir, R.D.; McIntosh, K.B.; Willis, I.M. TOR Signaling Regulates Ribosome and tRNA Synthesis via LAMMER/Clk and GSK-3 Family Kinases. Mol. Cell 2012, 45, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.-D.; Kang, W.-H.; Yang, W.-S.; Shin, K.-S.; Bae, K.S.; Park, H.-M. LAMMER kinase homolog, Lkh1, is involved in oxidative-stress response of fission yeast. Biochem. Biophys. Res. Commun. 2003, 311, 1078–1083. [Google Scholar] [CrossRef]
- Kang, W.-H.; Park, Y.-D.; Hwang, J.-S.; Park, H.-M. RNA-binding protein Csx1 is phosphorylated by LAMMER kinase, Lkh1, in response to oxidative stress in Schizosaccharomyces pombe. FEBS Lett. 2007, 581, 3473–3478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, W.-H.; Park, Y.-H.; Park, H.-M. The LAMMER Kinase Homolog, Lkh1, Regulates Tup Transcriptional Repressors through Phosphorylation in Schizosaccharomyces pombe. J. Biol. Chem. 2010, 285, 13797–13806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regan, H.; Scaduto, C.M.; Hirakawa, M.P.; Gunsalus, K.; Correia-Mesquita, T.O.; Sun, Y.; Chen, Y.; Kumamoto, C.A.; Bennett, R.J.; Whiteway, M. Negative regulation of filamentous growth in Candida albicansby Dig1p. Mol. Microbiol. 2017, 105, 810–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabinow, L.; Samson, M.-L. The role of the Drosophila LAMMER protein kinase DOA in somatic sex determination. J. Genet. 2010, 89, 271–277. [Google Scholar] [CrossRef]
- Kang, E.-H.; Kim, J.-A.; Oh, H.-W.; Park, H.-M. LAMMER Kinase LkhA Plays Multiple Roles in the Vegetative Growth and Asexual and Sexual Development of Aspergillus nidulans. PLoS ONE 2013, 8, e58762. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.K.; Kang, E.-H.; Park, H.-M. Role of LAMMER Kinase in Cell Wall Biogenesis during Vegetative Growth of Aspergillus nidulans. Mycobiology 2014, 42, 422–426. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.-Y.; Park, Y.-H.; Pyon, Y.-H.; Yang, J.-M.; Yoon, J.-Y.; Park, S.J.; Lee, H.; Park, H.-M. The LAMMER kinase is involved in morphogenesis and response to cell wall- and DNA-damaging stresses in Candida albicans. Med. Mycol. 2020, 58, 240–247. [Google Scholar] [CrossRef]
- Zhu, X.-M.; Li, L.; Wu, M.; Liang, S.; Shi, H.-B.; Liu, X.-H.; Lin, F.-C. Current opinions on autophagy in pathogenicity of fungi. Virulence 2019, 10, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.; Hall, M.N. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017, 36, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Elowsky, C.; Li, G.; Wilson, R.A. TOR-autophagy branch signaling via Imp1 dictates plant-microbe biotrophic interface longevity. PLoS Genet. 2018, 14, e1007814. [Google Scholar] [CrossRef]
- Zhu, X.-M.; Li, L.; Cai, Y.-Y.; Wu, X.-Y.; Shi, H.-B.; Liang, S.; Qu, Y.-M.; Naqvi, N.I.; Del Poeta, M.; Dong, B.; et al. A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus. Autophagy 2021, 17, 2939–2961. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, M.J.; Talbot, N.J. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc. Natl. Acad. Sci. USA 2009, 106, 15967–15972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.H.; Lu, J.P.; Zhang, L.; Dong, B.; Min, H.; Lin, F.C. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 2007, 6, 997–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.B.; Liu, X.H.; Lu, J.P.; Zhang, L.; Min, H.; Lin, F.C. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy 2010, 6, 74–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, B.; Liu, X.-H.; Lu, J.-P.; Zhang, F.-S.; Gao, H.-M.; Wang, H.-K.; Lin, F.-C. MgAtg9 trafficking in Magnaporthe oryzae. Autophagy 2009, 5, 946–953. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.-P.; Liu, X.-H.; Feng, X.-X.; Min, H.; Lin, F.-C. An autophagy gene, MgATG5, is required for cell differentiation and pathogenesis in Magnaporthe oryzae. Curr. Genet. 2009, 55, 461–473. [Google Scholar] [CrossRef]
- Liu, X.-H.; Zhao, Y.-H.; Zhu, X.-M.; Zeng, X.-Q.; Huang, L.-Y.; Dong, B.; Su, Z.-Z.; Wang, Y.; Lu, J.-P.; Lin, F.-C. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Sci. Rep. 2017, 7, 40018. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-H.; Yang, J.; He, R.-L.; Lu, J.-P.; Zhang, C.-L.; Lu, S.-L.; Lin, F.-C. An autophagy gene, TrATG5, affects conidiospore differentiation in Trichoderma reesei. Res. Microbiol. 2011, 162, 756–763. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Bian, Z.; Xu, J.-R. Assays for MAP Kinase Activation in Magnaporthe oryzae and Other Plant Pathogenic Fungi. Methods Mol. Biol. 2018, 1848, 93–101. [Google Scholar] [CrossRef]
- Lee, K.; Du, C.; Horn, M.; Rabinow, L. Activity and Autophosphorylation of LAMMER Protein Kinases. J. Biol. Chem. 1996, 271, 27299–27303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular selfdigestion. Nature 2008, 451, 1069–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reggiori, F.; Tucker, K.A.; Stromhaug, P.E.; Klionsky, D.J. The Atg1-Atg13 Complex Regulates Atg9 and Atg23 Retrieval Transport from the Pre-Autophagosomal Structure. Dev. Cell 2004, 6, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Efe, J.A.; Botelho, R.; Emr, S.D. Atg18 Regulates Organelle Morphology and Fab1 Kinase Activity Independent of Its Membrane Recruitment by Phosphatidylinositol 3,5-Bisphosphate. Mol. Biol. Cell 2007, 18, 4232–4244. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Xu, Y.; Chen, J.; Luo, Y.; Lv, Y.; Su, J.; Kershaw, M.J.; Li, W.; Wang, J.; Yin, J.; et al. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. Autophagy 2018, 14, 1543–1561. [Google Scholar] [CrossRef] [Green Version]
- Saunders, D.G.; Aves, S.J.; Talbot, N.J. Cell Cycle–Mediated Regulation of Plant Infection by the Rice Blast Fungus. Plant Cell 2010, 22, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Osés-Ruiz, M.; Sakulkoo, W.; Littlejohn, G.R.; Martin-Urdiroz, M.; Talbot, N.J. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Proc. Natl. Acad. Sci. USA 2016, 114, E237–E244. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Huang, P.; Zhang, L.; Shi, Y.; Sun, D.; Yan, Y.; Liu, X.; Dong, B.; Chen, G.; Snyder, J.H.; et al. Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol. 2016, 211, 1035–1051. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.-P.; Cao, H.; Zhang, L.; Huang, P.; Lin, F. Systematic Analysis of Zn2Cys6 Transcription Factors Required for Development and Pathogenicity by High-Throughput Gene Knockout in the Rice Blast Fungus. PLoS Pathog. 2014, 10, e1004432. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhu, X.-M.; Wu, J.-Q.; Cao, N.; Bao, J.-D.; Liu, X.-H.; Lin, F.-C. The LAMMER Kinase MoKns1 Regulates Growth, Conidiation and Pathogenicity in Magnaporthe oryzae. Int. J. Mol. Sci. 2022, 23, 8104. https://doi.org/10.3390/ijms23158104
Li L, Zhu X-M, Wu J-Q, Cao N, Bao J-D, Liu X-H, Lin F-C. The LAMMER Kinase MoKns1 Regulates Growth, Conidiation and Pathogenicity in Magnaporthe oryzae. International Journal of Molecular Sciences. 2022; 23(15):8104. https://doi.org/10.3390/ijms23158104
Chicago/Turabian StyleLi, Lin, Xue-Ming Zhu, Jia-Qi Wu, Na Cao, Jian-Dong Bao, Xiao-Hong Liu, and Fu-Cheng Lin. 2022. "The LAMMER Kinase MoKns1 Regulates Growth, Conidiation and Pathogenicity in Magnaporthe oryzae" International Journal of Molecular Sciences 23, no. 15: 8104. https://doi.org/10.3390/ijms23158104
APA StyleLi, L., Zhu, X. -M., Wu, J. -Q., Cao, N., Bao, J. -D., Liu, X. -H., & Lin, F. -C. (2022). The LAMMER Kinase MoKns1 Regulates Growth, Conidiation and Pathogenicity in Magnaporthe oryzae. International Journal of Molecular Sciences, 23(15), 8104. https://doi.org/10.3390/ijms23158104