Implication of Melanocortin Receptor Genes in the Familial Comorbidity of Type 2 Diabetes and Depression
Abstract
:1. Introduction
2. Results and Discussion
Linkage, LD/Association Analysis, and LD among SNPs
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tao, Y.X. Melanocortin receptors. Biochim. Biophys. Acta—Mol. Basis Dis. 2017, 1863, 2411–2413. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Mizusawa, K. Posttranslational Modifications of Proopiomelanocortin in Vertebrates and Their Biological Significance. Front. Endocrinol. 2013, 4, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harno, E.; Ramamoorthy, T.G.; Coll, A.P.; White, A. POMC: The Physiological Power of Hormone Processing. Physiol. Rev. 2018, 98, 2381. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, R.; Vicennati, V.; Cacciari, M.; Pagotto, U. The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann. N. Y. Acad. Sci. 2006, 1083, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Cho, B.K.; Cho, D.H.; Park, H.J. Expression of hypothalamic-pituitary-adrenal axis in common skin diseases: Evidence of its association with stress-related disease activity. Acta Derm. Venereol. 2013, 93, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Switonski, M.; Mankowska, M.; Salamon, S. Family of melanocortin receptor (MCR) genes in mammals-mutations, polymorphisms and phenotypic effects. J. Appl. Genet. 2013, 54, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Neumann Andersen, G.; Nagaeva, O.; Mandrika, I.; Petrovska, R.; Muceniece, R.; Mincheva-Nilsson, L.; Wikberg, J.E.S. MC(1) receptors are constitutively expressed on leucocyte subpopulations with antigen presenting and cytotoxic functions. Clin. Exp. Immunol. 2001, 126, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, D.Y.; Lin, Y.J.; Tao, Y.X. Melanocortin Regulation of Inflammation. Front. Endocrinol. 2019, 10, 683. [Google Scholar] [CrossRef]
- Gorrigan, R.J.; Guasti, L.; King, P.; Clark, A.J.; Chan, L.F. Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland. J. Mol. Endocrinol. 2011, 46, 227. [Google Scholar] [CrossRef] [Green Version]
- Getting, S.J.; Gibbs, L.; Clark, A.J.; Flower, R.J.; Perretti, M. POMC gene-derived peptides activate melanocortin type 3 receptor on murine macrophages, suppress cytokine release, and inhibit neutrophil migration in acute experimental inflammation—PubMed. J. Immunol. 1999, 162, 7446–7453. [Google Scholar] [PubMed]
- Chagnon, Y.C.; Chen, W.J.; Pérusse, L.; Chagnon, M.; Nadeau, A.; Wilkison, W.O.; Bouchard, C. Linkage and association studies between the melanocortin receptors 4 and 5 genes and obesity-related phenotypes in the Québec Family Study. Mol. Med. 1997, 3, 663–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselova, T.V.; Chan, L.F.; Clark, A.J.L. Pathophysiology of melanocortin receptors and their accessory proteins. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 93–106. [Google Scholar] [CrossRef]
- Akin, M.A.; Akin, L.; Coban, D.; Ozturk, M.A.; Bircan, R.; Kurtoglu, S. A novel mutation in the MC2R gene causing familial glucocorticoid deficiency type 1. Neonatology 2011, 100, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Girardet, C.; Butler, A.A. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim. Biophys. Acta 2014, 1842, 482. [Google Scholar] [CrossRef] [Green Version]
- Ayers, K.L.; Glicksberg, B.S.; Garfield, A.S.; Longerich, S.; White, J.A.; Yang, P.; Du, L.; Chittenden, T.W.; Gulcher, J.R.; Roy, S.; et al. Melanocortin 4 Receptor Pathway Dysfunction in Obesity: Patient Stratification Aimed at MC4R Agonist Treatment. J. Clin. Endocrinol. Metab. 2018, 103, 2601–2612. [Google Scholar] [CrossRef] [PubMed]
- Srisai, D.; Gillum, M.P.; Panaro, B.L.; Zhang, X.M.; Kotchabhakdi, N.; Shulman, G.I.; Ellacott, K.L.J.; Cone, R.D. Characterization of the Hyperphagic Response to Dietary Fat in the MC4R Knockout Mouse. Endocrinology 2011, 152, 890–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, A.A.; Girardet, C.; Mavrikaki, M.; Trevaskis, J.L.; Macarthur, H.; Marks, D.L.; Farr, S.A. A Life without Hunger: The Ups (and Downs) to Modulating Melanocortin-3 Receptor Signaling. Front. Neurosci. 2017, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.H.; Um, Y.H.; Ko, S.H.; Park, J.H.; Park, J.Y.; Han, K.; Ko, K.S. Depression and Mortality in People with Type 2 Diabetes Mellitus, 2003 to 2013: A Nationwide Population-Based Cohort Study. Diabetes Metab. J. 2017, 41, 296–302. [Google Scholar] [CrossRef]
- NIMH. Major Depression; National Institute of Mental Health: Bethesda, MD, USA, 2022.
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Kaabi, J.A. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Bener, A.; Zirie, M.; Al-Rikabi, A. Genetics, obesity, and environmental risk factors associated with type 2 diabetes. Croat. Med. J. 2005, 46, 302–307. [Google Scholar] [PubMed]
- Murea, M.; Ma, L.; Freedman, B.I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud. RDS 2012, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Peterson, R.E.; Cai, N.; Dahl, A.W.; Bigdeli, T.B.; Edwards, A.C.; Webb, B.T.; Bacanu, S.A.; Zaitlen, N.; Flint, J.; Kendler, K.S. Molecular Genetic Analysis Subdivided by Adversity Exposure Suggests Etiologic Heterogeneity in Major Depression. Am. J. Psychiatry 2018, 175, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Gragnoli, C. Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome. Appl. Clin. Genet. 2014, 7, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Kan, C.; Pedersen, N.L.; Christensen, K.; Bornstein, S.R.; Licinio, J.; MacCabe, J.H.; Ismail, K.; Rijsdijk, F. Genetic overlap between type 2 diabetes and depression in Swedish and Danish twin registries. Mol. Psychiatry 2016, 21, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.D.; Rizak, J.; Feng, X.L.; Yang, S.C.; Lü, L.B.; Pan, L.; Yin, Y.; Hu, X.T. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour. Sci. Rep. 2016, 6, 30187. [Google Scholar] [CrossRef]
- Ortiz, R.; Kluwe, B.; Odei, J.B.; Echouffo Tcheugui, J.B.; Sims, M.; Kalyani, R.R.; Bertoni, A.G.; Golden, S.H.; Joseph, J.J. The association of morning serum cortisol with glucose metabolism and diabetes: The Jackson Heart Study. Psychoneuroendocrinology 2019, 103, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.S.; Luo, H.R.; Dong, C.; Mastronardi, C.; Licinio, J.; Wong, M.L. Sequence polymorphisms of MC1R gene and their association with depression and antidepressant response. Psychiatr. Genet. 2011, 21, 14–18. [Google Scholar] [CrossRef]
- Yuan, F.; Hou, B.; Ji, L.; Ren, D.; Liu, L.; Bi, Y.; Guo, Z.; Ma, G.; Yang, F.; Dong, Z.; et al. Sex-Specific association of MC2R polymorphisms and the risk of major depressive disorder in Chinese Southern Han. Psychiatr. Genet. 2021, 31, 36–37. [Google Scholar] [CrossRef]
- Heinzman, J.T.; Hoth, K.F.; Cho, M.H.; Sakornsakolpat, P.; Regan, E.A.; Make, B.J.; Kinney, G.L.; Wamboldt, F.S.; Holm, K.E.; Bormann, N.; et al. GWAS and systems biology analysis of depressive symptoms among smokers from the COPDGene cohort. J. Affect. Disord. 2019, 243, 16–22. [Google Scholar] [CrossRef]
- Yilmaz, Z.; Davis, C.; Loxton, N.J.; Kaplan, A.S.; Levitan, R.D.; Carter, J.C.; Kennedy, J.L. Association between MC4R rs17782313 polymorphism and overeating behaviors. Int. J. Obes. 2015, 39, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Gerhard, G.S.; Chu, X.; Wood, G.C.; Gerhard, G.M.; Benotti, P.; Petrick, A.T.; Gabrielsen, J.; Strodel, W.E.; Still, C.D.; Argyropoulos, G. Next-Generation sequence analysis of genes associated with obesity and nonalcoholic fatty liver disease-related cirrhosis in extreme obesity. Hum. Hered. 2013, 75, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Koya, C.; Yu, T.; Strong, C.; Tsai, M.C. Association between Two Common Missense Substitutions, Thr6Lys and Val81Ile, in MC3R Gene and Childhood Obesity: A Meta-Analysis. Child. Obes. 2018, 14, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Tong, R.; Xu, J.; Tian, Y.; Pan, J.; Cui, J.; Chen, H.; Peng, Y.; Fei, S.; Yang, S.; et al. PDX1 and MC4R genetic polymorphisms are associated with type 2 diabetes mellitus risk in the Chinese Han population. BMC Med. Genom. 2021, 14, 249. [Google Scholar] [CrossRef]
- Rees, J.L. Genetics of hair and skin color. Annu. Rev. Genet. 2003, 37, 67–90. [Google Scholar] [CrossRef] [PubMed]
- Veleva, B.I.; van Bezooijen, R.L.; Chel, V.G.M.; Numans, M.E.; Caljouw, M.A.A. Effect of ultraviolet light on mood, depressive disorders and well-being. Photodermatol. Photoimmunol. Photomed. 2018, 34, 288–297. [Google Scholar] [CrossRef]
- Catania, A.; Rajora, N.; Capsoni, F.; Minonzio, F.; Star, R.A.; Lipton, J.M. The neuropeptide alpha-MSH has specific receptors on neutrophils and reduces chemotaxis in vitro. Peptides 1996, 17, 675–679. [Google Scholar] [CrossRef]
- Lindskog Jonsson, A.; Granqvist, A.; Elvin, J.; Johansson, M.E.; Haraldsson, B.; Nyström, J. Effects of melanocortin 1 receptor agonists in experimental nephropathies. PLoS ONE 2014, 9, e87816. [Google Scholar] [CrossRef] [Green Version]
- Qiang, X.; Liotta, A.S.; Shiloach, J.; Gutierrez, J.C.; Wang, H.; Ochani, M.; Ochani, K.; Yang, H.; Rabin, A.; LeRoith, D.; et al. New melanocortin-like peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): Possible endocrine-like function for microbes of the gut. NPJ Biofilms Microbiomes 2017, 3, 31. [Google Scholar] [CrossRef]
- Agirman, G.; Yu, K.B.; Hsiao, E.Y. Signaling inflammation across the gut-brain axis. Science 2021, 374, 1087–1092. [Google Scholar] [CrossRef]
- Jones, P.; Lucock, M.; Scarlett, C.J.; Veysey, M.; Beckett, E. Environmental UVR Levels and Skin Pigmentation Gene Variants Associated with Folate and Homocysteine Levels in an Elderly Cohort. Int. J. Environ. Res. Public Health 2020, 17, 1545. [Google Scholar] [CrossRef] [Green Version]
- Zorina-Lichtenwalter, K.; Lichtenwalter, R.N.; Zaykin, D.V.; Parisien, M.; Gravel, S.; Bortsov, A.; Diatchenko, L. A study in scarlet: MC1R as the main predictor of red hair and exemplar of the flip-flop effect. Hum. Mol. Genet. 2019, 28, 2093–2106. [Google Scholar] [CrossRef]
- Demenais, F.; Mohamdi, H.; Chaudru, V.; Goldstein, A.M.; Newton Bishop, J.A.; Bishop, D.T.; Kanetsky, P.A.; Hayward, N.K.; Gillanders, E.; Elder, D.E.; et al. Association of MC1R variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: A GenoMEL study. J. Natl. Cancer Inst. 2010, 102, 1568–1583. [Google Scholar] [CrossRef] [PubMed]
- Flück, C.E.; Martens, J.W.M.; Conte, F.A.; Miller, W.L. Clinical, genetic, and functional characterization of adrenocorticotropin receptor mutations using a novel receptor assay. J. Clin. Endocrinol. Metab. 2002, 87, 4318–4323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiksdal, A.; Hanlin, L.; Kuras, Y.; Gianferante, D.; Chen, X.; Thoma, M.V.; Rohleder, N. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology 2019, 102, 44–52. [Google Scholar] [PubMed]
- Demidowich, A.P.; Jun, J.Y.; Yanovski, J.A. Polymorphisms and mutations in the melanocortin-3 receptor and their relation to human obesity. Biochim. Biophys. Acta. Mol. Basis Dis. 2017, 1863, 2468–2476. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Love, D.R.; Kyle, C.; Daniels, A.; White, M.; Stewart, A.W.; Schnell, A.H.; Elston, R.C.; Holdaway, I.M.; Mountjoy, K.G. Melanocortin-3 receptor gene variants in a Maori kindred with obesity and early onset type 2 diabetes. Diabetes Res. Clin. Pract. 2002, 58, 61–71. [Google Scholar] [CrossRef]
- Chen, A.S.; Marsh, D.J.; Trumbauer, M.E.; Frazier, E.G.; Guan, X.M.; Yu, H.; Rosenblum, C.I.; Vongs, A.; Feng, Y.; Cao, L.; et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 2000, 26, 97–102. [Google Scholar] [CrossRef]
- Zegers, D.; Beckers, S.; Mertens, I.L.; Van Gaal, L.F.; Van Hul, W. Common melanocortin-3 receptor variants are not associated with obesity, although rs3746619 does influence weight in obese individuals. Endocrine 2010, 38, 289–293. [Google Scholar]
- Manriquez, V.; Aviles, J.; Salazar, L.; Saavedra, N.; Seron, P.; Lanas, F.; Fajardo, C.M.; Hirata, M.H.; Hirata, R.D.C.; Cerda, A. Polymorphisms in Genes Involved in the Leptin-Melanocortin Pathway are Associated with Obesity-Related Cardiometabolic Alterations in a Southern Chilean Population. Mol. Diagn. Ther. 2018, 22, 101–113. [Google Scholar] [CrossRef]
- Wannaiampikul, S.; Phonrat, B.; Tungtrongchitr, A.; Limwongse, C.; Chongviriyaphan, N.; Santiprabhob, J.; Tungtrongchitr, R. Genetic variant screening of MC3R and MC4R genes in early-onset obese children and their relatives among a Thai population: Family-based study. Genet. Mol. Res. GMR 2015, 14, 18090–18102. [Google Scholar] [CrossRef] [PubMed]
- Aris, I.M.; Tint, M.T.; Teh, A.L.; Holbrook, J.D.; Quah, P.L.; Chong, M.F.F.; Lin, X.; Soh, S.E.; Saw, S.M.; Kwek, K.; et al. MC3R gene polymorphisms are associated with early childhood adiposity gain and infant appetite in an Asian population. Pediatr. Obes. 2016, 11, 450–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaharan, N.L.; Muhamad, N.H.; Jalaludin, M.Y.; Su, T.T.; Mohamed, Z.; Mohamed, M.N.A.; Majid, H.A. Non-Synonymous Single-Nucleotide Polymorphisms and Physical Activity Interactions on Adiposity Parameters in Malaysian Adolescents. Front. Endocrinol. 2018, 9, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demidowich, A.P.; Parikh, V.J.; Dedhia, N.; Branham, R.E.; Madi, S.A.; Marwitz, S.E.; Roberson, R.B.; Uhlman, A.J.; Levi, N.J.; Mi, S.J.; et al. Associations of the melanocortin 3 receptor C17A + G241A haplotype with body composition and inflammation in African-American adults. Ann. Hum. Genet. 2019, 83, 355–360. [Google Scholar] [CrossRef]
- Yoshiuchi, I. Evidence for natural selection at the melanocortin-3 receptor gene in European and African populations. Acta Diabetol. 2016, 53, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Li, L.; Zhang, L.; Guo, L.; Wang, C. Association between MC4R rs17782313 genotype and obesity: A meta-analysis. Gene 2020, 733, 144372. [Google Scholar] [CrossRef]
- Weide, K.; Christ, N.; Moar, K.M.; Arens, J.; Hinney, A.; Mercer, J.G.; Eiden, S.; Schmidt, I. Hyperphagia, not hypometabolism, causes early onset obesity in melanocortin-4 receptor knockout mice. Physiol. Genom. 2003, 13, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevaskis, J.L.; Gawronska-Kozak, B.; Sutton, G.M.; McNeil, M.; Stephens, J.M.; Smith, S.R.; Butler, A.A. Role of adiponectin and inflammation in insulin resistance of Mc3r and Mc4r knockout mice. Obesity 2007, 15, 2664–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marti, A.; Corbalán, M.S.; Forga, L.; Martinez, J.A.; Hinney, A.; Hebebrand, J. A novel nonsense mutation in the melanocortin-4 receptor associated with obesity in a Spanish population. Int. J. Obes. Relat. Metab. Disorders. 2003, 27, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.X. Mutations in melanocortin-4 receptor and human obesity. Prog. Mol. Biol. Transl. Sci. 2009, 88, 173–204. [Google Scholar] [PubMed]
- Bolze, F.; Rink, N.; Brumm, H.; Kühn, R.; Mocek, S.; Schwarz, A.E.; Kless, C.; Biebermann, H.; Wurst, W.; Rozman, J.; et al. Characterization of the melanocortin-4-receptor nonsense mutation W16X in vitro and in vivo. Pharm. J. 2013, 13, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Brumm, H.; Mühlhaus, J.; Bolze, F.; Scherag, S.; Hinney, A.; Hebebrand, J.; Wiegand, S.; Klingenspor, M.; Grüters, A.; Krude, H.; et al. Rescue of melanocortin 4 receptor (MC4R) nonsense mutations by aminoglycoside-mediated read-through. Obesity 2012, 20, 1074–1081. [Google Scholar] [CrossRef]
- Xu, Y.; Guan, X.; Zhou, R.; Gong, R. Melanocortin 5 receptor signaling pathway in health and disease. Cell. Mol. Life Sci. 2020, 77, 3831. [Google Scholar] [CrossRef] [PubMed]
- Valli-Jaakola, K.; Suviolahti, E.; Schalin-Jäntti, C.; Ripatti, S.; Silander, K.; Oksanen, L.; Salomaa, V.; Peltonen, L.; Kontula, K. Further evidence for the role of ENPP1 in obesity: Association with morbid obesity in Finns. Obesity 2008, 16, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Lohoff, F.W.; Berrettini, W.H. Lack of association between variations in the melanocortin 5 receptor gene and bipolar disorder. Psychiatr. Genet. 2005, 15, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.L.; Murakami, P.; Ruczinski, I.; Ross, R.G.; Sinkus, M.; Sullivan, B.; Leonard, S. Two complex genotypes relevant to the kynurenine pathway and melanotropin function show association with schizophrenia and bipolar disorder. Schizophr. Res. 2009, 113, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soichot, M.; Vaast, A.; Vignau, J.; Guillemin, G.J.; Lhermitte, M.; Broly, F.; Allorge, D. Characterization of Functional Polymorphisms and Glucocorticoid-Responsive Elements in the Promoter of TDO2, a Candidate Gene for Ethanol-Induced Behavioural Disorders. Alcohol Alcohol. 2013, 48, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabi, R.; Serajee, F.J.; Chugani, D.C.; Zhong, H.; Huq, A.H.M.M. Association of tryptophan 2,3 dioxygenase gene polymorphism with autism. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2004, 125B, 63–68. [Google Scholar] [CrossRef]
- Comings, D.E. Serotonin and the biochemical genetics of alcoholism: Lessons from studies of attention deficit hyperactivity disorder (ADHD) and Tourette syndrome. Alcohol Alcohol. Suppl. 1993, 2, 237–241. [Google Scholar]
- Cheong, J.E.; Sun, L. Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy—Challenges and Opportunities. Trends Pharmacol. Sci. 2018, 39, 307–325. [Google Scholar] [CrossRef]
- Chang, Y.; Han, P.; Wang, Y.; Jia, C.; Zhang, B.; Zhao, Y.; Li, S.; Li, S.; Wang, X.; Yang, X.; et al. Tryptophan 2,3-dioxygenase 2 plays a key role in regulating the activation of fibroblast-like synoviocytes in autoimmune arthritis. Br. J. Pharmacol. 2021, 179, 3024–3042. [Google Scholar] [CrossRef]
- Morgan, C.; Thomas, R.E.; Cone, R.D. Melanocortin-5 receptor deficiency promotes defensive behavior in male mice. Horm. Behav. 2004, 45, 58–63. [Google Scholar] [CrossRef]
- Postolache, T.T.; del Bosque-Plata, L.; Jabbour, S.; Vergare, M.; Wu, R.; Gragnoli, C. Co-Shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2019, 180, 186–203. [Google Scholar] [CrossRef]
- Mizuki, Y.; Sakamoto, S.; Okahisa, Y.; Yada, Y.; Hashimoto, N.; Takaki, M.; Yamada, N. Mechanisms Underlying the Comorbidity of Schizophrenia and Type 2 Diabetes Mellitus. Int. J. Neuropsychopharmacol. 2021, 24, 367. [Google Scholar] [CrossRef]
- Bahrami, S.; Steen, N.E.; Shadrin, A.; O’Connell, K.; Frei, O.; Bettella, F.; Wirgenes, K.V.; Krull, F.; Fan, C.C.; Dale, A.M.; et al. Shared Genetic Loci Between Body Mass Index and Major Psychiatric Disorders: A Genome-wide Association Study. JAMA Psychiatry 2020, 77, 503–512. [Google Scholar] [CrossRef]
- Strawbridge, R.J.; Johnston, K.J.A.; Bailey, M.E.S.; Baldassarre, D.; Cullen, B.; Eriksson, P.; de Faire, U.; Ferguson, A.; Gigante, B.; Giral, P.; et al. The overlap of genetic susceptibility to schizophrenia and cardiometabolic disease can be used to identify metabolically different groups of individuals. Sci. Rep. 2021, 11, 632. [Google Scholar] [CrossRef]
- Chen, X.; Ayala, I.; Shannon, C.; Fourcaudot, M.; Acharya, N.K.; Jenkinson, C.P.; Heikkinen, S.; Norton, L. The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Development and Function. Diabetes 2018, 67, 554–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkelai, A.; Greenbaum, L.; Lupoli, S.; Kohn, Y.; Sarner-Kanyas, K.; Ben-Asher, E.; Lancet, D.; Macciardi, F.; Lerer, B. Association of the Type 2 Diabetes Mellitus Susceptibility Gene, TCF7L2, with Schizophrenia in an Arab-Israeli Family Sample. PLoS ONE 2012, 7, e29228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gragnoli, C. PSMD9 gene in the NIDDM2 locus is linked to type 2 diabetes in Italians. J. Cell. Physiol. 2010, 222, 265–267. [Google Scholar] [CrossRef]
- Gragnoli, C. Proteasome modulator 9 and depression in type 2 diabetes. Curr. Med. Chem. 2012, 19, 5178–5180. [Google Scholar] [CrossRef]
- APA. Schizophrenia. In Diagnostic and Statistical Manual of Mental Disorders; DSM-IV-TR; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disease | Gene | Model 1 | SNP | Position | Ref | Alt | Risk Allele | Consequence | LD Block | Previously Reported in MDD or T2D |
---|---|---|---|---|---|---|---|---|---|---|
MDD | MC2R | R1 | rs111734014 | Chr18-13898060 | C | G | C | Intronic | Independent | Novel |
MC5R | D1 | rs2236700 | Chr18-13826392 | C | G | G | Missense (p.F209L) | NA | Novel | |
T2D | MC1R | D1, D2 | rs1805007 | Chr16-89919709 | C | T | C | Missense (p.R151G) | Independent | Novel |
R1 | rs201192930 | Chr16-89919622 | G | A | G | Missense (p.V122M) | NA | Novel | ||
R2 | rs2228479 | Chr16-89919532 | G | A | A | Missense (p.V92M) | Independent | Novel | ||
MC2R | R1, R2 | rs104894660 | Chr18-13885110 | G | A | G | Missense (p.R137W) | NA | Novel | |
MC3R | D1 | rs3746619 | Chr20-56248749 | C | A | C | 5′-UTR | Set01 | Novel | |
MC3R | D1 | rs3827103 | Chr20-56248973 | G | A | G | Missense (p.V44I) | Set01 | Novel | |
MC4R | R1, R2 | - | Chr18-60372302 | C | T | C | Nonsense (p.W16X) | NA | Novel |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.; Ott, J.; Wu, R.; Postolache, T.T.; Gragnoli, C. Implication of Melanocortin Receptor Genes in the Familial Comorbidity of Type 2 Diabetes and Depression. Int. J. Mol. Sci. 2022, 23, 8350. https://doi.org/10.3390/ijms23158350
Amin M, Ott J, Wu R, Postolache TT, Gragnoli C. Implication of Melanocortin Receptor Genes in the Familial Comorbidity of Type 2 Diabetes and Depression. International Journal of Molecular Sciences. 2022; 23(15):8350. https://doi.org/10.3390/ijms23158350
Chicago/Turabian StyleAmin, Mutaz, Jurg Ott, Rongling Wu, Teodor T. Postolache, and Claudia Gragnoli. 2022. "Implication of Melanocortin Receptor Genes in the Familial Comorbidity of Type 2 Diabetes and Depression" International Journal of Molecular Sciences 23, no. 15: 8350. https://doi.org/10.3390/ijms23158350
APA StyleAmin, M., Ott, J., Wu, R., Postolache, T. T., & Gragnoli, C. (2022). Implication of Melanocortin Receptor Genes in the Familial Comorbidity of Type 2 Diabetes and Depression. International Journal of Molecular Sciences, 23(15), 8350. https://doi.org/10.3390/ijms23158350