Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells
Abstract
:1. Introduction
2. Glucocorticoid Signaling
2.1. The Human GC Receptor (hGR)
2.2. Mechanisms of Action of GCs
2.3. Effects of GCs on Immune and Airway Cells
3. Glucocorticoid Insensitivity
3.1. Clinical Definition of GC Insensitivity in Asthma
3.2. Role of Airway Structural Cells in GC Insensitivity
4. Common Pitfalls Associated with Studies Investigating GC Signaling
4.1. GC Resistance versus GC Insensitivity
4.2. Total GR Phosphorylation versus GR Site-Specific Phosphorylation
4.3. Transactivation versus Transrepression Mechanisms
5. Inflammatory Mediators Involved in Asthma Severity and Glucocorticoid Insensitivity
6. Common and Distinct Molecular Mechanisms Underlying the Impairment of Glucocorticoid Responsiveness in Immune Cells versus Airway Structural Cells
6.1. GRβ
GRβ and HDAC2 Crosstalk
6.2. Aberrant Activation of Inflammatory Transcription Factors
6.3. Serine/Threonine Protein Phosphatases and Kinases
6.3.1. Serine/Threonine Phosphatases (PPs)
6.3.2. Kinases
7. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADAM | Disintegrin and metalloprotease |
AF | Activation function |
AHR | Airway hyperresponsiveness |
AP-1 | Activator protein-1 |
ASM | Airway smooth muscle |
CCL11 | Chemokine (C-C motif) ligand 11 |
CCL19 | Chemokine (C-C motif) ligand 19 |
CD | Cluster of differentiation |
COPD | Chronic obstructive pulmonary disease |
COX-2 | Cyclo-oxygenase-2 |
CREB/CRE | cAMP response element-binding protein/cAMP response elements |
CTGF | Connective tissue growth factor |
CXCL8 | Chemokine (C-X-C motif) ligand 8 |
DBD | DNA-binding domain |
FAK | Focal adhesion kinase |
FEV1 | Forced expiratory volume during 1 s |
FP | Fluticasone propionate |
GCI | Glucocorticoid insensitivity |
GCs | Glucocorticoids |
GILZ | Glucocorticoid-induced leucine zipper |
GM-CSF GPCR | Macrophage-colony-stimulating factor G protein-coupled receptor |
GR | Glucocorticoid receptor |
GREs | Glucocorticoid response elements |
GRIP-1 | GR-interacting protein-1 |
HDAC | Histone deacetylase |
hGR | Human glucocorticoid receptor |
hsp90 | Heat shock protein 90 |
ICAM | Intercellular adhesion molecules |
IFNγ | Interferon gamma |
IgE | Immunoglobulin E |
IGF | Insulin-like growth factor-1 |
IGFBP1 | Insulin-like growth factor-binding protein 1 |
IKK | IκB kinase |
IL | Interleukin |
IRF-1 | Interferon regulatory factor 1 |
JNK | c-Jun N-terminal kinase |
LABA | Long-acting β2-adrenoceptor agonist |
LBD | Ligand-binding domain |
MAPK | Mitogen-activated protein kinases |
MEK/ERK | Mitogen-activated protein kinase |
MKP-1 MMP-12 | Mitogen-activated kinase phosphatase-1 Matrix metalloproteinase 12 |
MSK1 | Mitogen and stress-activated protein kinase 1 |
NF-κB | Nuclear factor-κB |
Nr3cl | Nuclear receptor 3, group C, member 1 |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
NTD | N-terminal domain |
PBMCs | Peripheral blood mononuclear cells |
PDGF-BB | Platelet-derived growth factor |
PI3K | Phosphoinositide 3-kinase |
PKB/AKT | Protein kinase B |
PPs | Protein phosphatases |
RANTES | Regulated on activation, normal T cell expressed and secreted |
S1P | Sphingosine 1-phosphate |
Ser | Serine |
siRNA | Small interfering RNA |
SRps | Serine/arginine rich proteins |
STAT1 | Signal transducer and activator of transcription 1 |
TFs | Transcription factors |
TGFβ | Transforming growth factor-β |
TNFα | Tumor necrosis factor alpha |
UTR | Untranslated regions |
VEGF | Vascular endothelial growth factor |
References
- Hirota, J.A.; Nguyen, T.T.; Schaafsma, D.; Sharma, P.; Tran, T. Airway smooth muscle in asthma: Phenotype plasticity and function. Pulm. Pharmacol. Ther. 2009, 22, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Adcock, I.M.; Mumby, S. Glucocorticoids. In Pharmacology and Therapeutics of Asthma and COPD; Page, C.P., Barnes, P.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 171–196. [Google Scholar]
- Schacke, H.; Docke, W.D.; Asadullah, K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 2002, 96, 23–43. [Google Scholar] [CrossRef]
- Lafage-Proust, M.H.; Boudignon, B.; Thomas, T. Glucocorticoid-induced osteoporosis: Pathophysiological data and recent treatments. Jt. Bone Spine 2003, 70, 109–118. [Google Scholar] [CrossRef]
- Uings, I.J.; Farrow, S.N. A pharmacological approach to enhancing the therapeutic index of corticosteroids in airway inflammatory disease. Curr. Opin. Pharmacol. 2005, 5, 221–226. [Google Scholar] [CrossRef]
- Boardman, C.; Chachi, L.; Gavrila, A.; Keenan, C.R.; Perry, M.M.; Xia, Y.C.; Meurs, H.; Sharma, P. Mechanisms of glucocorticoid action and insensitivity in airways disease. Pulm. Pharmacol. Ther. 2014, 29, 129–143. [Google Scholar] [CrossRef]
- Durham, A.; Adcock, I.M.; Tliba, O. Steroid resistance in severe asthma: Current mechanisms and future treatment. Curr. Pharm. Des. 2011, 17, 674–684. [Google Scholar] [CrossRef]
- Nimmagadda, S.R.; Spahn, J.D.; Leung, D.Y.; Szefler, S.J. Steroid-resistant asthma: Evaluation and management. Ann. Allergy Asthma Immunol. 1996, 77, 345–355. [Google Scholar] [CrossRef]
- Carroll, N.; Elliot, J.; Morton, A.; James, A. The structure of large and small airways in nonfatal and fatal asthma. Am. Rev. Respir. Dis. 1993, 147, 405–410. [Google Scholar] [CrossRef]
- Ebina, M.; Yaegashi, H.; Chiba, R.; Takahashi, T.; Motomiya, M.; Tanemura, M. Hyperreactive site in the airway tree of asthmatic patients revealed by thickening of bronchial muscles. A morphometric study. Am. Rev. Respir. Dis. 1990, 141, 1327–1332. [Google Scholar] [CrossRef]
- Benayoun, L.; Druilhe, A.; Dombret, M.C.; Aubier, M.; Pretolani, M. Airway structural alterations selectively associated with severe asthma. Am. J. Respir. Crit. Care Med. 2003, 167, 1360–1368. [Google Scholar] [CrossRef]
- Woodruff, P.G.; Dolganov, G.M.; Ferrando, R.E.; Donnelly, S.; Hays, S.R.; Solberg, O.D.; Carter, R.; Wong, H.H.; Cadbury, P.S.; Fahy, J.V. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am. J. Respir. Crit. Care Med. 2004, 169, 1001–1006. [Google Scholar] [CrossRef]
- Lambert, R.K.; Wiggs, B.R.; Kuwano, K.; Hogg, J.C.; Pare, P.D. Functional significance of increased airway smooth muscle in asthma and COPD. J. Appl. Physiol. 1993, 74, 2771–2781. [Google Scholar] [CrossRef]
- Johnson, P.R.; Roth, M.; Tamm, M.; Hughes, M.; Ge, Q.; King, G.; Burgess, J.K.; Black, J.L. Airway smooth muscle cell proliferation is increased in asthma. Am. J. Respir. Crit. Care Med. 2001, 164, 474–477. [Google Scholar] [CrossRef]
- Chambers, L.S.; Black, J.L.; Ge, Q.; Carlin, S.M.; Au, W.W.; Poniris, M.; Thompson, J.; Johnson, P.R.; Burgess, J.K. PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2003, 285, L619–L627. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, Z.; Kong, H.; Wang, Y.; Unruh, H.; Stephens, N.L.; Laviolette, M. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2002, 283, L1181–L1189. [Google Scholar] [CrossRef]
- Howarth, P.H.; Knox, A.J.; Amrani, Y.; Tliba, O.; Panettieri, R.A., Jr.; Johnson, M. Synthetic responses in airway smooth muscle. J. Allergy Clin. Immunol. 2004, 114, S32–S50. [Google Scholar] [CrossRef]
- Coutts, A.; Chen, G.; Stephens, N.; Hirst, S.; Douglas, D.; Eichholtz, T.; Khalil, N. Release of biologically active TGF-beta from airway smooth muscle cells induces autocrine synthesis of collagen. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2001, 280, L999–L1008. [Google Scholar] [CrossRef]
- Burgess, J.K.; Johnson, P.R.; Ge, Q.; Au, W.W.; Poniris, M.H.; McParland, B.E.; King, G.; Roth, M.; Black, J.L. Expression of connective tissue growth factor in asthmatic airway smooth muscle cells. Am. J. Respir. Crit. Care Med. 2003, 167, 71–77. [Google Scholar] [CrossRef]
- Berkman, N.; Krishnan, V.L.; Gilbey, T.; Newton, R.; O’Connor, B.; Barnes, P.J.; Chung, K.F. Expression of RANTES mRNA and protein in airways of patients with mild asthma. Am. J. Respir. Crit. Care Med. 1996, 154, 1804–1811. [Google Scholar] [CrossRef]
- John, M.; Hirst, S.J.; Jose, P.J.; Robichaud, A.; Berkman, N.; Witt, C.; Twort, C.H.; Barnes, P.J.; Chung, K.F. Human airway smooth muscle cells express and release RANTES in response to T helper 1 cytokines: Regulation by T helper 2 cytokines and corticosteroids. J. Immunol. 1997, 158, 1841–1847. [Google Scholar]
- Hallsworth, M.P.; Soh, C.P.; Twort, C.H.; Lee, T.H.; Hirst, S.J. Cultured human airway smooth muscle cells stimulated by interleukin-1beta enhance eosinophil survival. Am. J. Respir. Cell Mol. Biol. 1998, 19, 910–919. [Google Scholar] [CrossRef]
- Rhen, T.; Cidlowski, J.A. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef]
- Donnelly, L.E.; Barnes, P.J. Defective phagocytosis in airways disease. Chest 2012, 141, 1055–1062. [Google Scholar] [CrossRef]
- Breslin, M.B.; Geng, C.D.; Vedeckis, W.V. Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids. Mol. Endocrinol. 2001, 15, 1381–1395. [Google Scholar] [CrossRef]
- Sanchez-Vega, B.; Krett, N.; Rosen, S.T.; Gandhi, V. Glucocorticoid receptor transcriptional isoforms and resistance in multiple myeloma cells. Mol. Cancer Ther. 2006, 5, 3062–3070. [Google Scholar] [CrossRef]
- Oakley, R.H.; Sar, M.; Cidlowski, J.A. The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J. Biol. Chem. 1996, 271, 9550–9559. [Google Scholar] [CrossRef]
- Lu, N.Z.; Cidlowski, J.A. Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol. 2006, 16, 301–307. [Google Scholar] [CrossRef]
- Lewis-Tuffin, L.J.; Cidlowski, J.A. The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Ann. N. Y. Acad. Sci. 2006, 1069, 1–9. [Google Scholar] [CrossRef]
- Kino, T.; Su, Y.A.; Chrousos, G.P. Human glucocorticoid receptor isoform beta: Recent understanding of its potential implications in physiology and pathophysiology. Cell. Mol. Life Sci. 2009, 66, 3435–3448. [Google Scholar] [CrossRef]
- Beck, I.M.; Vanden Berghe, W.; Vermeulen, L.; Yamamoto, K.R.; Haegeman, G.; De Bosscher, K. Crosstalk in inflammation: The interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr. Rev. 2009, 30, 830–882. [Google Scholar] [CrossRef]
- So, A.Y.; Cooper, S.B.; Feldman, B.J.; Manuchehri, M.; Yamamoto, K.R. Conservation analysis predicts in vivo occupancy of glucocorticoid receptor-binding sequences at glucocorticoid-induced genes. Proc. Natl. Acad. Sci. USA 2008, 105, 5745–5749. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Anti-inflammatory actions of glucocorticoids: Molecular mechanisms. Clin. Sci. 1998, 94, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013, 131, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Giembycz, M.A.; Lindsay, M.A. Pharmacology of the eosinophil. Pharmacol. Rev. 1999, 51, 213–340. [Google Scholar]
- Umland, S.P.; Schleimer, R.P.; Johnston, S.L. Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma. Pulm. Pharmacol. Ther. 2002, 15, 35–50. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H. Lung dendritic cells in respiratory viral infection and asthma: From protection to immunopathology. Annu. Rev. Immunol. 2012, 30, 243–270. [Google Scholar] [CrossRef]
- Pitzalis, C.; Pipitone, N.; Perretti, M. Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann. N. Y. Acad. Sci. 2002, 966, 108–118. [Google Scholar] [CrossRef]
- Franchimont, D. Overview of the actions of glucocorticoids on the immune response: A good model to characterize new pathways of immunosuppression for new treatment strategies. Ann. N. Y. Acad. Sci. 2004, 1024, 124–137. [Google Scholar] [CrossRef]
- Amrani, Y.; Panettieri, R.A.; Ramos-Ramirez, P.; Schaafsma, D.; Kaczmarek, K.; Tliba, O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem. Pharmacol. Ther. 2020, 213, 107589. [Google Scholar] [CrossRef]
- Oltmanns, U.; Walters, M.; Sukkar, M.; Xie, S.; Issa, R.; Mitchell, J.; Johnson, M.; Chung, K.F. Fluticasone, but not salmeterol, reduces cigarette smoke-induced production of interleukin-8 in human airway smooth muscle. Pulm. Pharmacol. Ther. 2008, 21, 292–297. [Google Scholar] [CrossRef]
- Pang, L.; Knox, A.J. Synergistic inhibition by beta(2)-agonists and corticosteroids on tumor necrosis factor-alpha-induced interleukin-8 release from cultured human airway smooth-muscle cells. Am. J. Respir. Cell Mol. Biol. 2000, 23, 79–85. [Google Scholar] [CrossRef]
- Ammit, A.J.; Hoffman, R.K.; Amrani, Y.; Lazaar, A.L.; Hay, D.W.; Torphy, T.J.; Penn, R.B.; Panettieri, R.A., Jr. Tumor necrosis factor-alpha-induced secretion of RANTES and interleukin-6 from human airway smooth-muscle cells. Modulation by cyclic adenosine monophosphate. Am. J. Respir. Cell Mol. Biol. 2000, 23, 794–802. [Google Scholar] [CrossRef]
- Ammit, A.J.; Lazaar, A.L.; Irani, C.; O’Neill, G.M.; Gordon, N.D.; Amrani, Y.; Penn, R.B.; Panettieri, R.A., Jr. Tumor necrosis factor-alpha-induced secretion of RANTES and interleukin-6 from human airway smooth muscle cells: Modulation by glucocorticoids and beta-agonists. Am. J. Respir. Cell Mol. Biol. 2002, 26, 465–474. [Google Scholar] [CrossRef]
- Pang, L.; Knox, A.J. Regulation of TNF-alpha-induced eotaxin release from cultured human airway smooth muscle cells by beta2-agonists and corticosteroids. FASEB J. 2001, 15, 261–269. [Google Scholar] [CrossRef]
- Clarke, D.L.; Clifford, R.L.; Jindarat, S.; Proud, D.; Pang, L.; Belvisi, M.; Knox, A.J. TNFalpha and IFNgamma synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-kappaB, and the transcriptional coactivator CREB-binding protein. J. Biol. Chem. 2010, 285, 29101–29110. [Google Scholar] [CrossRef]
- Amrani, Y.; Lazaar, A.L.; Panettieri, R.A., Jr. Up-regulation of ICAM-1 by cytokines in human tracheal smooth muscle cells involves an NF-kappa B-dependent signaling pathway that is only partially sensitive to dexamethasone. J. Immunol. 1999, 163, 2128–2134. [Google Scholar]
- Saunders, M.A.; Mitchell, J.A.; Seldon, P.M.; Yacoub, M.H.; Barnes, P.J.; Giembycz, M.A.; Belvisi, M.G. Release of granulocyte-macrophage colony stimulating factor by human cultured airway smooth muscle cells: Suppression by dexamethasone. Br. J. Pharmacol. 1997, 120, 545–546. [Google Scholar] [CrossRef]
- Tran, T.; Fernandes, D.J.; Schuliga, M.; Harris, T.; Landells, L.; Stewart, A.G. Stimulus-dependent glucocorticoid-resistance of GM-CSF production in human cultured airway smooth muscle. Br. J. Pharmacol. 2005, 145, 123–131. [Google Scholar] [CrossRef]
- Xie, S.; Issa, R.; Sukkar, M.B.; Oltmanns, U.; Bhavsar, P.K.; Papi, A.; Caramori, G.; Adcock, I.; Chung, K.F. Induction and regulation of matrix metalloproteinase-12 in human airway smooth muscle cells. Respir. Res. 2005, 6, 148. [Google Scholar] [CrossRef]
- Seidel, P.; Alkhouri, H.; Lalor, D.J.; Burgess, J.K.; Armour, C.L.; Hughes, J.M. Thiazolidinediones inhibit airway smooth muscle release of the chemokine CXCL10: In vitro comparison with current asthma therapies. Respir. Res. 2012, 13, 90. [Google Scholar] [CrossRef]
- Huang, C.D.; Tliba, O.; Panettieri, R.A., Jr.; Amrani, Y. Bradykinin induces interleukin-6 production in human airway smooth muscle cells: Modulation by Th2 cytokines and dexamethasone. Am. J. Respir. Cell Mol. Biol. 2003, 28, 330–338. [Google Scholar] [CrossRef]
- Pang, L.; Knox, A.J. Bradykinin stimulates IL-8 production in cultured human airway smooth muscle cells: Role of cyclooxygenase products. J. Immunol. 1998, 161, 2509–2515. [Google Scholar]
- Zhu, Y.M.; Bradbury, D.A.; Pang, L.; Knox, A.J. Transcriptional regulation of interleukin (IL)-8 by bradykinin in human airway smooth muscle cells involves prostanoid-dependent activation of AP-1 and nuclear factor (NF)-IL-6 and prostanoid-independent activation of NF-kappaB. J. Biol. Chem. 2003, 278, 29366–29375. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alkhouri, H.; Tang, F.; Che, W.; Ge, Q.; Ammit, A.J. Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: Repression by steroids. PLoS ONE 2014, 9, e92466. [Google Scholar] [CrossRef]
- Nie, M.; Corbett, L.; Knox, A.J.; Pang, L. Differential regulation of chemokine expression by peroxisome proliferator-activated receptor gamma agonists: Interactions with glucocorticoids and beta2-agonists. J. Biol. Chem. 2005, 280, 2550–2561. [Google Scholar] [CrossRef]
- Patel, J.K.; Clifford, R.L.; Deacon, K.; Knox, A.J. Ciclesonide inhibits TNFalpha- and IL-1beta-induced monocyte chemotactic protein-1 (MCP-1/CCL2) secretion from human airway smooth muscle cells. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2012, 302, L785–L792. [Google Scholar] [CrossRef]
- Chung, K.F.; Patel, H.J.; Fadlon, E.J.; Rousell, J.; Haddad, E.B.; Jose, P.J.; Mitchell, J.; Belvisi, M. Induction of eotaxin expression and release from human airway smooth muscle cells by IL-1beta and TNFalpha: Effects of IL-10 and corticosteroids. Br. J. Pharmacol. 1999, 127, 1145–1150. [Google Scholar] [CrossRef]
- Faffe, D.S.; Whitehead, T.; Moore, P.E.; Baraldo, S.; Flynt, L.; Bourgeois, K.; Panettieri, R.A.; Shore, S.A. IL-13 and IL-4 promote TARC release in human airway smooth muscle cells: Role of IL-4 receptor genotype. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2003, 285, L907–L914. [Google Scholar] [CrossRef]
- Prefontaine, D.; Lajoie-Kadoch, S.; Foley, S.; Audusseau, S.; Olivenstein, R.; Halayko, A.J.; Lemiere, C.; Martin, J.G.; Hamid, Q. Increased expression of IL-33 in severe asthma: Evidence of expression by airway smooth muscle cells. J. Immunol. 2009, 183, 5094–5103. [Google Scholar] [CrossRef]
- Sukkar, M.B.; Issa, R.; Xie, S.; Oltmanns, U.; Newton, R.; Chung, K.F. Fractalkine/CX3CL1 production by human airway smooth muscle cells: Induction by IFN-gamma and TNF-alpha and regulation by TGF-beta and corticosteroids. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2004, 287, L1230–L1240. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Adcock, I.M. Glucocorticoid resistance in inflammatory diseases. Lancet 2009, 373, 1905–1917. [Google Scholar] [CrossRef]
- Li, L.B.; Leung, D.Y.; Goleva, E. Activated p38 MAPK in Peripheral Blood Monocytes of Steroid Resistant Asthmatics. PLoS ONE 2015, 10, e0141909. [Google Scholar] [CrossRef] [PubMed]
- Goleva, E.; Covar, R.; Martin, R.J.; Leung, D.Y. Corticosteroid pharmacokinetic abnormalities in overweight and obese corticosteroid resistant asthmatics. J. Allergy Clin. Immunol. Pract. 2016, 4, 357–360.e2. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gao, P.; Wu, X.; Chen, Y.; Feng, Y.; Yang, Q.; Xu, Y.; Zhao, J.; Xie, J. Impaired anti-inflammatory action of glucocorticoid in neutrophil from patients with steroid-resistant asthma. Respir. Res. 2016, 17, 153. [Google Scholar] [CrossRef]
- Adcock, I.M.; Gilbey, T.; Gelder, C.M.; Chung, K.F.; Barnes, P.J. Glucocorticoid receptor localization in normal and asthmatic lung. Am. J. Respir. Crit. Care Med. 1996, 154, 771–782. [Google Scholar] [CrossRef]
- Roth, M.; Johnson, P.R.; Borger, P.; Bihl, M.P.; Rudiger, J.J.; King, G.G.; Ge, Q.; Hostettler, K.; Burgess, J.K.; Black, J.L.; et al. Dysfunctional interaction of C/EBPalpha and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells. N. Engl. J. Med. 2004, 351, 560–574. [Google Scholar] [CrossRef]
- Tliba, O.; Cidlowski, J.A.; Amrani, Y. CD38 expression is insensitive to steroid action in cells treated with tumor necrosis factor-alpha and interferon-gamma by a mechanism involving the up-regulation of the glucocorticoid receptor beta isoform. Mol. Pharmacol. 2006, 69, 588–596. [Google Scholar] [CrossRef]
- Roth, M.; Johnson, P.R.; Rudiger, J.J.; King, G.G.; Ge, Q.; Burgess, J.K.; Anderson, G.; Tamm, M.; Black, J.L. Interaction between glucocorticoids and beta2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling. Lancet 2002, 360, 1293–1299. [Google Scholar] [CrossRef]
- Vlahos, R.; Stewart, A.G. Interleukin-1alpha and tumour necrosis factor-alpha modulate airway smooth muscle DNA synthesis by induction of cyclo-oxygenase-2: Inhibition by dexamethasone and fluticasone propionate. Br. J. Pharmacol. 1999, 126, 1315–1324. [Google Scholar] [CrossRef]
- Perry, M.M.; Baker, J.E.; Gibeon, D.S.; Adcock, I.M.; Chung, K.F. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am. J. Respir. Cell Mol. Biol. 2014, 50, 7–17. [Google Scholar] [CrossRef]
- Chang, P.J.; Bhavsar, P.K.; Michaeloudes, C.; Khorasani, N.; Chung, K.F. Corticosteroid insensitivity of chemokine expression in airway smooth muscle of patients with severe asthma. J. Allergy Clin. Immunol. 2012, 130, 877–885.e5. [Google Scholar] [CrossRef]
- Foley, S.C.; Mogas, A.K.; Olivenstein, R.; Fiset, P.O.; Chakir, J.; Bourbeau, J.; Ernst, P.; Lemiere, C.; Martin, J.G.; Hamid, Q. Increased expression of ADAM33 and ADAM8 with disease progression in asthma. J. Allergy Clin. Immunol. 2007, 119, 863–871. [Google Scholar] [CrossRef]
- Ghaffar, O.; Hamid, Q.; Renzi, P.M.; Allakhverdi, Z.; Molet, S.; Hogg, J.C.; Shore, S.A.; Luster, A.D.; Lamkhioued, B. Constitutive and cytokine-stimulated expression of eotaxin by human airway smooth muscle cells. Am. J. Respir. Crit. Care Med. 1999, 159, 1933–1942. [Google Scholar] [CrossRef]
- Kaur, D.; Saunders, R.; Berger, P.; Siddiqui, S.; Woodman, L.; Wardlaw, A.; Bradding, P.; Brightling, C.E. Airway smooth muscle and mast cell-derived CC chemokine ligand 19 mediate airway smooth muscle migration in asthma. Am. J. Respir. Crit. Care Med. 2006, 174, 1179–1188. [Google Scholar] [CrossRef]
- Keenan, C.R.; Salem, S.; Fietz, E.R.; Gualano, R.C.; Stewart, A.G. Glucocorticoid-resistant asthma and novel anti-inflammatory drugs. Drug Discov. Today 2012, 17, 1031–1038. [Google Scholar] [CrossRef]
- Newton, R.; Holden, N.S. Separating transrepression and transactivation: A distressing divorce for the glucocorticoid receptor? Mol. Pharmacol. 2007, 72, 799–809. [Google Scholar] [CrossRef]
- Weigel, N.L.; Moore, N.L. Steroid receptor phosphorylation: A key modulator of multiple receptor functions. Mol. Endocrinol. 2007, 21, 2311–2319. [Google Scholar] [CrossRef]
- Irusen, E.; Matthews, J.G.; Takahashi, A.; Barnes, P.J.; Chung, K.F.; Adcock, I.M. p38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: Role in steroid-insensitive asthma. J. Allergy Clin. Immunol. 2002, 109, 649–657. [Google Scholar] [CrossRef]
- Li, L.B.; Goleva, E.; Hall, C.F.; Ou, L.S.; Leung, D.Y. Superantigen-induced corticosteroid resistance of human T cells occurs through activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK-ERK) pathway. J. Allergy Clin. Immunol. 2004, 114, 1059–1069. [Google Scholar] [CrossRef]
- Miller, A.L.; Webb, M.S.; Copik, A.J.; Wang, Y.; Johnson, B.H.; Kumar, R.; Thompson, E.B. p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: Correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol. Endocrinol. 2005, 19, 1569–1583. [Google Scholar] [CrossRef]
- Blind, R.D.; Garabedian, M.J. Differential recruitment of glucocorticoid receptor phospho-isoforms to glucocorticoid-induced genes. J. Steroid Biochem. Mol. Biol. 2008, 109, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Dang, T.; Blind, R.D.; Wang, Z.; Cavasotto, C.N.; Hittelman, A.B.; Rogatsky, I.; Logan, S.K.; Garabedian, M.J. Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol. Endocrinol. 2008, 22, 1754–1766. [Google Scholar] [CrossRef] [PubMed]
- Bouazza, B.; Krytska, K.; Debba-Pavard, M.; Amrani, Y.; Honkanen, R.E.; Tran, J.; Tliba, O. Cytokines alter glucocorticoid receptor phosphorylation in airway cells: Role of phosphatases. Am. J. Respir. Cell Mol. Biol. 2012, 47, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Bouazza, B.; Debba-Pavard, M.; Amrani, Y.; Isaacs, L.; O′Connell, D.; Ahamed, S.; Formella, D.; Tliba, O. Basal p38 mitogen-activated protein kinase regulates unliganded glucocorticoid receptor function in airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 2014, 50, 301–315. [Google Scholar] [CrossRef]
- Mercado, N.; Hakim, A.; Kobayashi, Y.; Meah, S.; Usmani, O.S.; Chung, K.F.; Barnes, P.J.; Ito, K. Restoration of corticosteroid sensitivity by p38 mitogen activated protein kinase inhibition in peripheral blood mononuclear cells from severe asthma. PLoS ONE 2012, 7, e41582. [Google Scholar] [CrossRef]
- Mercado, N.; To, Y.; Kobayashi, Y.; Adcock, I.M.; Barnes, P.J.; Ito, K. p38 mitogen-activated protein kinase-gamma inhibition by long-acting beta2 adrenergic agonists reversed steroid insensitivity in severe asthma. Mol. Pharmacol. 2011, 80, 1128–1135. [Google Scholar] [CrossRef]
- Ismaili, N.; Garabedian, M.J. Modulation of glucocorticoid receptor function via phosphorylation. Ann. N. Y. Acad. Sci. 2004, 1024, 86–101. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Mercado, N.; Barnes, P.J.; Ito, K. Defects of protein phosphatase 2A causes corticosteroid insensitivity in severe asthma. PLoS ONE 2011, 6, e27627. [Google Scholar] [CrossRef]
- Quante, T.; Ng, Y.C.; Ramsay, E.E.; Henness, S.; Allen, J.C.; Parmentier, J.; Ge, Q.; Ammit, A.J. Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1. Am. J. Respir. Cell Mol. Biol. 2008, 39, 208–217. [Google Scholar] [CrossRef]
- Che, W.; Parmentier, J.; Seidel, P.; Manetsch, M.; Ramsay, E.E.; Alkhouri, H.; Ge, Q.; Armour, C.L.; Ammit, A.J. Corticosteroids inhibit sphingosine 1-phosphate-induced interleukin-6 secretion from human airway smooth muscle via mitogen-activated protein kinase phosphatase 1-mediated repression of mitogen and stress-activated protein kinase 1. Am. J. Respir. Cell Mol. Biol. 2014, 50, 358–368. [Google Scholar] [CrossRef]
- Bui, H.; Amrani, Y.; Deeney, B.; Panettieri, R.A.; Tliba, O. Airway smooth muscle cells are insensitive to the anti-proliferative effects of corticosteroids: The novel role of insulin growth factor binding Protein-1 in asthma. Immunobiology 2019, 224, 490–496. [Google Scholar] [CrossRef]
- Eddleston, J.; Herschbach, J.; Wagelie-Steffen, A.L.; Christiansen, S.C.; Zuraw, B.L. The anti-inflammatory effect of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in epithelial cells. J. Allergy Clin. Immunol. 2007, 119, 115–122. [Google Scholar] [CrossRef]
- Bouazza, B.; O′Connell, D.; Amrani, Y.; Ahmed, S.; Tliba, O. Novel Anti-Inflammatory Role of Insulin-Like Growth Factor-Binding Protein 1 (IGFBP1) In Airway Epithelial Cells. Am. J. Respir. Crit. Care Med. 2014, 189, A4893. [Google Scholar]
- Bouazza, B.; Bui, H.; O’Connell, D.; Tliba, O. Insulin-Like Growth Factor-Binding Protein 1 (IGFBP1) Interferes with IFNγ Signaling In Airway Epithelial Cells. Am. J. Respir. Crit. Care Med. 2015, 191, A5022. [Google Scholar]
- Leung, D.Y.; Szefler, S.J. New insights into steroid resistant asthma. Pediatric Allergy Immunol. 1998, 9, 3–12. [Google Scholar] [CrossRef]
- Sher, E.R.; Leung, D.Y.; Surs, W.; Kam, J.C.; Zieg, G.; Kamada, A.K.; Szefler, S.J. Steroid-resistant asthma. Cellular mechanisms contributing to inadequate response to glucocorticoid therapy. J. Clin. Investig. 1994, 93, 33–39. [Google Scholar] [CrossRef]
- Kam, J.C.; Szefler, S.J.; Surs, W.; Sher, E.R.; Leung, D.Y. Combination IL-2 and IL-4 reduces glucocorticoid receptor-binding affinity and T cell response to glucocorticoids. J. Immunol. 1993, 151, 3460–3466. [Google Scholar]
- Almawi, W.Y.; Lipman, M.L.; Stevens, A.C.; Zanker, B.; Hadro, E.T.; Strom, T.B. Abrogation of glucocorticoid-mediated inhibition of T cell proliferation by the synergistic action of IL-1, IL-6, and IFN-gamma. J. Immunol. 1991, 146, 3523–3527. [Google Scholar]
- Vianna, E.O.; Westcott, J.; Martin, R.J. The effects of upper respiratory infection on T-cell proliferation and steroid sensitivity of asthmatics. J. Allergy Clin. Immunol. 1998, 102, 592–597. [Google Scholar] [CrossRef]
- Abdulamir, A.S.; Hafidh, R.R.; Abubakar, F.; Abbas, K.A. Changing survival, memory cell compartment, and T-helper balance of lymphocytes between severe and mild asthma. BMC Immunol. 2008, 9, 73. [Google Scholar] [CrossRef]
- Magnan, A.O.; Mely, L.G.; Camilla, C.A.; Badier, M.M.; Montero-Julian, F.A.; Guillot, C.M.; Casano, B.B.; Prato, S.J.; Fert, V.; Bongrand, P.; et al. Assessment of the Th1/Th2 paradigm in whole blood in atopy and asthma. Increased IFN-gamma-producing CD8(+) T cells in asthma. Am. J. Respir. Crit. Care Med. 2000, 161, 1790–1796. [Google Scholar] [CrossRef]
- Hens, G.; Vanaudenaerde, B.M.; Bullens, D.M.; Piessens, M.; Decramer, M.; Dupont, L.J.; Ceuppens, J.L.; Hellings, P.W. Sinonasal pathology in nonallergic asthma and COPD: 'united airway disease' beyond the scope of allergy. Allergy 2008, 63, 261–267. [Google Scholar] [CrossRef]
- Wei, B.; Sheng Li, C. Changes in Th1/Th2-producing cytokines during acute exacerbation chronic obstructive pulmonary disease. J. Int. Med. Res. 2018, 46, 3890–3902. [Google Scholar] [CrossRef]
- Kaur, M.; Smyth, L.J.; Cadden, P.; Grundy, S.; Ray, D.; Plumb, J.; Singh, D. T lymphocyte insensitivity to corticosteroids in chronic obstructive pulmonary disease. Respir. Res. 2012, 13, 20. [Google Scholar] [CrossRef]
- Bouazza, B.; O’Connell, D.; Amrani, Y.; Ahmed, S.; Tliba, O. IFNγ But Not TNFα Reduces Glucocorticoid Responsiveness In Airway Epithelial Cells. Am. J. Respir. Crit. Care Med. 2014, 189, A4267. [Google Scholar]
- Tang, C.; Inman, M.D.; van Rooijen, N.; Yang, P.; Shen, H.; Matsumoto, K.; O’Byrne, P.M. Th type 1-stimulating activity of lung macrophages inhibits Th2-mediated allergic airway inflammation by an IFN-gamma-dependent mechanism. J. Immunol. 2001, 166, 1471–1481. [Google Scholar] [CrossRef]
- Litonjua, A.A.; Sparrow, D.; Guevarra, L.; O’Connor, G.T.; Weiss, S.T.; Tollerud, D.J. Serum interferon-gamma is associated with longitudinal decline in lung function among asthmatic patients: The Normative Aging Study. Ann. Allergy Asthma Immunol. 2003, 90, 422–428. [Google Scholar] [CrossRef]
- Tliba, O.; Panettieri, R.A., Jr. Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. J. Allergy Clin. Immunol. 2019, 143, 1287–1294. [Google Scholar] [CrossRef]
- Oakley, R.H.; Jewell, C.M.; Yudt, M.R.; Bofetiado, D.M.; Cidlowski, J.A. The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J. Biol. Chem. 1999, 274, 27857–27866. [Google Scholar] [CrossRef]
- O’Connell, D.; Bouazza, B.; Ahmed, S.; Tliba, O. IL-17 Reduces Glucocorticoid Sensitivity Through GRβ Up-Regulation In Airway Epithelial Cells. Am. J. Respir. Crit. Care Med. 2014, 189, A3432. [Google Scholar]
- Xu, Q.; Leung, D.Y.; Kisich, K.O. Serine-arginine-rich protein p30 directs alternative splicing of glucocorticoid receptor pre-mRNA to glucocorticoid receptor beta in neutrophils. J. Biol. Chem. 2003, 278, 27112–27118. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, D.; Bouazza, B.; Tliba, O. IL-17 Up-Regulates GRβ Expression by Regulating Serine/Arginine-Rich Splicing Factors in Airway Epithelial Cells. Am. J. Respir. Crit. Care Med. 2015, 191, A2076. [Google Scholar]
- Matthews, J.G.; Ito, K.; Barnes, P.J.; Adcock, I.M. Defective glucocorticoid receptor nuclear translocation and altered histone acetylation patterns in glucocorticoid-resistant patients. J. Allergy Clin. Immunol. 2004, 113, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Li, L.B.; Leung, D.Y.; Martin, R.J.; Goleva, E. Inhibition of histone deacetylase 2 expression by elevated glucocorticoid receptor beta in steroid-resistant asthma. Am. J. Respir. Crit. Care Med. 2010, 182, 877–883. [Google Scholar] [CrossRef]
- Ramos-Ramirez, P.; Tliba, O. Glucocorticoid Receptor beta (GRbeta): Beyond Its Dominant-Negative Function. Int. J. Mol. Sci. 2021, 22, 3649. [Google Scholar] [CrossRef]
- McKay, L.I.; Cidlowski, J.A. Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: Mechanisms of mutual antagonism. Mol. Endocrinol. 1998, 12, 45–56. [Google Scholar] [CrossRef]
- Adcock, I.M.; Lane, S.J.; Brown, C.R.; Lee, T.H.; Barnes, P.J. Abnormal glucocorticoid receptor-activator protein 1 interaction in steroid-resistant asthma. J. Exp. Med. 1995, 182, 1951–1958. [Google Scholar] [CrossRef]
- Tliba, O.; Damera, G.; Banerjee, A.; Gu, S.; Baidouri, H.; Keslacy, S.; Amrani, Y. Cytokines induce an early steroid resistance in airway smooth muscle cells: Novel role of interferon regulatory factor-1. Am. J. Respir. Cell Mol. Biol. 2008, 38, 463–472. [Google Scholar] [CrossRef]
- Bhandare, R.; Damera, G.; Banerjee, A.; Flammer, J.R.; Keslacy, S.; Rogatsky, I.; Panettieri, R.A.; Amrani, Y.; Tliba, O. Glucocorticoid receptor interacting protein-1 restores glucocorticoid responsiveness in steroid-resistant airway structural cells. Am. J. Respir. Cell Mol. Biol. 2010, 42, 9–15. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Mercado, N.; Miller-Larsson, A.; Barnes, P.J.; Ito, K. Increased corticosteroid sensitivity by a long acting beta2 agonist formoterol via beta2 adrenoceptor independent protein phosphatase 2A activation. Pulm. Pharmacol. Ther. 2012, 25, 201–207. [Google Scholar] [CrossRef]
- Chachi, L.; Abbasian, M.; Gavrila, A.; Alzahrani, A.; Tliba, O.; Bradding, P.; Wardlaw, A.J.; Brightling, C.; Amrani, Y. Protein phosphatase 5 mediates corticosteroid insensitivity in airway smooth muscle in patients with severe asthma. Allergy 2017, 72, 126–136. [Google Scholar] [CrossRef]
- Jovicic, M.J.; Lukic, I.; Radojcic, M.; Adzic, M.; Maric, N.P. Modulation of c-Jun N-terminal kinase signaling and specific glucocorticoid receptor phosphorylation in the treatment of major depression. Med. Hypotheses 2015, 85, 291–294. [Google Scholar] [CrossRef]
Cell Type | Mediators | Effect of GCs | Underlying Mechanism | Reference |
---|---|---|---|---|
ASM Cells | TNF-α | ↓ IL-6 secretion | ↑ MKP-1 ↓ p38 MAPK phosphorylation | [90] |
S1P | ↓ IL-6 protein secretion and mRNA expression | ↑ MKP-1 ↓ MAPK-induced activation of MSK1 ↓ Histone H3 phosphorylation | [91] | |
PDGF, EGF | ↓ Cell proliferation | ↑ IGFBP1 ↓ p38 MAPK phosphorylation | [92] | |
Airway Epithelial Cells | IL-1β | ↓ IL-8 mRNA ↓ NF-κB activation | ↑ GILZ | [93] |
IFNγ | ↓ STAT1 phosphorylation and nuclear translocation | ↑ IGFBP1 | [94,95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Ramírez, P.; Tliba, O. Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. Int. J. Mol. Sci. 2022, 23, 8966. https://doi.org/10.3390/ijms23168966
Ramos-Ramírez P, Tliba O. Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. International Journal of Molecular Sciences. 2022; 23(16):8966. https://doi.org/10.3390/ijms23168966
Chicago/Turabian StyleRamos-Ramírez, Patricia, and Omar Tliba. 2022. "Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells" International Journal of Molecular Sciences 23, no. 16: 8966. https://doi.org/10.3390/ijms23168966
APA StyleRamos-Ramírez, P., & Tliba, O. (2022). Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. International Journal of Molecular Sciences, 23(16), 8966. https://doi.org/10.3390/ijms23168966