Studies on the Phytochemical Profile of Ocimum basilicum var. minimum (L.) Alef. Essential Oil, Its Larvicidal Activity and In Silico Interaction with Acetylcholinesterase against Aedes aegypti (Diptera: Culicidae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Yield
2.2. Chemical Composition
2.3. Larvicidal Activity
2.4. Evaluation of the Interaction of EO Compounds with AChE
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Botanical Material
3.3. Essential Oil Extraction
3.4. Essential Oil Analysis
3.5. Larvicidal Assay
3.6. In Silico Analysis
3.6.1. Molecular Docking
3.6.2. MD Simulations
3.6.3. Free Energy Calculations
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes da Rocha Voris, D.; dos Santos Dias, L.; Alencar Lima, J.; dos Santos Cople Lima, K.; Pereira Lima, J.B.; dos Santos Lima, A.L. Evaluation of Larvicidal, Adulticidal, and Anticholinesterase Activities of Essential Oils of Illicium verum Hook. f., Pimenta dioica (L.) Merr., and Myristica fragrans Houtt. against Zika Virus Vectors. Environ. Sci. Pollut. Res. 2018, 25, 22541–22551. [Google Scholar] [CrossRef] [PubMed]
- Muktar, Y.; Tamerat, N.; Shewafera, A. Aedes aegypti as a Vector of Flavivirus. J. Trop. Dis. 2016, 4, 1000223. [Google Scholar] [CrossRef]
- Diniz Do Nascimento, L.; Antônio Barbosa De Moraes, A.; Santana Da Costa, K.; Marcos, J.; Galúcio, P.; Taube, P.S.; Leal Costa, M.; Neves Cruz, J.; Helena De Aguiar Andrade, E.; Guerreiro De Faria, L.J. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Cascaes, M.M.; Carneiro, O.d.S.; do Nascimento, L.D.; de Moraes, Â.A.B.; de Oliveira, M.S.; Cruz, J.N.; Guilhon, G.M.S.P.; Andrade, E.H.d.A. Essential Oils from Annonaceae Species from Brazil: A Systematic Review of Their Phytochemistry, and Biological Activities. Int. J. Mol. Sci. 2021, 22, 12140. [Google Scholar] [CrossRef]
- Ferreira, O.O.; da Cruz, J.N.; Franco, C.d.J.P.; Silva, S.G.; da Costa, W.A.; de Oliveira, M.S.; Andrade, E.H.d.A. First Report on Yield and Chemical Composition of Essential Oil Extracted from Myrcia eximia DC (Myrtaceae) from the Brazilian Amazon. Molecules 2020, 25, 783. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, D.C.; Holandada Silva, V.N.; de Assis, C.R.D.; de Oliveira Farias de Aguiar, J.C.R.; DoNascimento, P.H.; da Silva, W.V.; do Amaral Ferraz Navarro, D.M.; da Silva, M.V.; de Menezes Lima, V.L.; dos Santos Correia, M.T. Chemical Composition and Acetylcholinesterase Inhibitory Potential, in Silico, of Myrciaria floribunda (H. West Ex Willd.) O. Berg Fruit Peel Essential Oil. Ind. Crops Prod. 2020, 151, 112372. [Google Scholar] [CrossRef]
- Scalvenzi, L.; Radice, M.; Toma, L.; Severini, F.; Boccolini, D.; Bella, A.; Guerrini, A.; Tacchini, M.; Sacchetti, G.; Chiurato, M.; et al. Larvicidal Activity of Ocimum campechianum, Ocotea quixos and Piper aduncum Essential Oils against Aedes aegypti. Parasite 2019, 26, 23. [Google Scholar] [CrossRef]
- El-Akhal, F.; Guemmouh, R.; Maniar, S.; Taghzouti, K.; El Ouali Lalami, A. Larvicidal Activity of Essential Oils of Thymus vulgaris and Origanum majorana (Lamiaceae) against of the Malaria Vector Anopheles labranchiae (Diptera: Culicidae). Int. J. Pharm. Pharm. Sci. 2016, 8, 372–376. [Google Scholar]
- Seo, S.-M.; Jung, C.-S.; Kang, J.; Lee, H.-R.; Kim, S.-W.; Hyun, J.; Park, I.-K. Larvicidal and Acetylcholinesterase Inhibitory Activities of Apiaceae Plant Essential Oils and Their Constituents against Aedes albopictus and Formulation Development. J. Agric. Food Chem. 2015, 63, 9977–9986. [Google Scholar] [CrossRef]
- Li, Y.; Wu, W.; Jian, R.; Ren, X.; Chen, X.; Hong, W.D.; Wu, M.; Cai, J.; Lao, C.; Xu, X.; et al. Larvicidal, Acetylcholinesterase Inhibitory Activities of Four Essential Oils and Their Constituents against Aedes albopictus, and Nanoemulsion preparation. J. Pest Sci. 2022, 5, 1–11. [Google Scholar] [CrossRef]
- López, V.; Cascella, M.; Benelli, G.; Maggi, F.; Gómez-Rincón, C. Green Drugs in the Fight against Anisakis simplex—Larvicidal Activity and Acetylcholinesterase Inhibition of Origanum compactum Essential Oil. Parasitol. Res. 2018, 117, 861–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahran, H.E.-D.M.; Abou-Taleb, H.K.; Abdelgaleil, S.A.M. Adulticidal, Larvicidal and Biochemical Properties of Essential Oils against Culex pipiens L. J. Asia. Pac. Entomol. 2017, 20, 133–139. [Google Scholar] [CrossRef]
- Huy Hung, N.; Ngoc Dai, D.; Satyal, P.; Thi Huong, L.; Thi Chinh, B.; Quang Hung, D.; Anh Tai, T.; Setzer, W.N. Lantana camara Essential Oils from Vietnam: Chemical Composition, Molluscicidal, and Mosquito Larvicidal Activity. Chem. Biodivers. 2021, 18, e2100145. [Google Scholar] [CrossRef] [PubMed]
- López, V.; Pavela, R.; Gómez-Rincón, C.; Les, F.; Bartolucci, F.; Galiffa, V.; Petrelli, R.; Cappellacci, L.; Maggi, F.; Canale, A.; et al. Efficacy of Origanum syriacum Essential Oil against the Mosquito Vector Culex quinquefasciatus and the Gastrointestinal Parasite Anisakis simplex, with Insights on Acetylcholinesterase Inhibition. Molecules 2019, 24, 2563. [Google Scholar] [CrossRef]
- Govindarajan, M.; Sivakumar, R.; Rajeswary, M.; Yogalakshmi, K. Chemical Composition and Larvicidal Activity of Essential Oil from Ocimum basilicum (L.) against Culex Tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp. Parasitol. 2013, 134, 7–11. [Google Scholar] [CrossRef]
- Telci, I.; Elmastas, M.; Sahin, A. Chemical Composition and Antioxidant Activity of Ocimum Minimum Essential Oils. Chem. Nat. Compd. 2009, 45, 568–571. [Google Scholar] [CrossRef]
- Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; Oliveira dos Anjos, T.; Cascaes, M.M.; Almeida da Costa, W.; Helena de Aguiar Andrade, E.; Santana de Oliveira, M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid.-Based Complement. Altern. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef]
- Özcan, M.; Chalchat, J.-C. Essential Oil Composition of Ocimum basilicum L. and Ocimum minimum L. in Turkey. Czech J. Food Sci. 2011, 20, 223–228. [Google Scholar] [CrossRef]
- Figueredo, G.; Özcan, M.M.; Chalchat, J.C.; Chalard, P.; Çelik, B.; Özcan, M.M. The Effect of Harvest Years on Chemical Composition of Essential Oil of Basil (Ocimum minimum L.) Leaves. J. Essent. Oil-Bear. Plants 2017, 20, 864–868. [Google Scholar] [CrossRef]
- Safari Dolatabad, S.; Moghaddam, M.; Chalajour, H. Essential Oil Composition of Four Ocimum Species and Varieties Growing in Iran. J. Essent. Oil Res. 2014, 26, 315–321. [Google Scholar] [CrossRef]
- Tchoumbougnang, F.; Zollo, P.H.A.; Avlessi, F.; Alitonou, G.A.; Sohounhloue, D.K.; Ouamba, J.M.; Tsomambet, A.; Okemy-Andissa, N.; Dagne, E.; Agnaniet, H.; et al. Variability in the Chemical Compositions of the Essential Oils of Five Ocimum Species from Tropical African Area. J. Essent. Oil Res. 2006, 18, 194–199. [Google Scholar] [CrossRef]
- Adams, R.P.; Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Adams, R.P., Ed.; Allured Publishing; Allured Pub Corp.: Carol Stream, IL, USA, 2017; Volume 8, ISBN 1932633219. [Google Scholar]
- Carović-Stanko, K.; Orlić, S.; Politeo, O.; Strikić, F.; Kolak, I.; Milos, M.; Satovic, Z. Composition and Antibacterial Activities of Essential Oils of Seven Ocimum Taxa. Food Chem. 2010, 119, 196–201. [Google Scholar] [CrossRef]
- Stefan, M.; Zamfirache, M.M.; Padurariu, C.; Trutǎ, E.; Gostin, I. The Composition and Antibacterial Activity of Essential Oils in Three Ocimum Species Growing in Romania. Cent. Eur. J. Biol. 2013, 8, 600–608. [Google Scholar] [CrossRef]
- Farouk, A.; Fikry, R.; Mohsen, M. Chemical Composition and Antioxidant Activity of Ocimum basilicum L. Essential Oil Cultivated in Madinah Monawara, Saudi Arabia and Its Comparison to the Egyptian Chemotype. J. Essent. Oil-Bear. Plants 2016, 19, 1119–1128. [Google Scholar] [CrossRef]
- Kathirvel, P.; Ravi, S. Chemical Composition of the Essential Oil from Basil (Ocimum basilicum Linn.) and Its In Vitro Cytotoxicity against HeLa and HEp-2 Human Cancer Cell Lines and NIH 3T3 Mouse Embryonic Fibroblasts. Nat. Prod. Res. 2012, 26, 1112–1118. [Google Scholar] [CrossRef]
- Melo, R.S.; Albuquerque Azevedo, Á.M.; Gomes Pereira, A.M.; Rocha, R.R.; Bastos Cavalcante, R.M.; Carneiro Matos, M.N.; Ribeiro Lopes, P.H.; Gomes, G.A.; Soares Rodrigues, T.H.; dos Santos, H.S.; et al. Chemical Composition and Antimicrobial Effectiveness of Ocimum gratissimum L. Essential Oil against Multidrug-Resistant Isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019, 24, 3864. [Google Scholar] [CrossRef]
- Moghaddam, M.; Alymanesh, M.R.; Mehdizadeh, L.; Mirzaei, H.; Ghasemi Pirbalouti, A. Chemical Composition and Antibacterial Activity of Essential Oil of Ocimum ciliatum, as a New Source of Methyl Chavicol, against Ten Phytopathogens. Ind. Crops Prod. 2014, 59, 144–148. [Google Scholar] [CrossRef]
- Santos, B.C.S.; Pires, A.S.; Yamamoto, C.H.; Couri, M.R.C.; Taranto, A.G.; Alves, M.S.; De Matos Araújo, A.L.D.S.; De Sousa, O.V. Methyl Chavicol and Its Synthetic Analogue as Possible Antioxidant and Antilipase Agents Based on the In Vitro and In Silico Assays. Oxid. Med. Cell. Longev. 2018, 2018, 2189348. [Google Scholar] [CrossRef]
- Mohr, F.B.M.; Lermen, C.; Gazim, Z.C.; Gonçalves, J.E.; Alberton, O. Antifungal Activity, Yield, and Composition of Ocimum Gratissimum Essential Oil. Genet. Mol. Res. 2017, 16, gmr16019542. [Google Scholar] [CrossRef]
- Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; San Keskin, N.O.; Kusku, S.I.; Durgun, E.; Tekinay, T.; Uyar, T. Fast-Dissolving, Prolonged Release, and Antibacterial Cyclodextrin/Limonene-Inclusion Complex Nanofibrous Webs via Polymer-Free Electrospinning. J. Agric. Food Chem. 2016, 64, 7325–7334. [Google Scholar] [CrossRef]
- Costa, M.D.S.; Rocha, J.E.; Campina, F.F.; Silva, A.R.P.; Da Cruz, R.P.; Pereira, R.L.S.; Quintans-Júnior, L.J.; De Menezes, I.R.A.; Adriano, A.A.; De Freitas, T.S.; et al. Comparative Analysis of the Antibacterial and Drug-Modulatory Effect of D-Limonene Alone and Complexed with β-Cyclodextrin. Eur. J. Pharm. Sci. 2019, 128, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Chang, H.T.; Chang, S.T.; Tsai, K.H.; Chen, W.J. Bioactivity of Selected Plant Essential Oils against the Yellow Fever Mosquito Aedes aegypti Larvae. Bioresour. Technol. 2003, 89, 99–102. [Google Scholar] [CrossRef]
- Komalamisra, N.; Trongtokit, Y.; Rongsriyam, Y.; Apiwathnasorn, C. Screening for Larvicidal Activity in Some Thai Plants against Four Mosquito Vector Species. Southeast Asian J. Trop. Med. Public Health 2005, 36, 1412–1422. [Google Scholar]
- Ravi Kiran, S.; Bhavani, K.; Sita Devi, P.; Rajeswara Rao, B.R.; Janardhan Reddy, K. Composition and Larvicidal Activity of Leaves and Stem Essential Oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour. Technol. 2006, 97, 2481–2484. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.K.; Matos, O.; Novo, M.T.; Figueiredo, A.C.; Delgado, M.; Moiteiro, C. Larvicidal Activity against Aedes aegypti of Foeniculum Vulgare Essential Oils from Portugal and Cape Verde. Nat. Prod. Commun. 2015, 10, 677–682. [Google Scholar] [CrossRef]
- Dias, C.N.; Moraes, D.F.C. Essential Oils and Their Compounds as Aedes aegypti L. (Diptera: Culicidae) Larvicides: Review. Parasitol. Res. 2014, 113, 565–592. [Google Scholar] [CrossRef]
- Cavalcanti, E.S.B.; de Morais, S.M.; Lima, M.A.A.; Santana, E.W.P. Larvicidal Activity of Essential Oils from Brazilian Plants against Aedes aegypti L. Mem. Inst. Oswaldo Cruz 2004, 99, 541–544. [Google Scholar] [CrossRef]
- Manzoor, F.; Samreen, K.B.; Parveen, Z. Larvicidal Activity of Essential Oils against Aedes aegypti and Culex Quinquefasciatus Larvae (Diptera: Culicidae). J. Anim. Plant Sci. 2013, 23, 420–424. [Google Scholar]
- Ricarte, L.P.; Bezerra, G.P.; Romero, N.R.; Da Silva, H.C.; Lemos, T.L.G.; Arriaga, A.M.C.; Alves, P.B.; Dos Santos, M.B.; Militão, G.C.G.; Silva, T.D.S.; et al. Chemical Composition and Biological Activities of the Essential Oils from Vitex-agnus castus, Ocimum campechianum and Ocimum carnosum. AN Acad. Bras. Cienc. 2020, 92, 1–11. [Google Scholar] [CrossRef]
- Tennyson, S.; Samraj, D.A.; Jeyasundar, D.; Chalieu, K. Larvicidal Efficacy of Plant Oils against the Dengue Vector Aedes aegypti (L.) (Diptera: Culicidae). Middle East J. Sci. Res. 2013, 13, 64–68. [Google Scholar] [CrossRef]
- Massebo, F.; Tadesse, M.; Bekele, T.; Balkew, M.; Gebre-Michael, T. Evaluation on Larvicidal Effects of Essential Oils of Some Local Plants against Anopheles arabiensis Patton and Aedes aegypti Linnaeus (Diptera, Culicidae) in Ethiopia. Afr. J. Biotechnol. 2009, 8, 4183–4188. [Google Scholar] [CrossRef]
- Su, T.; Thieme, J.; Lura, T.; Cheng, M.-L.; Brown, M.Q. Susceptibility Profile of Aedes aegypti L. (Diptera: Culicidae) from Montclair, California, to Commonly Used Pesticides, with Note on Resistance to Pyriproxyfen. J. Med. Entomol. 2019, 56, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Sutthanont, N.; Choochote, W.; Tuetun, B.; Junkum, A.; Jitpakdi, A.; Chaithong, U.; Riyong, D.; Pitasawat, B. Chemical Composition and Larvicidal Activity of Edible Plant-Derived Essential Oils against the Pyrethroid-Susceptible and -Resistant Strains of Aedes aegypti (Diptera: Culicidae). J. Vector Ecol. 2010, 35, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.M.; Dias, Ê.R.; Souza, B.C.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Queiroz, R.F.; Branco, A. Methoxylated Flavonols from Vellozia dasypus Seub Ethyl Acetate Active Myeloperoxidase Extract: In Vitro and in Silico Assays. J. Biomol. Struct. Dyn. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rego, C.M.A.; Francisco, A.F.; Boeno, C.N.; Paloschi, M.V.; Lopes, J.A.; Silva, M.D.S.; Santana, H.M.; Serrath, S.N.; Rodrigues, J.E.; Lemos, C.T.L.; et al. Inflammasome NLRP3 Activation Induced by Convulxin, a C-Type Lectin-like Isolated from Crotalus Durissus Terrificus Snake Venom. Sci. Rep. 2022, 12, 4706. [Google Scholar] [CrossRef]
- Pinto, V.d.S.; Araújo, J.S.C.; Silva, R.C.; da Costa, G.V.; Cruz, J.N.; Neto, M.F.D.A.; Campos, J.M.; Santos, C.B.R.; Leite, F.H.A.; Junior, M.C.S. In Silico Study to Identify New Antituberculosis Molecules from Natural Sources by Hierarchical Virtual Screening and Molecular Dynamics Simulations. Pharmaceuticals 2019, 12, 36. [Google Scholar] [CrossRef]
- Galucio, N.C.d.R.; Moysés, D.d.A.; Pina, J.R.S.; Marinho, P.S.B.; Gomes Júnior, P.C.; Cruz, J.N.; Vale, V.V.; Khayat, A.S.; Marinho, A.M.d.R. Antiproliferative, Genotoxic Activities and Quantification of Extracts and Cucurbitacin B Obtained from Luffa operculata (L.) Cogn. Arab. J. Chem. 2022, 15, 103589. [Google Scholar] [CrossRef]
- Neto, R.d.A.M.; Santos, C.B.R.; Henriques, S.V.C.; Machado, L.d.O.; Cruz, J.N.; da Silva, C.H.T.d.P.; Federico, L.B.; de Oliveira, E.H.C.; de Souza, M.P.C.; da Silva, P.N.B.; et al. Novel Chalcones Derivatives with Potential Antineoplastic Activity Investigated by Docking and Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2022, 40, 2204–2216. [Google Scholar] [CrossRef]
- dos Santos, K.L.B.; Cruz, J.N.; Silva, L.B.; Ramos, R.S.; Neto, M.F.A.; Lobato, C.C.; Ota, S.S.B.; Leite, F.H.A.; Borges, R.S.; da Silva, C.H.T.P.; et al. Identification of Novel Chemical Entities for Adenosine Receptor Type 2a Using Molecular Modeling Approaches. Molecules 2020, 25, 1245. [Google Scholar] [CrossRef]
- Santana de Oliveira, M.; Pereira da Silva, V.M.; Cantão Freitas, L.; Gomes Silva, S.; Nevez Cruz, J.; Aguiar Andrade, E.H. Extraction Yield, Chemical Composition, Preliminary Toxicity of Bignonia nocturna (Bignoniaceae) Essential Oil and in Silico Evaluation of the Interaction. Chem. Biodivers. 2021, 18, e2000982. [Google Scholar] [CrossRef]
- Santana de Oliveira, M.; da Cruz, J.N.; Almeida da Costa, W.; Silva, S.G.; Brito, M.d.P.; de Menezes, S.A.F.; de Jesus Chaves Neto, A.M.; de Aguiar Andrade, E.H.; de Carvalho Junior, R.N. Chemical Composition, Antimicrobial Properties of Siparuna guianensis Essential Oil and a Molecular Docking and Dynamics Molecular Study of Its Major Chemical Constituent. Molecules 2020, 25, 3852. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.d.J.P.; Ferreira, O.O.; Antônio Barbosa de Moraes, Â.; Varela, E.L.P.; Nascimento, L.D.d.; Percário, S.; de Oliveira, M.S.; Andrade, E.H.d.A. Chemical Composition and Antioxidant Activity of Essential Oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC., and Myrcia tomentosa (Aubl.) DC., Leaf of Family Myrtaceae. Molecules 2021, 26, 3292. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Júnior, O.S.; de Jesus Pereira Franco, C.; de Moraes, A.A.B.; Cruz, J.N.; da Costa, K.S.; do Nascimento, L.D.; de Aguiar Andrade, E.H. In Silico Analyses of Toxicity of the Major Constituents of Essential Oils from Two Ipomoea L. Species. Toxicon 2021, 195, 111–118. [Google Scholar] [CrossRef]
- Bezerra, F.W.F.; de Oliveira, M.S.; Bezerra, P.N.; Cunha, V.M.B.; Silva, M.P.; da Costa, W.A.; Pinto, R.H.H.; Cordeiro, R.M.; da Cruz, J.N.; Chaves Neto, A.M.J.; et al. Extraction of Bioactive Compounds. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, Isloor, A.M., Kanchi, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 149–167. ISBN 9780128173886. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Stein, S.; Mirokhin, D.; Tchekhovskoi, D.; Mallard, G.; Mikaia, A.; Zaikin, V.; Sparkmanm, D. The NIST Mass Spectral Search Program for the Nist/Epa/Nih Mass Spectra Library; Standard Reference Data Program of the National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
- WHO. WHO Guidelines for Laboratory and Field Testing of Mosquito Larvicides; World Health Organization: Geneva, Switzerland, 2005; pp. 1–41.
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision 16.A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Thomsen, R.; Christensen, M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Sun, H.; Li, Y.; Shen, M.; Tian, S.; Xu, L.; Pan, P.; Guan, Y.; Hou, T. Assessing the Performance of MM/PBSA and MM/GBSA Methods. 5. Improved Docking Performance Using High Solute Dielectric Constant MM/GBSA and MM/PBSA Rescoring. Phys. Chem. Chem. Phys. 2014, 16, 22035–22045. [Google Scholar] [CrossRef]
- Abbott, W.S. The Value of the Dry Substitutes for Liquid Lime. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
No. | RIL | RIC | Compound | Molecular Formula | Concentration (%) |
---|---|---|---|---|---|
1 | 969 | 967 | Sabinene | 0.12 | |
2 | 974 | 974 | β-Pinene | 0.41 | |
3 | 988 | 984 | Myrcene | 0.7 | |
4 | 1024 | 1031 | Limonene | 9.5 | |
5 | 1026 | 1034 | 1,8-cineole | 14.23 | |
6 | 1044 | 1050 | (E)-β-Ocimene | 1.28 | |
7 | 1054 | 1054 | γ-Terpinene | 0.13 | |
8 | 1095 | 1104 | Linalool | 24.51 | |
9 | 1141 | 1146 | Camphor | 0.59 | |
10 | 1174 | 1180 | Terpinen-4-ol | 2.1 | |
11 | 1195 | 1204 | Methyl chavicol | 37.41 | |
12 | 1239 | 1244 | Carvone | 2.8 | |
13 | 1247 | 1251 | Chavicol | 0.12 | |
14 | 1289 | 1289 | Thymol | 0.05 | |
15 | 1335 | 1329 | δ-Elemene | 0.02 | |
16 | 1389 | 1387 | β-Elemene | 0.39 | |
17 | 1417 | 1417 | (E)-Caryophyllene | 0.85 | |
18 | 1432 | 1430 | trans-α-Bergamotene | 0.05 | |
19 | 1454 | 1481 | (E)-β-Farnesene | 1.96 | |
20 | 1484 | 1478 | Germacrene D | 0.12 | |
21 | 1489 | 1486 | β-Selinene | 1.15 | |
22 | 1493 | 1509 | (E)-Muurola-4(14),5-diene | 0.09 | |
23 | 1498 | 1493 | α-Selinene | 0.95 | |
24 | 1638 | 1640 | epi-α-cadinol | 0.12 | |
Hydrocarbon monoterpenes | 12.14 | ||||
Oxygenated monoterpenes | 81.69 | ||||
Hydrocarbon sesquiterpenes | 5.58 | ||||
Oxygenated sesquiterpenes | 0.12 | ||||
Others compounds | 0.12 | ||||
Total identified (%) | 99.65 |
Specie | Plant Part | Plant Origin | LC50 (µg/mL) | Reference |
---|---|---|---|---|
O. basilicum var. minimum | Aerial | Brazilian Amazon | 69.91 (61.89–78.58) | This work |
O. americanum | Leaves | Northeast of Brazil | 67.00 | [38] |
O. basilicum | Leaves | Pakistan | 75.35 (53.21–108.08) | [39] |
O. campechianum | Leaves | Northeast of Brazil | 81.45 | [40] |
O. carnosum | Inflorescences | Northeast of Brazil | 109.49 | [40] |
O. gratissimum | Aerial | Northeast of Brazil | 60.00 | [38] |
O. sanctun | NM | India | 92.42 | [41] |
O. suave | Leaves | Ethiopia | 29.80 (23.5–35.0) | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botelho, A.d.S.; Ferreira, O.O.; de Oliveira, M.S.; Cruz, J.N.; Chaves, S.H.d.R.; do Prado, A.F.; Nascimento, L.D.d.; da Silva, G.A.; Amarante, C.B.d.; Andrade, E.H.d.A. Studies on the Phytochemical Profile of Ocimum basilicum var. minimum (L.) Alef. Essential Oil, Its Larvicidal Activity and In Silico Interaction with Acetylcholinesterase against Aedes aegypti (Diptera: Culicidae). Int. J. Mol. Sci. 2022, 23, 11172. https://doi.org/10.3390/ijms231911172
Botelho AdS, Ferreira OO, de Oliveira MS, Cruz JN, Chaves SHdR, do Prado AF, Nascimento LDd, da Silva GA, Amarante CBd, Andrade EHdA. Studies on the Phytochemical Profile of Ocimum basilicum var. minimum (L.) Alef. Essential Oil, Its Larvicidal Activity and In Silico Interaction with Acetylcholinesterase against Aedes aegypti (Diptera: Culicidae). International Journal of Molecular Sciences. 2022; 23(19):11172. https://doi.org/10.3390/ijms231911172
Chicago/Turabian StyleBotelho, Anderson de Santana, Oberdan Oliveira Ferreira, Mozaniel Santana de Oliveira, Jorddy Neves Cruz, Sandro Henrique dos Reis Chaves, Alejandro Ferraz do Prado, Lidiane Diniz do Nascimento, Geilson Alcantara da Silva, Cristine Bastos do Amarante, and Eloisa Helena de Aguiar Andrade. 2022. "Studies on the Phytochemical Profile of Ocimum basilicum var. minimum (L.) Alef. Essential Oil, Its Larvicidal Activity and In Silico Interaction with Acetylcholinesterase against Aedes aegypti (Diptera: Culicidae)" International Journal of Molecular Sciences 23, no. 19: 11172. https://doi.org/10.3390/ijms231911172
APA StyleBotelho, A. d. S., Ferreira, O. O., de Oliveira, M. S., Cruz, J. N., Chaves, S. H. d. R., do Prado, A. F., Nascimento, L. D. d., da Silva, G. A., Amarante, C. B. d., & Andrade, E. H. d. A. (2022). Studies on the Phytochemical Profile of Ocimum basilicum var. minimum (L.) Alef. Essential Oil, Its Larvicidal Activity and In Silico Interaction with Acetylcholinesterase against Aedes aegypti (Diptera: Culicidae). International Journal of Molecular Sciences, 23(19), 11172. https://doi.org/10.3390/ijms231911172