Regulation of CRE-Dependent Transcriptional Activity in a Mouse Suprachiasmatic Nucleus Cell Line
Abstract
:1. Introduction
2. Results
2.1. Characterization of SCNCRE Cells
2.2. Characteristics of PKA and Protein Phosphorylation in SCN Ex Vivo and SCNCRE Cells
2.3. Elevation of cAMP in SCNCRE Cells
2.4. Characteristics of the CRE-Luciferase Response in SCNCRE Cells
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Western Blot Analysis
4.3. Immunocytochemistry
4.4. cAMP ELISA
4.5. Determination of Luminescence Activity
4.6. Image Analysis and Statistics
4.7. Chemicals/Stimulants
4.8. SCN Ex Vivo Sample Treatment
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, S.; Bacskai, B.; Harootunian, A.T.; Mahaut-Smith, M.; Sammak, P.J.; Taylor, S.S.; Tsien, R.Y. Imaging of cAMP signals and A-kinase translocation in single living cells. Adv. Second Messenger Phosphoprot. Res. 1993, 28, 167–170. [Google Scholar]
- Harootunian, A.T.; Adams, S.R.; Wen, W.; Meinkoth, J.L.; Taylor, S.S.; Tsien, R.Y. Movement of the free catalytic subunit of cAMP-dependent protein kinase into and out of the nucleus can be explained by diffusion. Mol. Biol. Cell 1993, 4, 993–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginty, D.D.; Kornhauser, J.M.; Thompson, M.A.; Bading, H.; Mayo, K.E.; Takahashi, J.S.; Greenberg, M.E. Regulation of Creb Phosphorylation in the Suprachiasmatic Nucleus by Light and a Circadian Clock. Science 1993, 260, 238–241. [Google Scholar] [CrossRef]
- Wheaton, K.L.; Hansen, K.F.; Aten, S.; Sullivan, K.A.; Yoon, H.; Hoyt, K.R.; Obrietan, K. The Phosphorylation of CREB at Serine 133 Is a Key Event for Circadian Clock Timing and Entrainment in the Suprachiasmatic Nucleus. J. Biol. Rhythm. 2018, 33, 497–514. [Google Scholar] [CrossRef] [Green Version]
- Motzkus, D.; Maronde, E.; Grunenberg, U.; Lee, C.C.; Forssmann, W.; Albrecht, U. The human PER1 gene is transcriptionally regulated by multiple signaling pathways. FEBS Lett. 2000, 486, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Motzkus, D.; Cadenas, C.; Maronde, E.; Forssmann, W.-G.; Vinson, C.; Loumi, S. Activation of human period-1 by PKA or CLOCK/BMAL1 is conferred by separate signal transduction pathways. Chronobiol. Int. 2007, 24, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Ma, D.; Zhao, M.; Xie, L.; Wu, Q.; Gou, L.; Zhu, C.; Fan, Y.; Wang, H.; Yan, J. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat. Neurosci. 2020, 23, 456–467. [Google Scholar] [CrossRef]
- O’Neill, J.S.; Maywood, E.S.; Chesham, J.E.; Takahashi, J.S.; Hastings, M.H. cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker. Science 2008, 320, 949–953. [Google Scholar] [CrossRef] [Green Version]
- Bedont, J.L.; Blackshaw, S. Constructing the suprachiasmatic nucleus: A watchmaker’s perspective on the central clockworks. Front. Syst. Neurosci. 2015, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Patton, A.P.; Edwards, M.D.; Smyllie, N.J.; Hamnett, R.; Chesham, J.E.; Brancaccio, M.; Maywood, E.S.; Hastings, M.H. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit. Nat. Commun. 2020, 11, 3394. [Google Scholar] [CrossRef]
- Hamnett, R.; Chesham, J.E.; Maywood, E.S.; Hastings, M.H. The cell-autonomous clock of VIP receptor VPAC2 cells regulates period and coherence of circadian behaviour. J. Neurosci. Off. J. Soc. Neurosci. 2020, 41, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Doi, M.; Murai, I.; Kunisue, S.; Setsu, G.; Uchio, N.; Tanaka, R.; Kobayashi, S.; Shimatani, H.; Hayashi, H.; Chao, H.-W.; et al. Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. Nat. Commun. 2016, 7, 10583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farnell, Y.F.; Shende, V.R.; Neuendorff, N.; Allen, G.C.; Earnest, D.J. Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties. Eur. J. Neurosci 2011, 33, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Schwede, F.; Maronde, E.; Genieser, H.; Jastorff, B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol. Ther. 2000, 87, 199–226. [Google Scholar] [CrossRef]
- Bertinetti, D.; Schweinsberg, S.; Hanke, S.E.; Schwede, F.; Bertinetti, O.; Drewianka, S.; Genieser, H.-G.; Herberg, F.W. Chemical tools selectively target components of the PKA system. BMC Chem. Biol. 2009, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Maronde, E. Influence of Phosphodiesterase Inhibition on CRE- and EGR1-Dependent Transcription in a Mouse Hippocampal Cell Line. Int. J. Mol. Sci. 2020, 21, 8658. [Google Scholar] [CrossRef]
- Möller, S.; Alfieri, A.; Bertinetti, D.; Aquila, M.; Schwede, F.; Lolicato, M.; Rehmann, H.; Moroni, A.; Herberg, F.W. Cyclic Nucleotide Mapping of Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels. ACS Chem. Biol. 2014, 9, 1128–1137. [Google Scholar] [CrossRef]
- Schwede, F.; Bertinetti, D.; Langerijs, C.N.; Hadders, M.A.; Wienk, H.; Ellenbroek, J.H.; de Koning, E.J.; Bos, J.L.; Herberg, F.W.; Genieser, H.-G.; et al. Structure-Guided Design of Selective Epac1 and Epac2 Agonists. PLoS Biol. 2015, 13, e1002038. [Google Scholar] [CrossRef] [Green Version]
- Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol. Rev. 2006, 58, 488–520. [Google Scholar] [CrossRef] [Green Version]
- Welsh, D.K.; Takahashi, J.S.; Kay, S.A. Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annu. Rev. Physiol. 2010, 72, 551–577. [Google Scholar] [CrossRef] [Green Version]
- Golombek, D.A.; Rosenstein, R.E. Physiology of circadian entrainment. Physiol. Rev. 2010, 90, 1063–1102. [Google Scholar] [CrossRef] [PubMed]
- Seamon, K.B.; Daly, J.W. Forskolin: A unique diterpene activator of cyclic AMP-generating systems. J. Cyclic Nucleotide Res. 1981, 7, 201–224. [Google Scholar] [PubMed]
- Seamon, K.B.; Daly, J.W. Forskolin: Its biological and chemical properties. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 1986, 20, 1–150. [Google Scholar] [PubMed]
- Sandberg, M.; Butt, E.; Nolte, C.; Fischer, L.; Halbrügge, M.; Beltman, J.; Jahnsen, T.; Genieser, H.G.; Jastorff, B.; Walter, U. Characterization of Sp-5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3′,5′-monophosphorothioate (Sp-5,6-DCl-cBiMPS) as a potent and specific activator of cyclic-AMP-dependent protein kinase in cell extracts and intact cells. Biochem. J. 1991, 279 Pt 2, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Enserink, J.M.; Christensen, A.E.; Rooij, J.; van Triest, M.; Schwede, F.; Genieser, H.G.; Døskeland, S.O.; Blank, J.L.; Bos, J.L. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat. Cell Biol. 2002, 4, 901–906. [Google Scholar] [CrossRef]
- Johannessen, M.; Moens, U. Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front. Biosci. 2007, 12, 1814–1832. [Google Scholar] [CrossRef] [Green Version]
- Mellor, H.; Parker, P.J. The extended protein kinase C superfamily. Biochem. J. 1998, 332 Pt 2, 281–292. [Google Scholar] [CrossRef]
- Rohrschneider, L.R.; Boutwell, R.K. The early stimulation of phospholipid metabolism by 12-0-tetradecanoyl-phorbol-13-acetate and its specificity for tumor promotion. Cancer Res. 1973, 33, 1945–1952. [Google Scholar]
- Rawashdeh, O.; Jilg, A.; Maronde, E.; Fahrenkrug, J.; Stehle, J.H. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. J. Neurochem. 2016, 138, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Partch, C.L.; Green, C.B.; Takahashi, J.S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2013, 24, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.T.; Chang, A.S.; Manandhar, M.; Shan, Y.; Fan, J.; Izumo, M.; Ikeda, Y.; Motoike, T.; Dixon, S.; Seinfeld, J.E.; et al. Neuromedin S-Producing Neurons Act as Essential Pacemakers in the Suprachiasmatic Nucleus to Couple Clock Neurons and Dictate Circadian Rhythms. Neuron 2015, 85, 1086–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Zeng, H.; Olson, D.P.; Huber, K.M.; Gibson, J.R.; Takahashi, J.S. Vasoactive Intestinal Polypeptide (VIP)-Expressing Neurons in the Suprachiasmatic Nucleus Provide Sparse GABAergic Outputs to Local Neurons with Circadian Regulation Occurring Distal to the Opening of Postsynaptic GABAA Ionotropic Receptors. J. Neurosci. 2015, 35, 1905–1920. [Google Scholar] [CrossRef] [PubMed]
- Bedont, J.L.; LeGates, T.A.; Slat, E.A.; Byerly, M.S.; Wang, H.; Hu, J.; Rupp, A.C.; Qian, J.; Wong, G.W.; Herzog, E.D.; et al. Lhx1 Controls Terminal Differentiation and Circadian Function of the Suprachiasmatic Nucleus: Cell Reports. Available online: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24767996&retmode=ref&cmd=prlinks (accessed on 27 July 2022).
- Bedont, J.L.; Newman, E.A.; Blackshaw, S. Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 445–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedont, J.L.; Rohr, K.E.; Bathini, A.; Hattar, S.; Blackshaw, S.; Sehgal, A.; Evans, J.A. Asymmetric vasopressin signaling spatially organizes the master circadian clock. J. Comp. Neurol. 2018, 526, 2048–2067. [Google Scholar] [CrossRef]
- Maronde, E. Trehalose Activates CRE-Dependent Transcriptional Signaling in HT22 Mouse Hippocampal Neuronal Cells: A Central Role for PKA Without cAMP Elevation. Front. Mol. Neurosci. 2018, 11, 386. [Google Scholar] [CrossRef] [Green Version]
- Maronde, E.; Wicht, H.; Taskén, K.; Genieser, H.G.; Dehghani, F.; Olcese, J.; Korf, H.W. CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: Involvement of cyclic AMP dependent protein kinase type II. J. Pineal Res. 1999, 27, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Maronde, E.; Pfeffer, M.; Olcese, J.; Molina, C.A.; Schlotter, F.; Dehghani, F.; Korf, H.W.; Stehle, J.H. Transcription factors in neuroendocrine regulation: Rhythmic changes in pCREB and ICER levels frame melatonin synthesis. J. Neurosci. 1999, 19, 3326–3336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- BOGER, W.P.; PITTS, F.W. Influence of p-(di-n-propylsulfamyl)-benzoic acid, "benemid", on para-aminosalicylic acid (PAS) plasma concentrations. Am. Rev. Tuberc. 1950, 61, 862–867. [Google Scholar]
- Taffet, S.M.; Greenfield, A.R.L.; Haddox, M.K. Retinal inhibits TPA activated, calcium-dependent, phospholipid-dependent protein kinase (“C” kinase). Biochem. Biophys. Res. Commun. 1983, 114, 1194–1199. [Google Scholar] [CrossRef]
- Guellaen, G.; Mahu, J.L.; Mavier, P.; Berthelot, P.; Hanoune, J. RMI 12330 A, an inhibitor of adenylate cyclase in rat liver. Biochim. Biophys. Acta 1977, 484, 465–475. [Google Scholar] [CrossRef]
- Seifert, R.; Lushington, G.H.; Mou, T.-C.; Gille, A.; Sprang, S.R. Inhibitors of membranous adenylyl cyclases. Trends Pharmacol. Sci. 2012, 33, 64–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gjertsen, B.T.; Mellgren, G.; Otten, A.; Maronde, E.; Genieser, H.G.; Jastorff, B.; Vintermyr, O.K.; McKnight, G.S.; Døskeland, S.O. Novel (Rp)-cAMPS analogs as tools for inhibition of cAMP-kinase in cell culture. Basal cAMP-kinase activity modulates interleukin-1 beta action. J. Biol. Chem. 1995, 270, 20599–20607. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langiu, M.; Bechstein, P.; Neumann, S.; Spohn, G.; Maronde, E. Regulation of CRE-Dependent Transcriptional Activity in a Mouse Suprachiasmatic Nucleus Cell Line. Int. J. Mol. Sci. 2022, 23, 12226. https://doi.org/10.3390/ijms232012226
Langiu M, Bechstein P, Neumann S, Spohn G, Maronde E. Regulation of CRE-Dependent Transcriptional Activity in a Mouse Suprachiasmatic Nucleus Cell Line. International Journal of Molecular Sciences. 2022; 23(20):12226. https://doi.org/10.3390/ijms232012226
Chicago/Turabian StyleLangiu, Monica, Philipp Bechstein, Sonja Neumann, Gabriele Spohn, and Erik Maronde. 2022. "Regulation of CRE-Dependent Transcriptional Activity in a Mouse Suprachiasmatic Nucleus Cell Line" International Journal of Molecular Sciences 23, no. 20: 12226. https://doi.org/10.3390/ijms232012226
APA StyleLangiu, M., Bechstein, P., Neumann, S., Spohn, G., & Maronde, E. (2022). Regulation of CRE-Dependent Transcriptional Activity in a Mouse Suprachiasmatic Nucleus Cell Line. International Journal of Molecular Sciences, 23(20), 12226. https://doi.org/10.3390/ijms232012226