Development of Environmentally Friendly Wool Shrink-Proof Finishing Technology Based on L-Cysteine/Protease Treatment Solution System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Reducing Agent in Compound Solution System
2.2. Statistical Modeling and Analysis
2.3. Performance Analysis of Wool Fibers after Finishing
2.4. Shrink-Proof Finishing Mechanism of Wool Fibers by L/PTSS
3. Materials and Methods
3.1. Materials
3.2. Effect Analysis of Different Reducing Agents on Wool Fibers
3.3. Shrink-Proof Finishing of Wool with L/PTSS
3.4. Response Surface Methodology (RSM) Analysis
3.5. Measurements
3.5.1. Tensile Breaking Strength of Fibers
3.5.2. Scanning Electron Microscopy (SEM)
3.5.3. Redox Potential Test
3.5.4. Fiber Weight Loss Ratio
3.5.5. Felt Ball Density Analysis
3.5.6. Ultraviolet (UV) Spectrum
3.5.7. Fourier Transform Infrared Spectroscopy (FT-IR)
3.5.8. Thermogravimetric Analysis (TG)
3.5.9. X-ray Photoelectron Spectroscopy (XPS)
3.5.10. Raman Spectra
3.5.11. Amino Acid Content Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du, Z.; Hu, C.; Xie, Z.; Yan, K. A Bio-Antifelting Agent Based on Waterborne Polyurethane and Keratin Polypeptides Extracted by Protease from Waste Wool. Fibers Polym. 2017, 18, 641–648. [Google Scholar] [CrossRef]
- Dos Santos, H.N.; Lana Lara, S.L.B.; Neto, J.H.M. Wool Felt: Characterization, Comparison with Other Materials, and Investigation of Its Use in Hospital Accessories. Text. Res. J. 2020, 92, 004051752091583. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, Y.; Wang, Q.; Wang, P.; Yu, Y.; Zhou, M.; Li, E. Thiol-Based Ionic Liquid: An Efficient Approach for Improving Hydrophilic Performance of Wool. J. Nat. Fibers 2021, 1–12. [Google Scholar] [CrossRef]
- Rani, S.; Kadam, V.; Rose, N.M.; Jose, S.; Yadav, S.; Shakyawar, D.B. Wheat Starch, Gum Arabic and Chitosan Biopolymer Treatment of Wool Fabric for Improved Shrink Resistance Finishing. Int. J. Biol. Macromol. 2020, 163, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Chakraborty, J.N.; Dubey, K.K. Enzymatic Functionalization of Wool for Felting Shrink-Resistance. J. Nat. Fibers 2016, 13, 437–450. [Google Scholar] [CrossRef]
- Soun, B.; Kaur, D.; Jose, S. Effect of Transglutaminase Enzyme on Physico-Mechanical Properties of Rambouillet Wool Fiber. J. Nat. Fibers 2020, 17, 793–801. [Google Scholar] [CrossRef]
- Navik, R.; Shafi, S.; Alam, M.M.; Farooq, M.A.; Lin, L.; Cai, Y. Influence of Dielectric Barrier Discharge Treatment on Mechanical and Dyeing Properties of Wool. Plasma Sci. Technol. 2018, 20, 065504. [Google Scholar] [CrossRef] [Green Version]
- Zanini, S.; Citterio, A.; Leonardi, G.; Riccardi, C. Characterization of Atmospheric Pressure Plasma Treated Wool/Cashmere Textiles: Treatment in Nitrogen. Appl. Surf. Sci. 2018, 427, 90–96. [Google Scholar] [CrossRef]
- Hassan, M.M.; Bhagvandas, M. Sustainable Ultrasound-Assisted Ultralow Liquor Ratio Dyeing of Wool Textiles with an Acid Dye. ACS Sustain. Chem. Eng. 2017, 5, 973–981. [Google Scholar] [CrossRef]
- Pan, Y.; Hurren, C.J.; LI, Q. Effect of Sonochemical Scouring on the Surface Morphologies, Mechanical Properties, and Dyeing Abilities of Wool Fibers. Ultrason. Sonochem. 2018, 41, 227–233. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, W.; Gong, K.; Hurren, C.J.; Li, Q. Ultrasonic Scouring as a Pretreatment of Wool and Its Application in Low-Temperature Dyeing. Text. Res. J. 2019, 89, 1975–1982. [Google Scholar] [CrossRef]
- Shabbir, M.; Mohammad, F. Multifunctional AgNPs@Wool: Colored, UV-Protective and Antioxidant Functional Textiles. Appl. Nanosci. 2018, 8, 545–555. [Google Scholar] [CrossRef]
- Guerrero, J.L.; Daugherty, P.S.; O’Malley, M.A. Emerging Technologies for Protease Engineering: New Tools to Clear out Disease. Biotechnol. Bioeng. 2017, 114, 33–38. [Google Scholar] [CrossRef]
- Pei, L.; Cai, Z.; Pei, Y. Electrochemical Determination of L-Cysteine Using Polyaniline/CuGeO3 Nanowire Modified Electrode. Russ. J. Electrochem. 2014, 50, 458–467. [Google Scholar] [CrossRef]
- Shahid, M.; Mohammad, F.; Chen, G.; Tang, R.; Xing, T. Enzymatic Processing of Natural Fibres: White Biotechnology for Sustainable Development. Green Chem. 2016, 18, 2256–2281. [Google Scholar] [CrossRef]
- Vílchez, S.; Jovančić, P.; Erra, P. Influence of Chitosan on the Effects of Proteases on Wool Fibers. Fibers Polym. 2010, 11, 28–35. [Google Scholar] [CrossRef]
- Demirkan, E.; Kut, D.; Sevgi, T.; Dogan, M. Investigation of Effects of Protease Enzyme Produced by Bacillus Subtilis 168 E6-5 and Commercial Enzyme on Physical Properties of Woolen Fabric. J. Text. Inst. 2020, 111, 26–35. [Google Scholar] [CrossRef]
- Adeel, S.; Azeem, M.; Rehman, F.; Zahoor, A.F.; Habib, N.; Saeed, M.; Liaqat, S.; Hussaan, M. Sustainable Utilization of Ultrasonic Radiation in Extraction and Dyeing of Wool Fabric Using Logwood (Haematoxylum Campechianum) Extract. Text. Appar. 2019, 29, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, N.; Wang, Q.; Wang, P.; Yu, Y.; Zhou, M. A Sustainable and Effective Bioprocessing Approach for Improving Anti-Felting, Anti-Pilling and Dyeing Properties of Wool Fabric. Fibers Polym. 2021, 22, 3045–3054. [Google Scholar] [CrossRef]
- Mei, J.; Zhang, N.; Yu, Y.; Wang, Q.; Yuan, J.; Wang, P.; Cui, L.; Fan, X. A Novel “Trifunctional Protease” with Reducibility, Hydrolysis, and Localization Used for Wool Anti-Felting Treatment. Appl. Microbiol. Biotechnol. 2018, 102, 9159–9170. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, A. Modification of Wool by Air Plasma and Enzymes as a Cleaner and Environmentally Friendly Process. J. Clean. Prod. 2015, 87, 961–965. [Google Scholar] [CrossRef]
- Kadam, V.; Rani, S.; Jose, S.; Shakyawar, D.; Shanmugam, N. Biomaterial based shrink resist treatment of wool fabric: A sustainable technology. Sustain. Mater. Technol. 2021, 29, e00298. [Google Scholar] [CrossRef]
- Iglesias, M.S.; Sequeiros, C.; García, S.; Olivera, N.L. Eco-Friendly Anti-Felting Treatment of Wool Top Based on Biosurfactant and Enzymes. J. Clean. Prod. 2019, 220, 846–852. [Google Scholar] [CrossRef]
- Shen, J.; Smith, E.; Chizyuka, M.; Prajapati, C. Development of Durable Shrink-Resist Coating of Wool with Sol-Gel Polymer Processing. Fibers Polym. 2017, 18, 1769–1779. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, Q.; Shen, J.; Smith, E.; Bai, R.; Fan, X. Enzymatic Coloration and Finishing of Wool with Laccase and Polyethyleneimine. Text. Res. J. 2018, 88, 1834–1846. [Google Scholar] [CrossRef]
- Bouri, M.; Salghi, R.; Ríos, A.; Zougagh, M. Fluorescence Determination of L-Cysteine in Wound Dressings by Fluoroscein Coated Gold Nanoparticles. Anal. Lett. 2016, 49, 1221–1232. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Z.; Jiang, Z.; Zhou, M.; Yu, Y.; Wang, P.; Wang, Q. PH Mediated L-Cysteine Aqueous Solution for Wool Reduction and Urea-Free Keratin Extraction. J. Polym. Environ. 2022, 30, 2714–2726. [Google Scholar] [CrossRef]
- Du, Z.; Ji, B.; Yan, K. Recycling Keratin Polypeptides for Anti-Felting Treatment of Wool Based on L-Cysteine Pretreatment. J. Clean. Prod. 2018, 183, 810–817. [Google Scholar] [CrossRef]
- Bucciarelli, A.; Greco, G.; Corridori, I.; Pugno, N.M.; Motta, A. A design of experiment rational optimization of the degumming process and its impact on the silk fibroin properties. ACS Biomater. Sci. Eng. 2021, 7, 1374–1393. [Google Scholar] [CrossRef]
- Wang, L.; Yan, J.; Niu, J.; Liu, J.; Li, B.; Feng, M. Eco-Friendly and Highly Efficient Enzyme-Based Wool Shrinkproofing Finishing by Multiple Padding Techniques. Polymers 2018, 10, 1213. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, J.; Jiao, C.; Tong, J.; Zhang, L.; Chang, Y.; Sun, W.; Jin, Q.; Cai, Y. Optimization of Quercetin Extraction Method in Dendrobium Officinale by Response Surface Methodology. Heliyon 2019, 5, e02374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caven, B.; Redl, B.; Bechtold, T. An Investigation into the Possible Antibacterial Properties of Wool Fibers. Text. Res. J. 2019, 89, 510–516. [Google Scholar] [CrossRef]
- Zhou, Q.; Rather, L.J.; Ali, A.; Wang, W.; Zhang, Y.; Haque, Q.M.R.; Li, Q. Environmentally Friendly Bioactive Finishing of Wool Textiles Using the Tannin-Rich Extracts of Chinese Tallow (Sapium Sebiferum L.) Waste/Fallen Leaves. Dyes Pigm. 2020, 176, 108230. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J. Wool Fabrics Colored with Fluorescent Pigment Emulsion: Their Color Performance and Fluorescent Properties. J. Nat. Fibers 2022, 19, 1069–1083. [Google Scholar] [CrossRef]
- Wang, C.; Du, M.; Lv, J.; Zhou, Q.; Gao, D.; Liu, G.; Jin, L.; Ren, Y.; Liu, J. Effect of Wetting Pretreatment on Structure and Properties of Plasma Induced Chitosan Grafted Wool Fabric. Fibers Polym. 2015, 16, 404–412. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, N.; Zhang, J.; Zhou, M.; Wang, Q.; Wang, P.; Yu, Y. Thiourea Dioxide-Mediated Surface9 Functionalization: A Novel Strategy for Anti-Felting and Dyeability Improvement of Wool. J. Text. Inst. 2021, 113, 2491–2501. [Google Scholar] [CrossRef]
- Tian, H.; Liu, B.; Dong, X.; Zhao, Q.; He, J. Durable Hydrophilic Modification of Wool Scales with Reactive Surfactants in Saturated Neutral Salt System. Fibers Polym. 2020, 21, 2769–2779. [Google Scholar] [CrossRef]
- Li, B.; Yao, J.; Niu, J.; Liu, J.; Wang, L.; Feng, M.; Sun, Y. Study on the Effect of Organic Phosphonic Compounds on Disulfide Bonds in Wool. Text. Res. J. 2019, 89, 2682–2693. [Google Scholar] [CrossRef]
- Kumamoto, Y.; Taguchi, A.; Kawata, S. Deep-Ultraviolet Biomolecular Imaging and Analysis. Adv. Opt. Mater. 2019, 7, 1801099. [Google Scholar] [CrossRef]
- Barani, H. Analysis of Lecithin Treatment Effects on the Structural Transformation of Wool Fiber Using Vibrational Spectroscopy. Int. J. Biol. Macromol. 2018, 108, 585–590. [Google Scholar] [CrossRef]
- Yang, Y.; Ganbat, D.; Aramwit, P.; Bucciarelli, A.; Chen, J.; Migliaresi, C.; Motta, A. Processing keratin from camel hair and cashmere with ionic liquids. eXPRESS Polym. Lett. 2019, 13, 97–108. [Google Scholar] [CrossRef]
- Li, B.; Yao, J.; Niu, J.; Liu, J.; Wang, L.; Feng, M.; Sun, Y. Effects of Graphene Oxide on the Structure and Properties of Regenerated Wool Keratin Films. Polymers 2018, 10, 1318. [Google Scholar] [CrossRef] [Green Version]
- McGregor, B.; Liu, X.; Wang, X. Comparisons of the Fourier Transform Infrared Spectra of Cashmere, Guard Hair, Wool and Other Animal Fibers. J. Text. Inst. 2018, 109, 813–822. [Google Scholar] [CrossRef]
- Li, B.; Sun, Y.; Yao, J.; Wu, H.; Shen, Y.; Zhi, C.; Li, J. An environment-friendly chemical modification method for thiol groups on polypeptide macromolecules to improve the performance of regenerated keratin materials. Mater. Des. 2022, 217, 110611. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Wang, Q.; Yu, Y.; Wang, P. Chitosan Grafting via One-Enzyme Double Catalysis: An Effective Approach for Improving Performance of Wool. Carbohydr. Polym. 2021, 252, 117157. [Google Scholar] [CrossRef]
- Ismail, S.A.; Abou, T.M.; Emran, M.A.; Mowafi, S.; Hashem, A.M.; El-Sayed, H. Benign Felt-Proofing of Wool Fibers Using a Keratinolytic Thermophilic Alkaline Protease. J. Nat. Fibers 2022, 19, 3697–3709. [Google Scholar] [CrossRef]
Sample | Concentration of L-Cysteine (g·L−1) | Soaking Time (s) | Padding Number (Times) | Breaking Strength (cN) | Felt Ball Density (kg·m3) | Weight Loss Rate (%) |
---|---|---|---|---|---|---|
1 | 6 | 30 | 5 | 7.07 | 78.5 | 10.52 |
2 | 6 | 45 | 6 | 5.71 | 60.63 | 11.68 |
3 | 8 | 30 | 6 | 6.8 | 56.91 | 10.56 |
4 | 10 | 45 | 6 | 5.5 | 35.77 | 13.79 |
5 | 8 | 60 | 4 | 6.11 | 58.83 | 10.49 |
6 | 6 | 45 | 4 | 5.6 | 64.16 | 11.25 |
7 | 8 | 45 | 5 | 5.84 | 53.42 | 10.3 |
8 | 6 | 60 | 5 | 6.86 | 54.98 | 12.19 |
9 | 10 | 60 | 5 | 4.97 | 45.17 | 13.14 |
10 | 8 | 45 | 5 | 5.67 | 44.11 | 10.24 |
11 | 8 | 45 | 5 | 5.91 | 50.97 | 10.37 |
12 | 10 | 45 | 4 | 5.26 | 40.6 | 11.13 |
13 | 8 | 45 | 5 | 6.15 | 49.67 | 10.82 |
14 | 10 | 30 | 5 | 6.04 | 39.05 | 10.45 |
15 | 8 | 60 | 6 | 5.95 | 45.53 | 11.27 |
16 | 8 | 30 | 4 | 6.62 | 69.5 | 8.73 |
17 | 8 | 45 | 5 | 5.89 | 56.22 | 10.43 |
Variance Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 4.370 | 9 | 0.490 | 4.0700 | 0.0389 |
A (Concentration) | 1.510 | 1 | 1.510 | 12.610 | 0.0093 |
B (Soaking time) | 0.870 | 1 | 0.870 | 7.300 | 0.0306 |
C (Padding number) | 0.017 | 1 | 0.017 | 0.140 | 0.7162 |
AB | 0.180 | 1 | 0.180 | 1.550 | 0.2533 |
AC | 0.004 | 1 | 0.004 | 0.035 | 0.8561 |
BC | 0.029 | 1 | 0.029 | 0.240 | 0.6377 |
A2 | 0.270 | 1 | 0.270 | 2.290 | 0.1740 |
B2 | 1.500 | 1 | 1.500 | 12.610 | 0.0093 |
C2 | 0.060 | 1 | 0.060 | 0.510 | 0.4999 |
Residual | 0.840 | 7 | 0.120 | ||
Lack of fit | 0.720 | 3 | 0.240 | 8.040 | 0.0361 |
Pure error | 0.120 | 4 | 0.030 | ||
Cor total | 5.200 | 16 | |||
R2 | 0.839 | Adj R2 | 0.633 |
Variance Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 1533.84 | 3 | 511.28 | 13.53 | 0.0003 |
A (Concentration) | 1192.67 | 1 | 1192.67 | 31.56 | <0.0001 |
B (Soaking time) | 194.54 | 1 | 194.54 | 5.15 | 0.0409 |
C (Padding number) | 146.63 | 1 | 146.63 | 3.88 | 0.0705 |
Residual | 491.21 | 13 | 37.79 | ||
Lack of fit | 408.94 | 9 | 45.44 | 2.21 | 0.2314 |
Pure error | 82.27 | 4 | 20.57 | ||
Cor total | 2025.06 | 16 | |||
R2 | 0.757 | Adj R2 | 0.702 |
Variance Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 21.51 | 9 | 2.390 | 19.96 | 0.0003 |
A (Concentration) | 1.03 | 1 | 1.030 | 8.60 | 0.0219 |
B (Soaking time) | 5.83 | 1 | 5.830 | 48.71 | 0.0002 |
C (Padding number) | 4.06 | 1 | 4.060 | 33.92 | 0.0006 |
AB | 0.26 | 1 | 0.260 | 2.17 | 0.1840 |
AC | 1.24 | 1 | 1.240 | 10.38 | 0.0146 |
BC | 0.28 | 1 | 0.280 | 2.30 | 0.1730 |
A2 | 8.51 | 1 | 8.510 | 71.07 | <0.0001 |
B2 | 0.33 | 1 | 0.330 | 2.73 | 0.1426 |
C2 | 0.05 | 1 | 0.050 | 0.42 | 0.5386 |
Residual | 0.84 | 7 | 0.120 | ||
Lack of fit | 0.63 | 3 | 0.210 | 4.02 | 0.1061 |
Pure error | 0.21 | 4 | 0.052 | ||
Cor total | 22.35 | 16 | |||
R2 | 0.963 | Adj R2 | 0.914 |
Concentration of L-Cysteine (g·L−1) | Soaking Time (s) | Padding Number (Times) | Breaking Strength (cN) | Felt Ball Density (kg·m3) | Weight Loss Rate (%) | |
---|---|---|---|---|---|---|
Prediction | 9.00 | 30 | 5.34 | 6.68 | 50.55 | 10.15 |
Verification | 9.00 | 30 | 5 | 5.88 | 48.65 | 10.45 |
Factor | Coding | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Concentration of L-cysteine (g·L−1) | A | 6 | 8 | 10 |
Soaking time (s) | B | 30 | 45 | 60 |
Padding number (times) | C | 4 | 5 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Li, J.; Shen, Y.; Wu, H.; Sun, Y.; Zhang, P.; Yang, M. Development of Environmentally Friendly Wool Shrink-Proof Finishing Technology Based on L-Cysteine/Protease Treatment Solution System. Int. J. Mol. Sci. 2022, 23, 13553. https://doi.org/10.3390/ijms232113553
Li B, Li J, Shen Y, Wu H, Sun Y, Zhang P, Yang M. Development of Environmentally Friendly Wool Shrink-Proof Finishing Technology Based on L-Cysteine/Protease Treatment Solution System. International Journal of Molecular Sciences. 2022; 23(21):13553. https://doi.org/10.3390/ijms232113553
Chicago/Turabian StyleLi, Bo, Jiaying Li, Yanqin Shen, Hailiang Wu, Yanli Sun, Pengfei Zhang, and Meihui Yang. 2022. "Development of Environmentally Friendly Wool Shrink-Proof Finishing Technology Based on L-Cysteine/Protease Treatment Solution System" International Journal of Molecular Sciences 23, no. 21: 13553. https://doi.org/10.3390/ijms232113553
APA StyleLi, B., Li, J., Shen, Y., Wu, H., Sun, Y., Zhang, P., & Yang, M. (2022). Development of Environmentally Friendly Wool Shrink-Proof Finishing Technology Based on L-Cysteine/Protease Treatment Solution System. International Journal of Molecular Sciences, 23(21), 13553. https://doi.org/10.3390/ijms232113553