Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue
Abstract
:1. Introduction
1.1. Endogenous Opioid Peptides
1.2. Opioid Receptors
1.3. Stem Cells
2. Endogenous Opioids Modulate Stem Cell Proliferation and Cell Stress Response
3. Endogenous Opioids and Stem Cell Differentiation
3.1. Neural Differentiation and Endogenous Opioids
3.2. Hematopoietic and Vascular Stem Cell Differentiation and Endogenous Opioids
3.3. Endogenous Opioid Dynorphin-B and Cardiac Differentiation in Stem Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trescot, A.M.; Datta, S.; Lee, M.; Hansen, H. Opioid pharmacology. Pain Phys. 2008, 11, S133–S153. [Google Scholar] [CrossRef]
- Pasternak, G.W.; Pan, Y.X. Mu opioids and their receptors: Evolution of a concept. Pharmacol. Rev. 2013, 65, 1257–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, S.H.; Pasternak, G.W. Historical review: Opioid receptors. Trends Pharmacol. Sci. 2003, 24, 198–205. [Google Scholar] [CrossRef]
- Hughes, J.; Smith, T.W.; Kosterlitz, H.W.; Fothergill, L.A.; Morgan, B.A.; Morris, H.R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975, 258, 577–580. [Google Scholar] [CrossRef]
- Goldstein, A.; Tachibana, S.; Lowney, L.I.; Hunkapiller, M.; Hood, L. Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc. Natl. Acad. Sci. USA 1979, 76, 6666–6670. [Google Scholar] [CrossRef] [Green Version]
- Li, C.H.; Chung, D.; Doneen, B.A. Isolation, characterization and opiate activity of beta-endorphin from human pituitary glands. Biochem. Biophys Res. Commun. 1976, 72, 1542–1547. [Google Scholar] [CrossRef]
- Kibaly, C.; Xu, C.; Cahill, C.M.; Evans, C.J.; Law, P.Y. Non-nociceptive roles of opioids in the CNS: Opioids’ effects on neurogenesis, learning, memory and affect. Nat. Rev. Neurosci. 2019, 20, 5–18. [Google Scholar] [CrossRef]
- Abrimian, A.; Kraft, T.; Pan, Y.X. Endogenous Opioid Peptides and Alternatively Spliced Mu Opioid Receptor Seven Transmembrane Carboxyl-Terminal Variants. Int. J. Mol. Sci. 2021, 22, 3779. [Google Scholar] [CrossRef]
- Corder, G.; Castro, D.C.; Bruchas, M.R.; Scherrer, G. Endogenous and Exogenous Opioids in Pain. Annu. Rev. Neurosci. 2018, 41, 453–473. [Google Scholar] [CrossRef]
- Duque-Díaz, E.; Alvarez-Ojeda, O.; Coveñas, R. Enkephalins and ACTH in the mammalian nervous system. Vitam. Horm. 2019, 111, 147–193. [Google Scholar] [CrossRef]
- Cullen, J.M.; Cascella, M. Physiology, Enkephalin; StatPearls: Treasure Island, FL, USA, 2022; Internet. [Google Scholar]
- Dores, R.M.; Akil, H.; Watson, S.J. Strategies for studying opioid peptide regulation at the gene, message and protein levels. Peptides 1984, 5, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Fricker, L.D. Neuropeptides and other bioactive peptides: From discovery to function. In Colloquium Series on Neuropeptides; Fricker, L.D., Devi, L.A., Eds.; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2012; Volume 1, pp. 1–122. [Google Scholar] [CrossRef]
- Fricker, L.D.; Margolis, E.B.; Gomes, I.; Devi, L.A. Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions. Mol. Pharmacol. 2020, 98, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.V.; Stern, A.S. Biosynthesis of the enkephalins and enkephalin-containing polypeptides. Annu. Rev. Pharmacol. Toxicol. 1983, 23, 353–372. [Google Scholar] [CrossRef] [PubMed]
- Pittius, C.W.; Kley, N.; Loeffler, J.P.; Höllt, V. Quantitation of proenkephalin A messenger RNA in bovine brain, pituitary and adrenal medulla: Correlation between mRNA and peptide levels. EMBO J. 1985, 4, 1257–1260. [Google Scholar] [CrossRef]
- Ma, X.; Chen, R.; Huang, M.; Wang, W.; Luo, L.; Kim, D.K.; Jiang, W.; Xu, T. DAMGO-induced μ opioid receptor internalization and recycling restore morphine sensitivity in tolerant rat. Eur. J. Pharmacol. 2020, 878, 173118. [Google Scholar] [CrossRef]
- Khoramjouy, M.; Ahmadi, F.; Faizi, M.; Shahhosseini, S. Optimization binding studies of opioid receptors, saturation and competition, using [3H]-DAMGO. Pharmacol. Rep. 2021, 73, 1390–1395. [Google Scholar] [CrossRef]
- Rahman, W.; Dickenson, A.H. Electrophysiological studies on the postnatal development of the spinal antinociceptive effects of the delta opioid receptor agonist DPDPE in the rat. Br. J. Pharmacol. 1999, 126, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Witt, K.A.; Huber, J.D.; Egleton, R.D.; Roberts, M.J.; Bentley, M.D.; Guo, L.; Wei, H.; Yamamura, H.I.; Davis, T.P. Pharmacodynamic and pharmacokinetic characterization of poly(ethylene glycol) conjugation to met-enkephalin analog [D-Pen2, D-Pen5]-enkephalin (DPDPE). J. Pharmacol. Exp. Ther. 2001, 298, 848–856. [Google Scholar]
- Mullick, M.; Sen, D. The Delta Opioid Peptide DADLE Represses Hypoxia-Reperfusion Mimicked Stress Mediated Apoptotic Cell Death in Human Mesenchymal Stem Cells in Part by Downregulating the Unfolded Protein Response and ROS along with Enhanced Anti-Inflammatory Effect. Stem. Cell Rev. Rep. 2018, 14, 558–573. [Google Scholar] [CrossRef]
- Wang, S.; Cao, X.; Duan, Y.; Zhang, G. Delta Opioid Peptide [d-Ala2, d-Leu5] Enkephalin (DADLE) Exerts a Cytoprotective Effect in Astrocytes Exposed to Oxygen-Glucose Deprivation by Inducing Autophagy. Cell Transplant. 2019, 28, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.; Fischli, W.; Lowney, L.I.; Hunkapiller, M.; Hood, L. Porcine pituitary dynorphin: Complete amino acid sequence of the biologically active heptadecapeptide. Proc. Natl. Acad. Sci. USA 1981, 78, 7219–7223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavkin, C.; Bakhit, C.; Weber, E.; Bloom, F.E. Relative contents and concomitant release of prodynorphin neoendorphin-derived peptides in rat hippocampus. Proc. Natl. Acad. Sci. USA 1983, 80, 7669–7673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavkin, C. Dynorphin—Still an extraordinarily potent opioid peptide. Mol. Pharmacol. 2013, 83, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Day, R.; Trujillo, K.A.; Akil, H. Prodynorphin biosynthesis and posttranslational processing. In Opioids. Handbook of Experimental Pharmacology I; Herz, A., Akil, H., Simon, E.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 449–470. [Google Scholar] [CrossRef]
- Dupuy, A.; Lindberg, I.; Zhou, Y.; Akil, H.; Lazure, C.; Chretien, M.; Seidah, N.G.; Day, R. Processing of prodynorphin by the prohormone convertase PC1 results in high molecular weight intermediate forms. Cleavage at a single arginine residue. FEBS Lett. 1994, 337, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Day, R.; Lazure, C.; Basak, A.; Boudreault, A.; Limperis, P.; Dong, W.; Lindberg, I. Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J. Biol. Chem. 1998, 273, 829–836. [Google Scholar] [CrossRef] [Green Version]
- Schwarzer, C. 30 years of dynorphins—New insights on their functions in neuropsychiatric diseases. Pharmacol. Ther. 2009, 123, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Ventura, C.; Guarnieri, C.; Vaona, I.; Campana, G.; Pintus, G.; Spampinato, S. Dynorphin gene expression and release in the myocardial cell. J. Biol. Chem. 1994, 269, 5384–5386. [Google Scholar] [CrossRef]
- Cissom, C.; Paris, J.J.; Shariat-Madar, Z. Dynorphins in Development and Disease: Implications for Cardiovascular Disease. Curr. Mol. Med. 2020, 20, 259–274. [Google Scholar] [CrossRef]
- Schauer, E.; Trautinger, F.; Köck, A.; Schwarz, A.; Bhardwaj, R.; Simon, M.; Ansel, J.C.; Schwarz, T.; Luger, T.A. Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J. Clin. Investig. 1994, 93, 2258–2262. [Google Scholar] [CrossRef] [Green Version]
- Blalock, J.E. Proopiomelanocortin and the immune-neuroendocrine connection. Ann. N. Y. Acad. Sci. 1999, 885, 161–172. [Google Scholar] [CrossRef]
- Chaudhry, S.R.; Gossman, W. Biochemistry, Endorphin; StatPearls: Treasure Island, FL, USA, 2022; Internet. [Google Scholar]
- Giri, A.K.; Hruby, V.J. Investigational peptide and peptidomimetic μ and δ opioid receptor agonists in the relief of pain. Expert. Opin. Investig. Drugs 2014, 23, 227–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meunier, J.C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J.L.; Guillemot, J.C.; Ferrara, P.; Monsarrat, B.; et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 1995, 377, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Reinscheid, R.K.; Nothacker, H.P.; Bourson, A.; Ardati, A.; Henningsen, R.A.; Bunzow, J.R.; Grandy, D.K.; Langen, H.; Monsma, F.J., Jr.; Civelli, O. Orphanin FQ: A neuropeptide that activates an opioidlike G protein-coupled receptor. Science 1995, 270, 792–794. [Google Scholar] [CrossRef] [PubMed]
- Sandin, J.; Georgieva, J.; Silberring, J.; Terenius, L. In vivo metabolism of nociceptin/orphanin FQ in rat hippocampus. Neuroreport 1999, 10, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Sakurada, C.; Sakurada, S.; Orito, T.; Tan-No, K.; Sakurada, T. Degradation of nociceptin (orphanin FQ) by mouse spinal cord synaptic membranes is triggered by endopeptidase-24.11: An in vitro and in vivo study. Biochem. Pharmacol. 2002, 64, 1293–1303. [Google Scholar] [CrossRef]
- Henderson, G.; McKnight, A.T. The orphan opioid receptor and its endogenous ligand—Nociceptin/orphanin FQ. Trends Pharmacol. Sci. 1997, 18, 293–300. [Google Scholar] [CrossRef]
- Nicholson, J.R.; Paterson, S.J.; Menzies, J.R.; Corbett, A.D.; McKnight, A.T. Pharmacological studies on the “orphan” opioid receptor in central and peripheral sites. Can. J. Physiol. Pharmacol. 1998, 76, 304–313. [Google Scholar] [CrossRef]
- Naydenova, E.; Todorov, P.; Zamfirova, R. Synthesis and biological activity of small peptides as NOP and opioid receptors’ ligands: View on current developments. Vitam. Horm. 2015, 97, 123–146. [Google Scholar] [CrossRef]
- Lutz, P.E.; Kieffer, B.L. Opioid receptors: Distinct roles in mood disorders. Trends Neurosci. 2013, 36, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Kreek, M.J.; Levran, O.; Reed, B.; Schlussman, S.D.; Zhou, Y.; Butelman, E.R. Opiate addiction and cocaine addiction: Underlying molecular neurobiology and genetics. J. Clin. Investig. 2012, 122, 3387–3393. [Google Scholar] [CrossRef]
- Pasternak, G.W. Opiate pharmacology and relief of pain. J. Clin. Oncol. 2014, 32, 1655–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosińska, P.; Zielińska, M.; Fichna, J. Expression and physiology of opioid receptors in the gastrointestinal tract. Curr. Opin. Endocrinol Diabetes Obes. 2016, 23, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sharp, B.M. Multiple opioid receptors on immune cells modulate intracellular signaling. Brain Behav. Immun. 2006, 20, 9–14. [Google Scholar] [CrossRef]
- Sobanski, P.; Krajnik, M.; Shaqura, M.; Bloch-Boguslawska, E.; Schäfer, M.; Mousa, S.A. The presence of mu-, delta-, and kappa-opioid receptors in human heart tissue. Heart Vessels 2014, 29, 855–863. [Google Scholar] [CrossRef]
- Al-Hasani, R.; Bruchas, M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011, 115, 1363–1381. [Google Scholar] [CrossRef] [Green Version]
- Kieffer, B.L.; Evans, C.J. Opioid receptors: From binding sites to visible molecules in vivo. Neuropharmacology 2009, 56, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Toll, L.; Bruchas, M.R.; Calo’, G.; Cox, B.M.; Zaveri, N.T. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol Rev. 2016, 68, 419–457. [Google Scholar] [CrossRef]
- Granier, S.; Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Weis, W.I.; Kobilka, B.K. Structure of the δ-opioid receptor bound to naltrindole. Nature 2012, 485, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Manglik, A.; Lin, H.; Aryal, D.K.; McCorvy, J.D.; Dengler, D.; Corder, G.; Levit, A.; Kling, R.C.; Bernat, V.; Hübner, H.; et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 2016, 537, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.A.; Liu, W.; Chun, E.; Katritch, V.; Wu, H.; Vardy, E.; Huang, X.P.; Trapella, C.; Guerrini, R.; Calo, G.; et al. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 2012, 485, 395–399. [Google Scholar] [CrossRef]
- Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G.W.; Vardy, E.; Liu, W.; Thompson, A.A.; Huang, X.P.; Carroll, F.I.; et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 2012, 485, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Williams, J. Basic Opioid Pharmacology. Rev. Pain 2008, 1, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corder, G.; Doolen, S.; Donahue, R.R.; Winter, M.K.; Jutras, B.L.; He, Y.; Hu, X.; Wieskopf, J.S.; Mogil, J.S.; Storm, D.R.; et al. Constitutive μ-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 2013, 341, 1394–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polter, A.M.; Barcomb, K.; Chen, R.W.; Dingess, P.M.; Graziane, N.M.; Brown, T.E.; Kauer, J.A. Constitutive activation of kappa opioid receptors at ventral tegmental area inhibitory synapses following acute stress. Elife 2017, 6, e23785. [Google Scholar] [CrossRef]
- Yao, X.Q.; Malik, R.U.; Griggs, N.W.; Skjærven, L.; Traynor, J.R.; Sivaramakrishnan, S.; Grant, B.J. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins. J. Biol. Chem. 2016, 291, 4742–4753. [Google Scholar] [CrossRef] [Green Version]
- Corbett, A.D.; Paterson, S.J.; Kosterlitz, H.W. Selectivity of Ligands for Opioid Receptors. In Opioids. Handbook of Experimental Pharmacology; Herz, A., Akil, H., Simon, E.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 104, pp. 645–679. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, Y.; Tian, M.; Dehaven, R.N.; Cortesburgos, L.; Mansson, E.; Simonin, F.; Kieffer, B.; Yu, L. Dynorphin A as a potential endogenous ligand for four members of the opioid receptor gene family. J. Pharmacol. Exp. Ther. 1998, 286, 136–141. [Google Scholar]
- He, S.; Nakada, D.; Morrison, S.J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 2009, 25, 377–406. [Google Scholar] [CrossRef] [Green Version]
- Loya, K. Stem Cells. In Handbook of Pharmacogenomics and Stratified Medicine; Padmanabhan, S., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 207–231. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem. Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Chagastelles, P.C.; Nardi, N.B. Biology of stem cells: An overview. Kidney Int. Suppl. 2011, 1, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, E.; Tumbar, T.; Guasch, G. Socializing with the neighbors: Stem cells and their niche. Cell 2004, 116, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.J.; Spradling, A.C. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell 2008, 132, 598–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratwohl, A.; Heim, D. Current role of stem cell transplantation in chronic myeloid leukaemia. Best Pract. Res. Clin. Haematol. 2009, 22, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Hackanson, B.; Waller, C.F. Long-term follow-up of patients with chronic myeloid leukemia having received autologous stem cell transplantation. Ann. Hematol. 2011, 90, 395–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, T.K.; Hung, S.P.; Chuang, C.H.; Chen, C.T.; Shih, Y.R.; Fang, S.C.; Yang, V.W.; Lee, O.K. Stem cell therapy for liver disease: Parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 2008, 134, 2111–2121. [Google Scholar] [CrossRef] [Green Version]
- Pai, M.; Zacharoulis, D.; Milicevic, M.N.; Helmy, S.; Jiao, L.R.; Levicar, N.; Tait, P.; Scott, M.; Marley, S.B.; Jestice, K.; et al. Autologous infusion of expanded mobilized adult bone marrow-derived CD34+ cells into patients with alcoholic liver cirrhosis. Am. J. Gastroenterol. 2008, 103, 1952–1958. [Google Scholar] [CrossRef]
- Menasché, P.; Alfieri, O.; Janssens, S.; McKenna, W.; Reichenspurner, H.; Trinquart, L.; Vilquin, J.T.; Marolleau, J.P.; Seymour, B.; Larghero, J.; et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: First randomized placebo-controlled study of myoblast transplantation. Circulation 2008, 117, 1189–1200. [Google Scholar] [CrossRef] [Green Version]
- Hagège, A.A.; Marolleau, J.P.; Vilquin, J.T.; Alhéritière, A.; Peyrard, S.; Duboc, D.; Abergel, E.; Messas, E.; Mousseaux, E.; Schwartz, K.; et al. Skeletal myoblast transplantation in ischemic heart failure: Long-term follow-up of the first phase I cohort of patients. Circulation 2006, 114, I108–I113. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019, 8, 886. [Google Scholar] [CrossRef] [Green Version]
- Turinetto, V.; Vitale, E.; Giachino, C. Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int. J. Mol. Sci. 2016, 17, 1164. [Google Scholar] [CrossRef]
- Wagner, W.; Bork, S.; Horn, P.; Krunic, D.; Walenda, T.; Diehlmann, A.; Benes, V.; Blake, J.; Huber, F.X.; Eckstein, V.; et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS ONE 2009, 4, e5846. [Google Scholar] [CrossRef]
- Hauser, K.F.; Houdi, A.A.; Turbek, C.S.; Elde, R.P.; Maxson, W., 3rd. Opioids intrinsically inhibit the genesis of mouse cerebellar granule neuron precursors in vitro: Differential impact of mu and delta receptor activation on proliferation and neurite elongation. Eur. J. Neurosci. 2000, 12, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Rozenfeld-Granot, G.; Toren, A.; Amariglio, N.; Nagler, A.; Rosenthal, E.; Biniaminov, M.; Brok-Simoni, F.; Rechavi, G. MAP kinase activation by mu opioid receptor in cord blood CD34(+)CD38(-) cells. Exp. Hematol. 2002, 30, 473–480. [Google Scholar] [CrossRef]
- Ai, W.; Gong, J.; Yu, L. MAP kinase activation by mu opioid receptor involves phosphatidylinositol 3-kinase but not the cAMP/PKA pathway. FEBS Lett. 1999, 456, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Bonni, A.; Brunet, A.; West, A.E.; Datta, S.R.; Takasu, M.A.; Greenberg, M.E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999, 286, 1358–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, W.S.; Hu, S.; Herr, G.; Ni, H.T.; Rock, R.B.; Gekker, G.; Lokensgard, J.R.; Peterson, P.K. Human neural precursor cells express functional kappa-opioid receptors. J. Pharmacol. Exp. Ther. 2007, 322, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Shoae-Hassani, A.; Sharif, S.; Tabatabaei, S.A.; Verdi, J. Could the endogenous opioid, morphine, prevent neural stem cell proliferation? Med. Hypotheses 2011, 76, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Amini, H.; Ahmadiani, A. In vivo evidence for an increase in 5alpha-reductase activity in the rat central nervous system following morphine exposure. Int. J. Dev. Neurosci. 2005, 23, 621–626. [Google Scholar] [CrossRef]
- Ceccarelli, I.; De Padova, A.M.; Fiorenzani, P.; Massafra, C.; Aloisi, A.M. Single opioid administration modifies gonadal steroids in both the CNS and plasma of male rats. Neuroscience 2006, 140, 929–937. [Google Scholar] [CrossRef]
- Aloisi, A.M.; Aurilio, C.; Bachiocco, V.; Biasi, G.; Fiorenzani, P.; Pace, M.C.; Paci, V.; Pari, G.; Passavanti, G.; Ravaioli, L.; et al. Endocrine consequences of opioid therapy. Psychoneuroendocrinology 2009, 34, S162–S168. [Google Scholar] [CrossRef]
- Shoae-Hassani, A.; Sharif, S.; Verdi, J. A 5α-reductase inhibitor, finasteride, increases differentiation and proliferation of embryonal carcinoma cell-derived-neural cells. Med. Hypotheses 2011, 76, 11–13. [Google Scholar] [CrossRef]
- Singhal, P.C.; Sharma, P.; Sanwal, V.; Prasad, A.; Kapasi, A.; Ranjan, R.; Franki, N.; Reddy, K.; Gibbons, N. Morphine modulates proliferation of kidney fibroblasts. Kidney Int. 1998, 53, 350–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willner, D.; Cohen-Yeshurun, A.; Avidan, A.; Ozersky, V.; Shohami, E.; Leker, R.R. Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors. PLoS ONE 2014, 9, e103043. [Google Scholar] [CrossRef] [PubMed]
- Salarinasab, S.; Nourazarian, A.; Nikanfar, M.; Abdyazdani, N.; Kazemi, M.; Feizy, N.; Rahbarghazi, R. Impact of morphine on the expression of insulin receptor and protein levels of insulin/IGFs in rat neural stem cells. Neurosci. Lett. 2017, 660, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.R.; Liu, Y.X. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 2015, 149, R159–R167. [Google Scholar] [CrossRef] [Green Version]
- Eto, K.; Shiotsuki, M.; Abe, S. Nociceptin induces Rec8 phosphorylation and meiosis in postnatal murine testes. Endocrinology 2013, 154, 2891–2899. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Iwai, T.; Yokota, T.; Yamashita, M. Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J. Cell Sci. 2003, 116, 2781–2790. [Google Scholar] [CrossRef] [Green Version]
- Reddy, L.V.K.; Sen, D. DADLE enhances viability and anti-inflammatory effect of human MSCs subjected to ‘serum free’ apoptotic condition in part via the DOR/PI3K/AKT pathway. Life Sci. 2017, 191, 195–204. [Google Scholar] [CrossRef]
- Suo, C.; Sun, L.; Yang, S. Alpinetin activates the δ receptor instead of the κ and μ receptor pathways to protect against rat myocardial cell apoptosis. Exp. Ther. Med. 2014, 7, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Potier, E.; Ferreira, E.; Meunier, A.; Sedel, L.; Logeart-Avramoglou, D.; Petite, H. Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 2007, 13, 1325–1331. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wang, C.; Sun, Y.; Lu, B.; Cui, J.; Dong, N.; Zhang, M.; Liu, Y.; Yu, B. Exendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the cAMP/PKA signaling pathway and the attenuation of ER stress. Int. J. Mol. Med. 2016, 37, 889–900. [Google Scholar] [CrossRef] [Green Version]
- Moya, A.; Larochette, N.; Paquet, J.; Deschepper, M.; Bensidhoum, M.; Izzo, V.; Kroemer, G.; Petite, H.; Logeart-Avramoglou, D. Quiescence Preconditioned Human Multipotent Stromal Cells Adopt a Metabolic Profile Favorable for Enhanced Survival under Ischemia. Stem. Cells 2017, 35, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Mullick, M.; Venkatesh, K.; Sen, D. d-Alanine 2, Leucine 5 Enkephaline (DADLE)-mediated DOR activation augments human hUCB-BFs viability subjected to oxidative stress via attenuation of the UPR. Stem. Cell Res. 2017, 22, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Jaimes, E.A.; Sweeney, C.; Raij, L. Effects of the reactive oxygen species hydrogen peroxide and hypochlorite on endothelial nitric oxide production. Hypertension 2001, 38, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Sánchez, L.M.; Jimenez, C.; Valverde, A.; Hernandez, V.; Peñarando, J.; Martinez, A.; Lopez-Pedrera, C.; Muñoz-Castañeda, J.R.; De la Haba-Rodríguez, J.R.; Aranda, E.; et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS ONE 2014, 9, e99143. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wang, X.; Meister, E.A.; Gong, K.R.; Yan, S.C.; Lu, G.W.; Ji, X.M.; Shao, G. The effects of CoCl2 on HIF-1α protein under experimental conditions of autoprogressive hypoxia using mouse models. Int. J. Mol. Sci. 2014, 15, 10999–11012. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Hsu, M.S.; Pintar, J.E. Developmental expression of the mu, kappa, and delta opioid receptor mRNAs in mouse. J. Neurosci. 1998, 18, 2538–2549. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Khurshid, N.; Kumar, P.; Iyengar, S. Expression of delta- and mu-opioid receptors in the ventricular and subventricular zones of the developing human neocortex. Neurosci. Res. 2008, 61, 257–270. [Google Scholar] [CrossRef]
- Kim, E.; Clark, A.L.; Kiss, A.; Hahn, J.W.; Wesselschmidt, R.; Coscia, C.J.; Belcheva, M.M. Mu- and kappa-opioids induce the differentiation of embryonic stem cells to neural progenitors. J. Biol. Chem. 2006, 281, 33749–33760. [Google Scholar] [CrossRef] [Green Version]
- Boulton, T.G.; Nye, S.H.; Robbins, D.J.; Ip, N.Y.; Radziejewska, E.; Morgenbesser, S.D.; DePinho, R.A.; Panayotatos, N.; Cobb, M.H.; Yancopoulos, G.D. ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991, 65, 663–675. [Google Scholar] [CrossRef]
- Cameron, H.A.; Hazel, T.G.; McKay, R.D. Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 1998, 36, 287–306. [Google Scholar] [CrossRef]
- Hahn, J.W.; Jagwani, S.; Kim, E.; Rendell, V.R.; He, J.; Ezerskiy, L.A.; Wesselschmidt, R.; Coscia, C.J.; Belcheva, M.M. Mu and kappa opioids modulate mouse embryonic stem cell-derived neural progenitor differentiation via MAP kinases. J. Neurochem. 2010, 112, 1431–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billon, N.; Jolicoeur, C.; Ying, Q.L.; Smith, A.; Raff, M. Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ESCs. J. Cell Sci. 2002, 115, 3657–3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, T.; Perez-Bouza, A.; Klein, K.; Brüstle, O. Generation of purified oligodendrocyte progenitors from embryonic stem cells. FASEB J. 2005, 19, 112–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narita, M.; Kuzumaki, N.; Miyatake, M.; Sato, F.; Wachi, H.; Seyama, Y.; Suzuki, T. Role of delta-opioid receptor function in neurogenesis and neuroprotection. J. Neurochem. 2006, 97, 1494–14505. [Google Scholar] [CrossRef]
- Hafizi, M.; Bakhshandeh, B.; Soleimani, M.; Atashi, A. Exploring the enkephalinergic differentiation potential in adult stem cells for cell therapy and drug screening implications. Vitr. Cell Dev. Biol. Anim. 2012, 48, 562–569. [Google Scholar] [CrossRef]
- Trivedi, M.; Zhang, Y.; Lopez-Toledano, M.; Clarke, A.; Deth, R. Differential neurogenic effects of casein-derived opioid peptides on neuronal stem cells: Implications for redox-based epigenetic changes. J. Nutr. Biochem. 2016, 37, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Fan, W.; Zhang, Y.; Loh, H.H.; Law, P.Y. Kappa opioid receptor controls neural stem cell differentiation via a miR-7a/Pax6 dependent pathway. Stem. Cells 2021, 39, 600–616. [Google Scholar] [CrossRef]
- Skelly, R.R.; Fata, J.; Sharkis, S.J.; Sensenbrenner, L.; Ansari, A.A. Neuropeptide modulation of murine erythropoiesis. Ann. Clin. Lab. Sci. 1987, 17, 324–330. [Google Scholar]
- Liu, J.; Chen, W.; Meng, J.; Lu, C.; Wang, E.; Shan, F. Induction on differentiation and modulation of bone marrow progenitor of dendritic cell by methionine enkephalin (MENK). Cancer Immunol. Immunother. 2012, 61, 1699–1711. [Google Scholar] [CrossRef]
- Zagon, I.S.; Wu, Y.; McLaughlin, P.J. Opioid growth factor-dependent DNA synthesis in the neonatal rat aorta. Am. J. Physiol. 1996, 270, R22–R32. [Google Scholar] [CrossRef]
- Wu, Y.; McLaughlin, P.J.; Zagon, I.S. Ontogeny of the opioid growth factor, [Met5]-enkephalin, preproenkephalin gene expression, and the zeta opioid receptor in the developing and adult aorta of rat. Dev. Dyn. 1998, 211, 327–337. [Google Scholar] [CrossRef]
- Blebea, J.; Mazo, J.E.; Kihara, T.K.; Vu, J.H.; McLaughlin, P.J.; Atnip, R.G.; Zagon, I.S. Opioid growth factor modulates angiogenesis. J. Vasc. Surg. 2000, 32, 364–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, P.E. Stress-specific opioid modulation of haemodynamic counter-regulation. Clin. Exp. Pharmacol. Physiol. 2002, 29, 248–253. [Google Scholar] [CrossRef]
- Qu, Z.X.; Xu, J.; Hogan, E.L.; Hsu, C.Y. Effect of U-50488h, a selective opioid kappa receptor agonist, on vascular injury after spinal cord trauma. Brain Res. 1993, 626, 45–49. [Google Scholar] [CrossRef]
- Yamamizu, K.; Furuta, S.; Katayama, S.; Narita, M.; Kuzumaki, N.; Imai, S.; Nagase, H.; Suzuki, T.; Narita, M.; Yamashita, J.K. The κ opioid system regulates endothelial cell differentiation and pathfinding in vascular development. Blood 2011, 118, 775–785. [Google Scholar] [CrossRef] [Green Version]
- Yamamizu, K.; Kawasaki, K.; Katayama, S.; Watabe, T.; Yamashita, J.K. Enhancement of vascular progenitor potential by protein kinase A through dual induction of Flk-1 and Neuropilin-1. Blood 2009, 114, 3707–3716. [Google Scholar] [CrossRef] [Green Version]
- Abdyazdani, N.; Nourazarian, A.; Nozad Charoudeh, H.; Kazemi, M.; Feizy, N.; Akbarzade, M.; Mehdizadeh, A.; Rezaie, J.; Rahbarghazi, R. The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties. Neurosci. Lett. 2017, 636, 205–212. [Google Scholar] [CrossRef]
- Ventura, C.; Bastagli, L.; Bernardi, P.; Caldarera, C.M.; Guarnieri, C. Opioid receptors in rat cardiac sarcolemma: Effect of phenylephrine and isoproterenol. Biochim. Biophys. Acta 1989, 987, 69–74. [Google Scholar] [CrossRef]
- Ventura, C.; Guarnieri, C.; Stefanelli, C.; Cirielli, C.; Lakatta, E.G.; Capogrossi, M.C. Comparison between alpha-adrenergic- and K-opioidergic-mediated inositol (1,4,5) P3/inositol (1,3,4,5) P4 formation in adult cultured rat ventricular cardiomyocytes. Biochem. Biophys. Res. Commun. 1991, 179, 972–978. [Google Scholar] [CrossRef]
- Ventura, C.; Capogrossi, M.C.; Spurgeon, H.A.; Lakatta, E.G. Kappa-opioid peptide receptor stimulation increases cytosolic pH and myofilament responsiveness to Ca2+ in cardiac myocytes. Am. J. Physiol. 1991, 261, H1671–H1674. [Google Scholar] [CrossRef]
- Ventura, C.; Spurgeon, H.; Lakatta, E.G.; Guarnieri, C.; Capogrossi, M.C. Kappa and delta opioid receptor stimulation affects cardiac myocyte function and Ca2+ release from an intracellular pool in myocytes and neurons. Circ. Res. 1992, 70, 66–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clô, C.; Muscari, C.; Tantini, B.; Pignatti, C.; Bernardi, P.; Ventura, C. Reduced mechanical activity of perfused rat heart following morphine or enkephalin peptides administration. Life Sci. 1985, 37, 1327–1333. [Google Scholar] [CrossRef]
- Ventura, C.; Muscari, C.; Spampinato, S.; Bernardi, P.; Caldarera, C.M. Effects of naloxone on the mechanical activity of isolated rat hearts perfused with morphine or opioid peptides. Peptides 1987, 8, 695–699. [Google Scholar] [CrossRef]
- Laurent, S.; Marsh, J.D.; Smith, T.W. Enkephalins have a direct positive inotropic effect on cultured cardiac myocytes. Proc. Natl. Acad. Sci. USA 1985, 82, 5930–5934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, S.; Marsh, J.D.; Smith, T.W. Enkephalins increase cyclic adenosine monophosphate content, calcium uptake, and contractile state in cultured chick embryo heart cells. J. Clin. Investig. 1986, 77, 1436–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caffrey, J.L.; Gaugl, J.F.; Jones, C.E. Local endogenous opiate activity in dog myocardium: Receptor blockade with naloxone. Am. J. Physiol. 1985, 248, H382–H388. [Google Scholar] [CrossRef]
- Howells, R.D.; Kilpatrick, D.L.; Bailey, L.C.; Noe, M.; Udenfriend, S. Proenkephalin mRNA in rat heart. Proc. Natl. Acad. Sci. USA 1986, 83, 1960–1963. [Google Scholar] [CrossRef] [Green Version]
- Springhorn, J.P.; Claycomb, W.C. Preproenkephalin mRNA expression in developing rat heart and in cultured ventricular cardiac muscle cells. Biochem. J. 1989, 258, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Ventura, C.; Maioli, M.; Pintus, G.; Posadino, A.M.; Tadolini, B. Nuclear opioid receptors activate opioid peptide gene transcription in isolated myocardial nuclei. J. Biol. Chem. 1998, 273, 13383–13386. [Google Scholar] [CrossRef] [Green Version]
- Ventura, C.; Maioli, M. Opioid peptide gene expression primes cardiogenesis in embryonal pluripotent stem cells. Circ. Res. 2000, 87, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Maioli, M.; Asara, Y.; Pintus, A.; Ninniri, S.; Bettuzzi, S.; Scaltriti, M.; Galimi, F.; Ventura, C. Creating prodynorphin-expressing stem cells alerted for a high-throughput of cardiogenic commitment. Regen. Med. 2007, 2, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Ventura, C.; Zinellu, E.; Maninchedda, E.; Fadda, M.; Maioli, M. Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ Res. 2003, 92, 617–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura, C.; Zinellu, E.; Maninchedda, E.; Maioli, M. Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ. Res. 2003, 92, 623–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlen, C.; Villeneuve, L.R.; Allen, B.G. Using caged ligands to study intracrine endothelin signaling in intact cardiac myocytes. Methods Mol. Biol. 2015, 1234, 31–41. [Google Scholar] [CrossRef]
- Ventura, C.; Maioli, M.; Asara, Y.; Santoni, D.; Scarlata, I.; Cantoni, S.; Perbellini, A. Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J. Biol. Chem. 2004, 279, 23574–23579. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.W.; Kavaliers, M.; Prato, F.S.; Ossenkopp, K.P. Pulsed magnetic field induced “analgesia” in the land snail, Cepaea nemoralis, and the effects of mu, delta, and kappa opioid receptor agonists/antagonists. Peptides 1997, 18, 703–709. [Google Scholar] [CrossRef]
- Vorobyov, V.V.; Sosunov, E.A.; Kukushkin, N.I.; Lednev, V.V. Weak combined magnetic field affects basic and morphine-induced rat’s EEG. Brain Res. 1998, 781, 182–187. [Google Scholar] [CrossRef]
- Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W. Effects of a 60 Hz magnetic field on central cholinergic systems of the rat. Bioelectromagnetics 1993, 14, 5–15. [Google Scholar] [CrossRef]
- Ventura, C.; Maioli, M.; Pintus, G.; Gottardi, G.; Bersani, F. Elf-pulsed magnetic fields modulate opioid peptide gene expression in myocardial cells. Cardiovasc. Res. 2000, 45, 1054–1064. [Google Scholar] [CrossRef] [Green Version]
- Ventura, C.; Maioli, M.; Asara, Y.; Santoni, D.; Mesirca, P.; Remondini, D.; Bersani, F. Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J. 2005, 19, 155–157. [Google Scholar] [CrossRef]
- Maioli, M.; Rinaldi, S.; Santaniello, S.; Castagna, A.; Pigliaru, G.; Gualini, S.; Fontani, V.; Ventura, C. Radiofrequency energy loop primes cardiac, neuronal, and skeletal muscle differentiation in mouse embryonic stem cells: A new tool for improving tissue regeneration. Cell Transplant. 2012, 21, 1225–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maioli, M.; Rinaldi, S.; Santaniello, S.; Castagna, A.; Pigliaru, G.; Delitala, A.; Bianchi, F.; Tremolada, C.; Fontani, V.; Ventura, C. Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a nonenzymatic method and device: A novel approach to multipotency. Cell Transpl. 2014, 23, 1489–1500. [Google Scholar] [CrossRef] [PubMed]
- Feridooni, T.; Pasumarthi, K.B.S. Fractionation of embryonic cardiac progenitor cells and evaluation of their differentiation potential. Differentiation 2019, 105, 1489–1500. [Google Scholar] [CrossRef] [PubMed]
- Šínová, R.; Kudová, J.; Nešporová, K.; Karel, S.; Šuláková, R.; Velebný, V.; Kubala, L. Opioid receptors and opioid peptides in the cardiomyogenesis of mouse embryonic stem cells. J. Cell Physiol. 2019, 234, 13209–13219. [Google Scholar] [CrossRef]
Opioids/Agonists | Pre-Treatment | Antagonists | Opioid Receptor | Cell Type | Biological Effects | Ref. |
---|---|---|---|---|---|---|
Met-enkephalin Morphine (10−6 M) | Naloxone (3 × 10−6 M) | DOR MOR | NPCs (from EGL of postnatal 5- and 6-day-old mice) | Morphine significantly reduced DNA content; this effect was attenuated by naloxone co-administration. Met-enkephalin did not alter DNA synthesis. Opioids did not affect cell viability. | [77] | |
Met-enkephalin (10−6 or 10−5 M) | MOR | hCB-CD34+ and hPB-CD34+ cells | hCB-CD34+ expressed MOR more than hPB-CD34+ cells. In treated hCB-CD34+ cells, phospho-MAPK was increased by 4.7- to 6.1-fold compared to the untreated cells; the increase of phospho-p38 was moderate. In hCB-CD34+, met-enkephalin did not reducethe apoptosis induced by irradiation. | [78] | ||
Dynorphin-A[1–17] Dynorphin-A[2–17] U50,488 (10−14 to 10−8 M) | Nor-BNI (10−6 M) | KOR | NPCs (from 7- to 9-week-old human fetal brain tissue) | Dynorphin-A[1–17] and U50,488 stimulated cell proliferation and migration in a dose-dependent manner. | [81] | |
Morphine | MOR | NSCs | Theoretical hypothesis: since morphine reduces testosterone levels, increases DHT levels, andover-expresses p53 gene, it might prevent NSC proliferation. | [82] | ||
Morphine sulfate (10−6 to 1.3 × 10−5 M) | Naloxone | MOR | NPCs (from 14-day-oldmouse embryos) | Morphine decreased proliferation of NPCs and induced the caspase-3 activity in a dose-dependent manner. Morphine induced neuronal differentiation of NPCs. | [88] | |
Nociceptin | NOP | Mouse SSCs and spermatocytes | Nociceptin is an upstream Sertoli cell transcription factor that regulates SSC self-renewal and spermatocyte meiosis. | [90] | ||
Morphine (10−4 M) | Naloxone (5 × 10−5 M) | MOR | Rat NSCs | Morphine decreased NSC growth and increased apoptosis. Morphine reduced the secretion of insulin and insulin-like growth factors and downregulated insulin receptor expression. | [89] | |
DADLE (10−7 M) | Serum deprivation | Naltrindole | DOR | hUCB-MSCs | DADLE increased anti-apoptotic Bcl-2, decreased pro-apoptotic Bax/Bad, decreased the activated caspase-3, upregulated PI3K subunit p110γ, and activated Akt. DADLE upregulated the release of anti-inflammatory cytokines (IL-4, IL-10, and TGF-β) and downregulated the secretion of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1). | [93] |
DADLE (10−7 M) | H2O2 (6 × 10−4 M) | DOR | hUCB-MSCs | DADLE increased cell viability, upregulated the anti-apoptotic protein Bcl-2,and suppressed the pro-apoptotic proteins Bax/Bad. DADLE reduced intracellular ROS levels and AP sites. DADLE downregulated UPR genes: IRE-1α, BiP, PERK, ATF-4, and CHOP. | [98] | |
DADLE (10−7 M) | H/R induced by CoCl2 (7.5 × 10−4 M) | Naltrindole | DOR | hUCB-MSCs | DADLE increased cell viability and reduced intracellular ROS levels. DADLE suppressed mitochondrial complex 1 activity. DADLE upregulated the anti-apoptotic gene Bcl-2 while downregulating the pro-apoptotic gene Bax and UPR genes PERK, IRE-1α, BiP, PERK, and ATF-6. DADLE upregulated the release of anti-inflammatory cytokines (IL-4, IL-10, and TGF-β) and downregulated the secretion of pro-inflammatory cytokines (TNF-α, IL-6, IFN-γ, and IL-1β). | [21] |
Opioids/Agonists | Pre-Treatment | Antagonists | Opioid Receptor | Cell Type | Biological Effects | Ref. |
---|---|---|---|---|---|---|
Neural Differentiation | ||||||
DAMGO U69,593 (10−7–10−6 M) | RA neuralinduction | KOR-1 MOR-1 | ESCs (from mouse blastocyst) ESCs (from ICM of 3.5-day-old mouse) | MOR-1 and KOR-1 were expressed in undifferentiated ESCs and in RA-induced ESC-derived NPCs. Both opioids induced ESC neuronal differentiation activating ERK pathway. | [104] | |
DAMGO U69,593 (10−6 M) | RA neural induction | KOR MOR | ESCs (from mouse blastocyst) | Opioids reduced neurogenesis and astrogenesis in RA-induced ESC-NPCs through p38 MAPK and ERK pathways, respectively. Opioids stimulated oligodendrogenesis via both ERK and p38 signaling pathways. | [107] | |
DAMGO SNC80 U50,488H (10−7–3 × 10−5 M) | DOR KOR MOR | MEB5 (from 14.5-day-old mouse forebrains) | Only the DOR agonist SNC80 promoted neural differentiation. | [110] | ||
Neural induction | Human USSCs and BM-MSCs | Neural induction increased enkephalinergic markers (Ikaros, CREBZF, and PENK), especially in USSC-derived neuron-like cells. PDYN expression was enhanced in USSC-derived neuron-like cells. | [111] | |||
Dynorphin-A U50,488H (10−6 M) | Neural induction with opioid/ agonist | Nor-BNI (10−5 M) | KOR | NSCs (from 8-week-old mouse hippocampus) | NSCs expressed high levels of KOR. Opioid treatment decreased neurogenesis by modulating Pax6/Neurog2/NeuroD1 activities via upregulation of miR-7a expression. Opioid treatment did not alter astrogenesis and oligodendrogenesis. Opioid treatment did not affect proliferation and apoptosis. | [113] |
Morphine (10−5 M) | Neural induction with opioid | NSCs (from postnatal p0 mouse hippocampus) | Morphine promoted neurogenesis, increased apoptosis, and decreased total cell number during the later stages of differentiation. Morphine increased glutathione/glutathione disulfide ratio and decreased S-adenosylmethionine/S-adenosylhomocysteine ratio. | [112] | ||
Hematopoietic and Vascular Differentiation | ||||||
Beta-endorphin (1 to 1000 ng/mL) Dynorphin (1 ng/mL) Leu-enkephalin Met-enkephalin (100 ng/mL) | EP (0.4 U/mL) induced erythropoiesis with opioid | Mouse BM progenitor cells | In the presence of EP, opioids enhanced BM progenitor differentiation into CFU-e. | [114] | ||
TRK820 U50,488H (10−5 M) | Vascular induction | KOR | ESstA-ROSA (engineered mouse ESCs) | KOR agonists inhibited EC differentiation and 3D vascular formation in ESC-derived vascular progenitor cells. KOR agonists decreased the expression of Flk1 and NRP1 through inhibition of cAMP/PKA signaling in vascular progenitor cells. | [121] | |
Met-enkephalin (10−14 to 10−8 M) | KOR DOR | Mouse BM progenitor cells | Met-enk upregulated the expression of KOR and DOR in BM-derived DCs. Met-enk induced BM-derived DCs to differentiate mainly towards the mDC subtype. Met-enk increased the expression of MHC class II molecules and the release of pro-inflammatory cytokines (IL-12p70, TNF-α). | [115] | ||
Hematopoietic and Vascular Differentiation | ||||||
Morphine (10−4 M) | Naloxone (10−4 M) | Rat NSCs | Morphine reduced survival and clonogenicity, negatively affecting tubulogenesis properties of NSCs by the inhibition of neuro-angiogenesis trans-differentiation. | [123] | ||
Cardiac Differentiation | ||||||
Dynorphin-B (10−9 to 10−6 M) | DMSO 1% | KOR | Mouse ESCs | DMSO increased PDYN gene expression and dynorphin-B synthesis and secretion. Dynorphin-B elicited GATA-4 and Nkx-2.5 gene transcription and enhanced gene and protein expression of α-MHC and MLC-2V. | [136] | |
Dynorphin-B (10−8 to 10−6 M) | Cardiac induction | KOR | GTR1-ESCs (engineered mouse ESCs) | ESC plasma membranes and nuclei expressed KOR-specific opioid binding sites. ESC-derived cardiomyocytes showed an increase in dynorphin-B around the nucleus. Dynorphin-B induced an increase of GATA-4, Nkx-2.5, and PDYN gene expressions and promoted cardiogenesis by PKC signaling. | [138,139] | |
HBR cardiac induction (0.75 mg/mL) | GTR1-ESCs (engineered mouse ESCs) | HBR-induced ESC-derived cardiomyocytes enhanced GATA-4, Nkx-2.5, and PDYN gene transcriptions and the intracellular level of dynorphin-B. | [141] | |||
ELF-MF exposition during cardiac induction (50 Hz, 0.8 m Trms) | GTR1-ESCs (engineered mouse ESCs) | ELF-MF spontaneously induced cardiogenesis, upregulating GATA-4, Nkx-2.5, and PDYN gene expression and enhancing intracellular levels and secretion of dynorphin-B. | [146] | |||
Cardiac Differentiation | ||||||
REAC exposition during cardiac induction (MF of 2.4 and 5.5 GHz) | Mouse ESCs and human ASCs | Both SCs committed to cardiac lineage and exposed to REAC increased the expression of GATA-4, Nkx-2.5, and PDYN gene. | [147,148] | |||
Dynorphin-B (10−7 M) | Cardiac induction | CPCs (from 11.5-day-oldembryonic mouseventricles) | Dynorphin B promoted CPC differentiation into cardiomyocytes. | [149] | ||
Dynorphin-A Dynorphin-B Met-enkephalins Leu-enkephalins (10−5 M) | Cardiac induction | DOR KOR | Mouse ESCs | Both DOR and KOR increased during ESC differentiation. Dynorphin-B inhibited Oct-4 and increased Nkx-2.5 gene expression. Dynorphin-A, met-enkephalins, and leu-enkephalinsdid not affect ESC differentiation. | [150] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrocelli, G.; Pampanella, L.; Abruzzo, P.M.; Ventura, C.; Canaider, S.; Facchin, F. Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. Int. J. Mol. Sci. 2022, 23, 3819. https://doi.org/10.3390/ijms23073819
Petrocelli G, Pampanella L, Abruzzo PM, Ventura C, Canaider S, Facchin F. Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. International Journal of Molecular Sciences. 2022; 23(7):3819. https://doi.org/10.3390/ijms23073819
Chicago/Turabian StylePetrocelli, Giovannamaria, Luca Pampanella, Provvidenza M. Abruzzo, Carlo Ventura, Silvia Canaider, and Federica Facchin. 2022. "Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue" International Journal of Molecular Sciences 23, no. 7: 3819. https://doi.org/10.3390/ijms23073819
APA StylePetrocelli, G., Pampanella, L., Abruzzo, P. M., Ventura, C., Canaider, S., & Facchin, F. (2022). Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. International Journal of Molecular Sciences, 23(7), 3819. https://doi.org/10.3390/ijms23073819