Dimerization Activity of a Disordered N-Terminal Domain from Drosophila CLAMP Protein
Abstract
:1. Introduction
2. Results
2.1. N-Terminal Domain of CLAMP Protein Forms Dimers
2.2. N-Terminal Domain of CLAMP Protein Is Disordered
2.3. N-Terminal Domain of CLAMP Protein from Apis mellifera Is a Monomer
2.4. Integrity of Dimerization Activity of CLAMP N-Terminal Domain Is Essential for Its Functions In Vivo
3. Discussion
4. Materials and Methods
4.1. Plasmids and Cloning
4.2. Yeast Two-Hybrid Assay (Y2H)
4.3. Fly Crosses, Transgenic Lines, and Polytene Chromosome Staining
4.4. Protein Expression and Purification
4.5. NMR Spectroscopy
4.6. Pull-Down Assays and Chemical Crosslinking
4.7. SAXS Data Collection and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The Human Transcription Factors. Cell 2018, 175, 598–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Qin, J.; Zhou, X.; Zhang, Y. Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond. Int. J. Mol. Sci. 2018, 19, 3691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, F.; Farnung, L.; Kaasinen, E.; Sahu, B.; Yin, Y.; Wei, B.; Dodonova, S.O.; Nitta, K.R.; Morgunova, E.; Taipale, M.; et al. The interaction landscape between transcription factors and the nucleosome. Nature 2018, 562, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Fedotova, A.A.; Bonchuk, A.N.; Mogila, V.A.; Georgiev, P.G. C2H2 Zinc Finger Proteins: The Largest but Poorly Explored Family of Higher Eukaryotic Transcription Factors. Acta Nat. 2017, 9, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Maksimenko, O.G.; Fursenko, D.V.; Belova, E.V.; Georgiev, P.G. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Nat. 2021, 13, 31–46. [Google Scholar] [CrossRef]
- Kyrchanova, O.; Georgiev, P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int. J. Mol. Sci. 2021, 22, 671. [Google Scholar] [CrossRef]
- Bonchuk, A.; Boyko, K.; Fedotova, A.; Nikolaeva, A.; Lushchekina, S.; Khrustaleva, A.; Popov, V.; Georgiev, P. Structural basis of diversity and homodimerization specificity of zinc-finger-associated domains in Drosophila. Nucleic Acids Res. 2021, 49, 2375–2389. [Google Scholar] [CrossRef]
- Perez-Torrado, R.; Yamada, D.; Defossez, P.A. Born to bind: The BTB protein-protein interaction domain. Bioessays 2006, 28, 1194–1202. [Google Scholar] [CrossRef]
- Liang, Y.; Huimei Hong, F.; Ganesan, P.; Jiang, S.; Jauch, R.; Stanton, L.W.; Kolatkar, P.R. Structural analysis and dimerization profile of the SCAN domain of the pluripotency factor Zfp206. Nucleic Acids Res 2012, 40, 8721–8732. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.R.; Lohr, U.; Jackle, H. Lineage-specific expansion of the zinc finger associated domain ZAD. Mol. Biol. Evol. 2007, 24, 1934–1943. [Google Scholar] [CrossRef] [Green Version]
- Siggs, O.M.; Beutler, B. The BTB-ZF transcription factors. Cell Cycle 2012, 11, 3358–3369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonchuk, A.; Kamalyan, S.; Mariasina, S.; Boyko, K.; Popov, V.; Maksimenko, O.; Georgiev, P. N-terminal domain of the architectural protein CTCF has similar structural organization and ability to self-association in bilaterian organisms. Sci. Rep. 2020, 10, 2677. [Google Scholar] [CrossRef] [PubMed]
- Bonchuk, A.; Maksimenko, O.; Kyrchanova, O.; Ivlieva, T.; Mogila, V.; Deshpande, G.; Wolle, D.; Schedl, P.; Georgiev, P. Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biol. 2015, 13, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, J.F.; Corces, V.G. Regulation of 3D chromatin organization by CTCF. Curr. Opin. Genet. Dev. 2021, 67, 33–40. [Google Scholar] [CrossRef]
- Musselman, C.A.; Kutateladze, T.G. Characterization of functional disordered regions within chromatin-associated proteins. iScience 2021, 24, 102070. [Google Scholar] [CrossRef]
- Tantos, A.; Han, K.H.; Tompa, P. Intrinsic disorder in cell signaling and gene transcription. Mol. Cell. Endocrinol. 2012, 348, 457–465. [Google Scholar] [CrossRef]
- Uversky, V.N.; Finkelstein, A.V. Life in Phases: Intra- and Inter- Molecular Phase Transitions in Protein Solutions. Biomolecules 2019, 9, 842. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Agarwal, P.; Kumar, A. Disordered regions tune order in chromatin organization and function. Biophys. Chem. 2022, 281, 106716. [Google Scholar] [CrossRef]
- Soruco, M.M.; Larschan, E. A new player in X identification: The CLAMP protein is a key factor in Drosophila dosage compensation. Chromosom. Res. 2014, 22, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Soruco, M.M.; Chery, J.; Bishop, E.P.; Siggers, T.; Tolstorukov, M.Y.; Leydon, A.R.; Sugden, A.U.; Goebel, K.; Feng, J.; Xia, P.; et al. The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation. Genes Dev. 2013, 27, 1551–1556. [Google Scholar] [CrossRef] [Green Version]
- Samata, M.; Akhtar, A. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs. Annu. Rev. Biochem. 2018, 87, 323–350. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, M.I.; Hilfiker, A.; Lucchesi, J.C. Dosage Compensation in Drosophila-a Model for the Coordinate Regulation of Transcription. Genetics 2016, 204, 435–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikhonova, E.; Fedotova, A.; Bonchuk, A.; Mogila, V.; Larschan, E.N.; Georgiev, P.; Maksimenko, O. The simultaneous interaction of MSL2 with CLAMP and DNA provides redundancy in the initiation of dosage compensation in Drosophila males. Development 2019, 146, dev179663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albig, C.; Tikhonova, E.; Krause, S.; Maksimenko, O.; Regnard, C.; Becker, P.B. Factor cooperation for chromosome discrimination in Drosophila. Nucleic Acids Res. 2019, 47, 1706–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, R.; Jagtap, P.K.A.; Thomae, A.W.; Campos Sparr, A.; Forne, I.; Hennig, J.; Straub, T.; Becker, P.B. Divergent evolution toward sex chromosome-specific gene regulation in Drosophila. Genes Dev. 2021, 35, 1055–1070. [Google Scholar] [CrossRef]
- Valsecchi, C.I.K.; Basilicata, M.F.; Georgiev, P.; Gaub, A.; Seyfferth, J.; Kulkarni, T.; Panhale, A.; Semplicio, G.; Manjunath, V.; Holz, H.; et al. RNA nucleation by MSL2 induces selective X chromosome compartmentalization. Nature 2021, 589, 137–142. [Google Scholar] [CrossRef]
- Villa, R.; Schauer, T.; Smialowski, P.; Straub, T.; Becker, P.B. PionX sites mark the X chromosome for dosage compensation. Nature 2016, 537, 244–248. [Google Scholar] [CrossRef]
- Urban, J.; Kuzu, G.; Bowman, S.; Scruggs, B.; Henriques, T.; Kingston, R.; Adelman, K.; Tolstorukov, M.; Larschan, E. Enhanced chromatin accessibility of the dosage compensated Drosophila male X-chromosome requires the CLAMP zinc finger protein. PLoS ONE 2017, 12, e0186855. [Google Scholar] [CrossRef] [Green Version]
- Urban, J.A.; Urban, J.M.; Kuzu, G.; Larschan, E.N. The Drosophila CLAMP protein associates with diverse proteins on chromatin. PLoS ONE 2017, 12, e0189772. [Google Scholar] [CrossRef] [Green Version]
- Rieder, L.E.; Koreski, K.P.; Boltz, K.A.; Kuzu, G.; Urban, J.A.; Bowman, S.K.; Zeidman, A.; Jordan, W.T., 3rd; Tolstorukov, M.Y.; Marzluff, W.F.; et al. Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP. Genes Dev. 2017, 31, 1494–1508. [Google Scholar] [CrossRef] [Green Version]
- Colonnetta, M.M.; Abrahante, J.E.; Schedl, P.; Gohl, D.M.; Deshpande, G. CLAMP regulates zygotic genome activation in Drosophila embryos. Genetics 2021, 219, iyab107. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Rieder, L.; Colonnetta, M.M.; Huang, A.; McKenney, M.; Watters, S.; Deshpande, G.; Jordan, W.; Fawzi, N.; Larschan, E. CLAMP and Zelda function together to promote Drosophila zygotic genome activation. Elife 2021, 10, e69937. [Google Scholar] [CrossRef] [PubMed]
- Wolle, D.; Cleard, F.; Aoki, T.; Deshpande, G.; Schedl, P.; Karch, F. Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex. Mol. Cell. Biol. 2015, 35, 3739–3752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, E.G.; Kurbidaeva, A.; Wolle, D.; Aoki, T.; Schedl, P.; Larschan, E. Drosophila Dosage Compensation Loci Associate with a Boundary-Forming Insulator Complex. Mol. Cell. Biol. 2017, 37, e00253-17. [Google Scholar] [CrossRef] [Green Version]
- Kyrchanova, O.; Sabirov, M.; Mogila, V.; Kurbidaeva, A.; Postika, N.; Maksimenko, O.; Schedl, P.; Georgiev, P. Complete reconstitution of bypass and blocking functions in a minimal artificial Fab-7 insulator from Drosophila bithorax complex. Proc. Natl. Acad. Sci. USA 2019, 116, 13462–13467. [Google Scholar] [CrossRef] [Green Version]
- Kyrchanova, O.; Wolle, D.; Sabirov, M.; Kurbidaeva, A.; Aoki, T.; Maksimenko, O.; Kyrchanova, M.; Georgiev, P.; Schedl, P. Distinct Elements Confer the Blocking and Bypass Functions of the Bithorax Fab-8 Boundary. Genetics 2019, 213, 865–876. [Google Scholar] [CrossRef]
- Bag, I.; Dale, R.K.; Palmer, C.; Lei, E.P. The zinc-finger protein CLAMP promotes gypsy chromatin insulator function in Drosophila. J. Cell Sci. 2019, 132, jcs226092. [Google Scholar] [CrossRef] [Green Version]
- Jordan, W., 3rd; Larschan, E. The zinc finger protein CLAMP promotes long-range chromatin interactions that mediate dosage compensation of the Drosophila male X-chromosome. Epigenet. Chromatin 2021, 14, 29. [Google Scholar] [CrossRef]
- Maksimenko, O.; Kyrchanova, O.; Klimenko, N.; Zolotarev, N.; Elizarova, A.; Bonchuk, A.; Georgiev, P. Small Drosophila zinc finger C2H2 protein with an N-terminal zinc finger-associated domain demonstrates the architecture functions. Biochim. Biophys. Acta 2020, 1863, 194446. [Google Scholar] [CrossRef]
- Zolotarev, N.; Fedotova, A.; Kyrchanova, O.; Bonchuk, A.; Penin, A.A.; Lando, A.S.; Eliseeva, I.A.; Kulakovskiy, I.V.; Maksimenko, O.; Georgiev, P. Architectural proteins Pita, Zw5,and ZIPIC contain homodimerization domain and support specific long-range interactions in Drosophila. Nucleic Acids Res. 2016, 44, 7228–7241. [Google Scholar] [CrossRef] [Green Version]
- McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000, 16, 404–405. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y. Toward optimal fragment generations for ab initio protein structure assembly. Proteins 2013, 81, 229–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 2012, 80, 1715–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meszaros, B.; Erdos, G.; Dosztanyi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018, 46, W329–W337. [Google Scholar] [CrossRef]
- Ward, J.J.; McGuffin, L.J.; Bryson, K.; Buxton, B.F.; Jones, D.T. The DISOPRED server for the prediction of protein disorder. Bioinformatics 2004, 20, 2138–2139. [Google Scholar] [CrossRef] [PubMed]
- Tikhonova, E.; Mariasina, S.; Efimov, S.; Polshakov, V.; Maksimenko, O.; Georgiev, P.; Bonchuk, A. Structural basis for interaction between CLAMP and MSL2 proteins involved in the specific recruitment of the dosage compensation complex in Drosophila. bioRxiv 2022. Available online: https://www.biorxiv.org/lookup/content/short/2022.02.16.480628v1 (accessed on 22 January 2022).
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002, 2, 2–3. [Google Scholar] [CrossRef]
- Mylonas, E.; Svergun, D.I. Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J. Appl. Crystallogr. 2007, 40, S245–S249. [Google Scholar] [CrossRef] [Green Version]
- Mielke, S.P.; Krishnan, V.V. Characterization of protein secondary structure from NMR chemical shifts. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 54, 141–165. [Google Scholar] [CrossRef] [Green Version]
- Marsh, J.A.; Forman-Kay, J.D. Ensemble modeling of protein disordered states: Experimental restraint contributions and validation. Proteins 2012, 80, 556–572. [Google Scholar] [CrossRef]
- Rambo, R.P.; Tainer, J.A. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 2011, 95, 559–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svergun, D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 1999, 76, 2879–2886. [Google Scholar] [CrossRef] [Green Version]
- Volkov, V.V.; Svergun, D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 2003, 36, 860–864. [Google Scholar] [CrossRef] [Green Version]
- Bischof, J.; Maeda, R.K.; Hediger, M.; Karch, F.; Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 2007, 104, 3312–3317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, J.A.; Doherty, C.A.; Jordan, W.T., 3rd; Bliss, J.E.; Feng, J.; Soruco, M.M.; Rieder, L.E.; Tsiarli, M.A.; Larschan, E.N. The essential Drosophila CLAMP protein differentially regulates non-coding roX RNAs in male and females. Chromosome Res. 2017, 25, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Ruff, K.M.; Pappu, R.V. AlphaFold and Implications for Intrinsically Disordered Proteins. J. Mol. Biol. 2021, 433, 167208. [Google Scholar] [CrossRef]
- Dunker, A.K.; Oldfield, C.J.; Meng, J.; Romero, P.; Yang, J.Y.; Chen, J.W.; Vacic, V.; Obradovic, Z.; Uversky, V.N. The unfoldomics decade: An update on intrinsically disordered proteins. BMC Genom. 2008, 9 (Suppl. S2), S1. [Google Scholar] [CrossRef] [Green Version]
- Uversky, V.N.; Dunker, A.K. Understanding protein non-folding. Biochim. Biophys. Acta 2010, 1804, 1231–1264. [Google Scholar] [CrossRef] [Green Version]
- Meador, W.E.; Means, A.R.; Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 1993, 262, 1718–1721. [Google Scholar] [CrossRef]
- Marley, J.; Lu, M.; Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 2001, 20, 71–75. [Google Scholar] [CrossRef]
- Franke, D.; Petoukhov, M.V.; Konarev, P.V.; Panjkovich, A.; Tuukkanen, A.; Mertens, H.D.T.; Kikhney, A.G.; Hajizadeh, N.R.; Franklin, J.M.; Jeffries, C.M.; et al. ATSAS 2.8: A comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 2017, 50, 1212–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protein | Sample Concentration, mg/mL | Rg, nm | Dmax, nm | Vp, nm3 | Monomer Mw, kDa | Estimated Mw, kDa |
---|---|---|---|---|---|---|
CLAMP1–153 | 2.3 | 2.9 | 10.2 | 42.9 | 17 | 24–30 |
11.8 | 3.9 | 13.6 | 120.9 | 17 | 60–75 | |
CLAMP87–153 | 2.5 | 2.2 | 8.4 | 10.9 | 7.3 | 6.0–6.8 |
10.0 | 2.3 | 10.9 | 9.4 | 7.3 | 5.1–5.9 | |
CLAMP1–113 | 1.0 | 2.4 | 11.3 | 33.8 | 12.3 | 19–23 |
7.0 | 2.7 | 11.9 | 36.3 | 12.3 | 20–24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhonova, E.; Mariasina, S.; Arkova, O.; Maksimenko, O.; Georgiev, P.; Bonchuk, A. Dimerization Activity of a Disordered N-Terminal Domain from Drosophila CLAMP Protein. Int. J. Mol. Sci. 2022, 23, 3862. https://doi.org/10.3390/ijms23073862
Tikhonova E, Mariasina S, Arkova O, Maksimenko O, Georgiev P, Bonchuk A. Dimerization Activity of a Disordered N-Terminal Domain from Drosophila CLAMP Protein. International Journal of Molecular Sciences. 2022; 23(7):3862. https://doi.org/10.3390/ijms23073862
Chicago/Turabian StyleTikhonova, Evgeniya, Sofia Mariasina, Olga Arkova, Oksana Maksimenko, Pavel Georgiev, and Artem Bonchuk. 2022. "Dimerization Activity of a Disordered N-Terminal Domain from Drosophila CLAMP Protein" International Journal of Molecular Sciences 23, no. 7: 3862. https://doi.org/10.3390/ijms23073862
APA StyleTikhonova, E., Mariasina, S., Arkova, O., Maksimenko, O., Georgiev, P., & Bonchuk, A. (2022). Dimerization Activity of a Disordered N-Terminal Domain from Drosophila CLAMP Protein. International Journal of Molecular Sciences, 23(7), 3862. https://doi.org/10.3390/ijms23073862