Discovery of Genomic Regions and Candidate Genes Controlling Root Development Using a Recombinant Inbred Line Population in Rapeseed (Brassica napus L.)
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Performances of the RIL Population and Its Parents
2.2. The Construction of the High-Density Genetic Linkage Map
2.3. Identification of the Major QTLs for Root and Shoot Traits
2.4. Fine Mapping of the Major QTL RT.A09
2.5. Candidate Gene Screening of the QTL-RT.A09 Interval
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. SNP Genotyping
4.3. Construction of the Genetic Linkage Map
4.4. Hydroponics Experiment
4.5. Traits Investigation
4.6. Phenotypic Data Analysis and QTL Mapping
4.7. Fine Mapping through PARMS Markers
4.8. Candidate Gene Prediction and Real-Time PCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roychoudhry, S.; Kepinski, S. Shoot and root branch growth angle control—The wonderfulness of lateralness. Curr. Opin. Plant Biol. 2015, 23, 124–131. [Google Scholar] [CrossRef]
- Uga, Y. Challenges to design-oriented breeding of root system architecture adapted to climate change. Breed. Sci. 2021, 71, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Kitomi, Y.; Hanzawa, E.; Kuya, N.; Inoue, H.; Hara, N.; Kawai, S.; Kanno, N.; Endo, M.; Sugimoto, K.; Yamazaki, T. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc. Natl. Acad. Sci. USA 2020, 117, 21242–21250. [Google Scholar] [CrossRef] [PubMed]
- Meister, R.; Rajani, M.S.; Ruzicka, D.; Schachtman, D.P. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 2014, 19, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Tracy, S.R.; Nagel, K.A.; Postma, J.A.; Fassbender, H.; Wasson, A.; Watt, M. Crop improvement from phenotyping roots: Highlights reveal expanding opportunities. Trends Plant Sci. 2020, 25, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Paran, I.; Zamir, D. Quantitative traits in plants: Beyond the QTL. TRENDS Genet. 2003, 19, 303–306. [Google Scholar] [CrossRef]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097–1102. [Google Scholar] [CrossRef]
- Niones, J.M.; Inukai, Y.; Suralta, R.R.; Yamauchi, A. QTL associated with lateral root plasticity in response to soil moisture fluctuation stress in rice. Plant Soil 2015, 391, 63–75. [Google Scholar] [CrossRef]
- Gamuyao, R.; Chin, J.H.; Pariasca-Tanaka, J.; Pesaresi, P.; Catausan, S.; Dalid, C.; Slamet-Loedin, I.; Tecson-Mendoza, E.M.; Wissuwa, M.; Heuer, S. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 2012, 488, 535–539. [Google Scholar] [CrossRef]
- Ochoa, I.E.; Blair, M.W.; Lynch, J.P. QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci. 2006, 46, 1609–1621. [Google Scholar] [CrossRef] [Green Version]
- Beebe, S.E.; Rojas-Pierce, M.; Yan, X.; Blair, M.W.; Pedraza, F.; Muñoz, F.; Tohme, J.; Lynch, J.P. Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci. 2006, 46, 413–423. [Google Scholar] [CrossRef]
- Pace, J.; Gardner, C.; Romay, C.; Ganapathysubramanian, B.; Lübberstedt, T. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genom. 2015, 16, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Fan, Y.; Yin, S.; Wang, Y.; Wang, H.; Xu, Y.; Yang, Z.; Xu, C. Multi-environment QTL mapping of crown root traits in a maize RIL population. Crop J. 2020, 8, 645–654. [Google Scholar] [CrossRef]
- Islam, A.; Zhang, Y.; Anis, G.; Rani, M.H.; Anley, W.; Yang, Q.; Liu, L.; Shen, X.; Cao, L.; Cheng, S. Fine mapping and candidate gene analysis of qRN5a, a novel QTL promoting root number in rice under low potassium. Theor. Appl. Genet. 2021, 134, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Alahmad, S.; El Hassouni, K.; Bassi, F.M.; Dinglasan, E.; Youssef, C.; Quarry, G.; Aksoy, A.; Mazzucotelli, E.; Juhász, A.; Able, J.A. A major root architecture QTL responding to water limitation in durum wheat. Front. Plant Sci. 2019, 10, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corales, M.; Nguyen, N.T.A.; Abiko, T.; Mochizuki, T. Mapping quantitative trait loci for water uptake of rice under aerobic conditions. Plant Prod. Sci. 2020, 23, 436–451. [Google Scholar] [CrossRef]
- Liu, R.; Wu, F.; Xin, Y.I.; Yu, L.I.N.; Wang, Z.; Liu, S.; Mei, D.; Jian, M.A.; Wei, Y.; Zheng, Y. Quantitative trait loci analysis for root traits in synthetic hexaploid wheat under drought stress conditions. J. Integr. Agric. 2020, 19, 1947–1960. [Google Scholar] [CrossRef]
- Mukeshimana, G.; Butare, L.; Cregan, P.B.; Blair, M.W.; Kelly, J.D. Quantitative trait loci associated with drought tolerance in common bean. Crop Sci. 2014, 54, 923–938. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Wang, X.; Zhao, Y.; Khan, N.U.; Zhao, Z.; Zhang, Y.; Wen, X.; Tang, F.; Wang, F.; Li, Z. Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Sci. Rep. 2020, 10, 9958. [Google Scholar] [CrossRef]
- Topp, C.N.; Iyer-Pascuzzi, A.S.; Anderson, J.T.; Lee, C.R.; Zurek, P.R.; Symonova, O.; Zheng, Y.; Bucksch, A.; Mileyko, Y.; Galkovskyi, T.; et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc. Natl. Acad. Sci. USA 2013, 110, E1695–E11704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ober, E.S.; Alahmad, S.; Cockram, J.; Forestan, C.; Hickey, L.T.; Kant, J.; Maccaferri, M.; Marr, E.; Milner, M.; Pinto, F. Wheat root systems as a breeding target for climate resilience. Theor. Appl. Genet. 2021, 134, 1645–1662. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ingram, P.A.; Benfey, P.N.; Elich, T. From lab to field, new approaches to phenotyping root system architecture. Curr. Opin. Plant Biol. 2011, 14, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kuang, L.; Wang, X.; Liu, G.; Dun, X.; Wang, H. Temporal genetic patterns of root growth in Brassica napus L. revealed by a low-cost, high-efficiency hydroponic system. Theor. Appl. Genet. 2019, 132, 2309–2323. [Google Scholar] [CrossRef]
- Emiliani, D.; Pistocchi, M. Biodiesel production from vegetable oils. Ind. Sacc. Ital. 2006, 99, 91–98. [Google Scholar]
- Meyer, M. Rapeseed oil fuel-the crisis-proof home-made eco-fuel. Agrarforschung 2009, 16, 262–267. [Google Scholar]
- Pullen, J.; Saeed, K. Investigation of the factors affecting the progress of base-catalyzed transesterification of rapeseed oil to biodiesel FAME. Fuel Process. Technol. 2015, 130, 127–135. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, M.; Liu, H.; Zhang, L.; Chen, F.; Zhang, W.; Fan, S.; Peng, M.; Hu, M.; Wang, H. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. Biotechnol. Biofuels 2020, 13, 42. [Google Scholar] [CrossRef]
- Fletcher, R.S.; Mullen, J.L.; Heiliger, A.; Mckay, J.K. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J. Exp. Bot. 2015, 66, 245–256. [Google Scholar] [CrossRef] [Green Version]
- ArifUzZaman, M.; Mamidi, S.; Mukhlesur Rahman, P.M. QTL mapping for root vigor and days to flowering in Brassica napus L. Can. J. Plant Sci. 2016, 97, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Kiran, A.; Wakeel, A.; Snowdon, R.; Friedt, W. Genetic dissection of root architectural traits by QTL and genome-wide association mapping in rapeseed (Brassica napus). Plant Breed. 2019, 138, 184–192. [Google Scholar] [CrossRef]
- Dun, X.; Shi, J.; Liu, H.; Wang, J.; Wang, X.; Wang, H. Genetic dissection of root morphological traits as related to potassium use efficiency in rapeseed under two contrasting potassium levels by hydroponics. Sci. China Life Sci. 2019, 62, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dun, X.; Shi, J.; Wang, X.; Liu, G.; Wang, H. Genetic dissection of root morphological traits related to nitrogen use efficiency in Brassica napus L. under two contrasting nitrogen conditions. Front. Plant Sci. 2017, 8, 1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Thomas, C.L.; Xiang, J.; Long, Y.; Wang, X.; Zou, J.; Luo, Z.; Ding, G.; Cai, H.; Graham, N.S.; et al. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci. Rep. 2016, 6, 33113. [Google Scholar] [CrossRef]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.P.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B.; et al. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef] [Green Version]
- Singh, U.M.; Yadav, S.; Dixit, S.; Ramayya, P.J.; Devi, M.N.; Raman, K.A.; Kumar, A. QTL hotspots for early vigor and related traits under dry direct-seeded system in rice (Oryza sativa L.). Front. Plant Sci. 2017, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Kuijken, R.C.P.; Van Eeuwijk, F.A.; Marcelis, L.F.M.; Bouwmeester, H.J. Root phenotyping: From component trait in the lab to breeding. J. Exp. Bot. 2015, 66, 5389–5401. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.L.; Alcock, T.D.; Graham, N.S.; Hayden, R.; Matterson, S.; Wilson, L.; Young, S.D.; Dupuy, L.X.; White, P.J.; Hammond, J.P.; et al. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biol. 2016, 16, 214. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, P.; Yang, Z.; Xu, C. Genetic mapping of quantitative trait loci in crops. Crop J. 2017, 5, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Almeida, G.D.; Makumbi, D.; Magorokosho, C.; Nair, S.; Borém, A.; Ribaut, J.-M.; Bänziger, M.; Prasanna, B.M.; Crossa, J.; Babu, R. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor. Appl. Genet. 2013, 126, 583–600. [Google Scholar] [CrossRef] [Green Version]
- Capel, C.; Yuste-Lisbona, F.J.; López-Casado, G.; Angosto, T.; Cuartero, J.; Lozano, R.; Capel, J. Multi-environment QTL mapping reveals genetic architecture of fruit cracking in a tomato RIL Solanum lycopersicum × S. pimpinellifolium population. Theor. Appl. Genet. 2017, 130, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.; Vadez, V.; Isobe, S.; Mir, R.R.; Guo, Y.; Nigam, S.N.; Gowda, M.V.C.; Radhakrishnan, T.; Bertioli, D.J.; Knapp, S.J.; et al. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor. Appl. Genet. 2011, 122, 1119–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Zhou, G.; Cui, K.; Li, Z.; Yu, S. Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol. Breed. 2012, 29, 99–113. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; Kuang, L.; Tian, Z.; Wang, X.; Dun, X.; Tu, J.; Wang, H. Genome-wide association study and transcriptome analysis reveal key genes affecting root growth dynamics in rapeseed. Biotechnol. Biofuels 2021, 14, 178. [Google Scholar] [CrossRef]
- Ibrahim, S.; Li, K.; Ahmad, N.; Kuang, L.; Sadau, S.B.; Tian, Z.; Huang, L.; Wang, X.; Dun, X.; Wang, H. Genetic Dissection of Mature Root Characteristics by Genome-Wide Association Studies in Rapeseed. Plants 2021, 10, 2569. [Google Scholar] [CrossRef]
- Watanabe, S.; Xia, Z.; Hideshima, R.; Tsubokura, Y.; Sato, S.; Yamanaka, N.; Takahashi, R.; Anai, T.; Tabata, S.; Kitamura, K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 2011, 188, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Yu, L.; Wei, L.; Yu, P.; Wang, J.; Zhao, H.; Zhang, Y.; Zhang, S.; Yang, Z.; Chen, G.; et al. BnTIR: An online transcriptome platform for exploring RNA-seq libraries for oil crop Brassica napus. Plant Biotechnol. J. 2021, 19, 1895–1897. [Google Scholar] [CrossRef]
- Song, J.-M.; Guan, Z.; Hu, J.; Guo, C.; Yang, Z.; Wang, S.; Liu, D.; Wang, B.; Lu, S.; Zhou, R. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 2020, 6, 34–45. [Google Scholar] [CrossRef]
- Shi, L.; Song, J.; Guo, C.; Wang, B.; Guan, Z.; Yang, P.; Chen, X.; Zhang, Q.; King, G.J.; Wang, J.; et al. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J. 2019, 98, 524–539. [Google Scholar] [CrossRef]
- Liu, J.; Hua, W.; Hu, Z.; Yang, H.; Zhang, L.; Li, R.; Deng, L.; Sun, X.; Wang, X.; Wang, H. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl. Acad. Sci. USA 2015, 112, E5123–E5132. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Lan, J.; Fang, Y.; Yu, H.; Zhang, J.; Huang, J.; Qin, G. The Arabidopsis USL1 controls multiple aspects of development by affecting late endosome morphology. New Phytol. 2018, 219, 1388–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrillo, E.; Godoy Herz, M.A.; Fuchs, A.; Reifer, D.; Fuller, J.; Yanovsky, M.J.; Simpson, C.; Brown, J.W.S.; Barta, A.; Kalyna, M.; et al. A chloroplast retrograde signal regulates nuclear alternative splicing. Science 2014, 344, 427–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, G.; Yang, Q.; Yi, B.; Fan, C.; Zhang, C.; Edwards, D.; Batley, J.; Zhou, Y. A bi-filtering method for processing single nucleotide polymorphism array data improves the quality of genetic map and accuracy of quantitative trait locus mapping in doubled haploid populations of polyploid Brassica napus. BMC Genom. 2015, 16, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ooijen, J.W. JoinMap 4: Software for the Calculation of Genetic Linkage Maps in Experimental Populations of Diploid Species; Plant Research International BV Kayazma BV: Wageningen, The Netherlands, 2006. [Google Scholar]
- Voorrips, R. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Fan, C.; Li, J.; Cai, G.; Yang, Q.; Wu, J.; Yi, X.; Zhang, C.; Zhou, Y. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor. Appl. Genet. 2016, 129, 1203–1215. [Google Scholar] [CrossRef]
- Zeng, Z.-B. Precision mapping of quantitative trait loci. Genetics 1994, 136, 1457–1468. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Traits | Exp | 4D122 | ZS11 | The RIL Population | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Min | Max | Mean | SD | CV (%) | Skw | Kur | h2 | ||
SFW (g) | 1 | 3.652 | 3.702 | 1.731 | 4.805 | 3.054 | 0.513 | 16.8 | 0.42 | 0.49 | 0.83 |
2 | 3.253 | 3.715 * | 2.019 | 5.134 | 3.412 | 0.536 | 15.7 | 0.48 | 0.35 | ||
3 | 0.673 | 1.361 ** | 0.700 | 2.329 | 1.487 | 0.299 | 20.1 | −0.01 | 0.31 | ||
4 | 1.616 | 2.477 ** | 1.656 | 4.927 | 3.206 | 0.657 | 20.5 | −0.15 | 0.16 | ||
SDW (g) | 1 | 0.245 | 0.266 | 0.108 | 0.368 | 0.215 | 0.039 | 18.2 | 0.57 | 1.07 | - |
2 | 0.206 | 0.205 | 0.103 | 0.337 | 0.208 | 0.039 | 18.8 | 0.39 | 0.17 | ||
3 | 0.041 | 0.089 ** | 0.039 | 0.150 | 0.082 | 0.019 | 22.6 | 0.10 | 1.18 | ||
4 | 0.084 | 0.175 ** | 0.078 | 0.313 | 0.179 | 0.042 | 23.6 | −0.06 | 0.30 | ||
RFW (g) | 1 | 0.590 | 0.730 * | 0.190 | 0.774 | 0.460 | 0.101 | 22.0 | 0.38 | 0.22 | 0.78 |
2 | 0.586 | 0.855 * | 0.301 | 0.814 | 0.545 | 0.100 | 18.3 | 0.43 | 0.01 | ||
3 | 0.098 | 0.290 ** | 0.121 | 0.503 | 0.296 | 0.072 | 24.3 | 0.06 | 0.15 | ||
4 | 0.182 | 0.447 ** | 0.210 | 0.838 | 0.474 | 0.110 | 23.2 | −0.12 | 0.19 | ||
RDW (mg) | 1 | 26.3 | 36.0 * | 9.0 | 36.0 | 21.2 | 4.7 | 22.2 | 0.54 | 0.37 | - |
2 | 30.3 | 38.3 * | 14.0 | 38.7 | 25.7 | 5.0 | 19.5 | 0.46 | 0.00 | ||
3 | 4.7 | 13.7 ** | 4.7 | 18.7 | 11.1 | 3.0 | 26.8 | 0.05 | −0.26 | ||
4 | 10.0 | 23.3 ** | 8.0 | 33.0 | 18.0 | 4.7 | 26.2 | 0.31 | 0.57 | ||
PRL (cm) | 1 | 34.4 | 28.5 | 14.7 | 31.4 | 21.6 | 3.4 | 15.6 | 0.46 | 0.42 | 0.70 |
2 | 37.6 | 22.2 ** | 14.1 | 37.6 | 22.4 | 4.3 | 19.1 | 0.53 | 0.32 | ||
3 | 26.2 | 24.2 | 14.1 | 40.7 | 28.2 | 4.5 | 15.9 | 0.01 | 0.12 | ||
4 | 29.8 | 27.9 | 17.5 | 40.7 | 28.3 | 4.4 | 15.7 | 0.11 | 0.14 | ||
TRL (cm) | 1 | 918.6 | 1244.7 * | 393.1 | 1180.4 | 783.5 | 157.2 | 20.1 | 0.36 | −0.07 | 0.80 |
2 | 907.1 | 1042.3 | 427.0 | 1308.2 | 714.8 | 139.7 | 19.5 | 0.74 | 1.16 | ||
3 | 211.2 | 448.0 ** | 246.1 | 836.7 | 534.7 | 111.6 | 20.9 | −0.21 | 0.02 | ||
4 | 526.5 | 834.7 ** | 449.0 | 1418.4 | 859.5 | 179.5 | 20.9 | 0.12 | 0.34 | ||
TSA (cm2) | 1 | 69.0 | 85.3 | 28.3 | 80.0 | 52.8 | 9.76 | 18.5 | 0.43 | 0.15 | 0.79 |
2 | 72.8 | 94.4 * | 41.2 | 106.8 | 62.9 | 10.38 | 16.5 | 0.87 | 1.50 | ||
3 | 13.2 | 29.5 ** | 16.7 | 53.1 | 34.7 | 7.25 | 20.9 | −0.18 | 0.07 | ||
4 | 31.0 | 55.0 ** | 28.0 | 84.9 | 56.2 | 11.34 | 20.2 | −0.19 | 0.29 | ||
TRV (cm3) | 1 | 0.413 | 0.466 | 0.144 | 0.479 | 0.286 | 0.059 | 20.8 | 0.58 | 0.33 | 0.78 |
2 | 0.465 | 0.681 * | 0.257 | 0.693 | 0.445 | 0.075 | 16.9 | 0.58 | 0.44 | ||
3 | 0.066 | 0.155 ** | 0.088 | 0.290 | 0.180 | 0.040 | 22.2 | −0.04 | 0.07 | ||
4 | 0.145 | 0.289 ** | 0.136 | 0.440 | 0.293 | 0.063 | 21.5 | −0.21 | 0.22 | ||
TNR | 1 | 1042 | 1367 | 461 | 1812 | 976 | 253.2 | 25.9 | 0.42 | 0.11 | 0.61 |
2 | 842 | 721 | 380 | 1461 | 648 | 157.6 | 24.3 | 1.01 | 2.56 | ||
3 | 572 | 741 * | 302 | 2716 | 1121 | 400.6 | 35.7 | 0.90 | 0.97 | ||
4 | 1239 | 1317 | 581 | 2568 | 1189 | 344.3 | 29.0 | 0.82 | 0.99 | ||
RSR | 1 | 0.162 | 0.197 * | 0.075 | 0.264 | 0.152 | 0.030 | 19.5 | 0.60 | 0.50 | 0.80 |
2 | 0.191 | 0.226 * | 0.108 | 0.240 | 0.161 | 0.025 | 15.5 | 0.36 | −0.09 | ||
3 | 0.145 | 0.215 ** | 0.120 | 0.331 | 0.199 | 0.032 | 15.8 | 0.33 | 0.78 | ||
4 | 0.113 | 0.181 ** | 0.094 | 0.235 | 0.149 | 0.024 | 16.3 | 0.32 | 0.20 |
Stable QTL Cluster | Chr | Traits | Exp | Peak Position | Confidence Interval | Physical Position (Mb) | Add | Max LOD | Max R2 (%) |
---|---|---|---|---|---|---|---|---|---|
qcA01-2 | A01 | PRL | 1, 3 | 30.21 | 22.3–40.5 | 2.80–6.15 | − | 4.7 | 7.1 |
qcA09-1 | A09 | SDW | 1, 3 | 8.81 | 5.8–10.8 | 0.59–1.79 | − | 4.2 | 6.5 |
qcA09-2 | A09 | SFW, SDW, RFW, RDW, TSA, TRV | 1, 3, 4 | 105.41 | 88.0–115.0 | 24.57–28.77 | − | 6.9 | 10.8 |
qcC02-1 | C02 | SDW | 1, 2 | 13.41 | 10.1–16.8 | 11.89–16.21 | + | 4.7 | 6.7 |
qcC02-2 | C02 | PRL | 1, 2 | 21.41 | 17.2–33.3 | 17.07–35.86 | − | 3.7 | 5.4 |
qcC03-1 | C03 | SFW, SDW | 1, 2, 3 | 108.81 | 86.9–122.1 | 23.35–49.99 | − | 6.0 | 9.1 |
qcC08-2 | C08 | SFW, SDW, RFW, TRL, TSA, TRV | 2, 3, 4 | 40.41 | 29.9–44.8 | 20.08–25.30 | + | 9.0 | 14.1 |
qcC08-3 | C08 | PRL, TRL, RSR | 1, 2, 4 | 95.01 | 72.9–99.3 | 34.07–37.35 | + | 9.0 | 13.9 |
Gene ID in ZS11 | Gene Position in ZS11 | Homologs in Arabidopsis | Function Annotation | Expression in Root and Leaves | CDS Differences | aa Differences |
---|---|---|---|---|---|---|
BnaA09G0558900ZS | 57306631–57309156 | AT3G61720.1 | MCTP12, Ca2+ dependent plant phosphoribosyltransferase family protein | No | - | - |
BnaA09G0559000ZS | 57311257–57312591 | AT2G25410.1 | ATL22, RING/U-box superfamily protein | No | - | - |
BnaA09G0559100ZS | 57317117–57318844 | AT3G61750.1 | Cytochrome b561/ferric reductase transmembrane with DOMON related domain | Yes | 10 SNP | No |
BnaA09G0559200ZS | 57320270–57321154 | AT3G61770.1 | VPS30, Acid phosphatase/vanadium-dependent haloperoxidase-related protein | Yes | 9 bp insertion, 7 SNP | 3 aa insertion, 3 aa substitute |
BnaA09G0559300ZS | 57331807–57334821 | AT3G61830.1 | ARF18, auxin response factor 18 | Yes | 6 bp insertion, 22 SNP | 2 aa insertion, 20 aa substitute |
BnaA09G0559400ZS | 57335044–57335702 | AT3G61840.1 | auxin response factor, Protein of unknown function (DUF688) | Negligible | - | - |
BnaA09G0559500ZS | 57338272–57340276 | AT3G61850.4 | Dof-type zinc finger DNA-binding family protein | Yes | 1 SNP | No |
BnaA09G0559600ZS | 57344816–57345545 | AT3G61860.1 | RSP31, an arginine/serine-rich splicing factor | Yes | 11 bp deletion, 5 SNP | translation frameshift |
BnaA09G0559700ZS | 57346730–57347450 | AT5G17370.2 | Transducin/WD40 repeat-like superfamily protein | No | - | - |
BnaA09G0559800ZS | 57348205–57349656 | AT2G46620.1 | P-loop containing nucleoside triphosphate hydrolases superfamily protein | Yes | 7 SNP | No |
BnaA09G0559900ZS | 57353926–57355199 | AT3G61870.1 | - | Yes | No | No |
BnaA09G0560000ZS | 57355937–57356626 | AT2G46630.1 | - | Yes | No | No |
BnaA09G0560100ZS | 57359705–57361780 | AT3G61880.2 | CYP78A9, cytochrome p450 78a9 | Yes | No | No |
BnaA09G0560200ZS | 57396791–57397098 | AT5G63200.1 | tetratricopeptide repeat (TPR)-containing protein | No | No | No |
BnaA09G0560300ZS | 57401071–57401430 | AT3G61900.1 | SAUR33, SAUR-like auxin-responsive protein family | Yes | No | No |
BnaA09G0560400ZS | 57418544–57419110 | AT3G61920.1 | - | Yes | 1 SNP | No |
BnaA09G0560500ZS | 57421745–57422077 | AT3G61930.1 | - | No | - | - |
BnaA09G0560600ZS | 57424170–57425177 | AT3G61940.1 | MTPA1, Member of Zinc transporter (ZAT) family | No | - | - |
BnaA09G0560700ZS | 57426789–57427774 | AT3G61950.1 | MYC67, MYC-type transcription factor | No | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, L.; Ahmad, N.; Su, B.; Huang, L.; Li, K.; Wang, H.; Wang, X.; Dun, X. Discovery of Genomic Regions and Candidate Genes Controlling Root Development Using a Recombinant Inbred Line Population in Rapeseed (Brassica napus L.). Int. J. Mol. Sci. 2022, 23, 4781. https://doi.org/10.3390/ijms23094781
Kuang L, Ahmad N, Su B, Huang L, Li K, Wang H, Wang X, Dun X. Discovery of Genomic Regions and Candidate Genes Controlling Root Development Using a Recombinant Inbred Line Population in Rapeseed (Brassica napus L.). International Journal of Molecular Sciences. 2022; 23(9):4781. https://doi.org/10.3390/ijms23094781
Chicago/Turabian StyleKuang, Lieqiong, Nazir Ahmad, Bin Su, Lintao Huang, Keqi Li, Hanzhong Wang, Xinfa Wang, and Xiaoling Dun. 2022. "Discovery of Genomic Regions and Candidate Genes Controlling Root Development Using a Recombinant Inbred Line Population in Rapeseed (Brassica napus L.)" International Journal of Molecular Sciences 23, no. 9: 4781. https://doi.org/10.3390/ijms23094781
APA StyleKuang, L., Ahmad, N., Su, B., Huang, L., Li, K., Wang, H., Wang, X., & Dun, X. (2022). Discovery of Genomic Regions and Candidate Genes Controlling Root Development Using a Recombinant Inbred Line Population in Rapeseed (Brassica napus L.). International Journal of Molecular Sciences, 23(9), 4781. https://doi.org/10.3390/ijms23094781