A Non-Systemic Phosphodiesterase-5 Inhibitor Suppresses Colon Proliferation in Mice
Abstract
:1. Introduction
2. Results
2.1. A Carboxylic Acid Containing an Analog of Sildenafil Retains Pharmacological Activity but Exhibits Reduced Cell Entry
2.2. Malonyl-Sildenafil Does Not Enter the Circulation Following Oral Administration in Mice
2.3. Oral Administration of Malonyl-Sildenafil Suppresses Proliferation in the Colon Epithelium
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Western Blotting
4.3. In Vitro Pharmacology and Permeability Assays
4.4. Animal Studies
4.5. Pharmacokinetic Studies
4.6. Arterial Blood Pressure Measurements
4.7. Measuring Cell Proliferation in the Colon Epithelium
4.8. LC-MS/MS Analysis
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roos, V.H.; Mangas-Sanjuan, C.; Rodriguez-Girondo, M.; Prado, L.M.; Steyerberg, E.W.; Bossuyt, P.M.M.; Dekker, E.; Jover, R.; van Leerdam, M.E. Effects of Family History on Relative and Absolute Risks for Colorectal Cancer: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2019, 17, 2657–2667.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oruc, Z.; Kaplan, M.A. Effect of exercise on colorectal cancer prevention and treatment. World J. Gastrointest. Oncol. 2019, 11, 348–366. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Suo, T.; Andersson, R.; Cao, Y.; Wang, C.; Lu, J.; Chui, E. Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas. Cochrane Database Syst. Rev. 2017, 1, CD003430. [Google Scholar] [CrossRef]
- Sachdev, R.; Sao, R.; Birk, J.W.; Anderson, J.C.; Levine, J. Update in Surveillance Recommendations in Individuals With Conventional Adenomas. Curr. Treat. Options Gastroenterol. 2019, 17, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.S.; Burgess, J.; Britt, R.C. Barriers to Colonoscopy in an Uninsured Patient Population-A Quality Improvement Project. Am. Surg. 2019, 85, 111–114. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, S.; Pan, P.; Xia, T.; Chang, X.; Yang, X.; Guo, L.; Meng, Q.; Yang, F.; Qian, W.; et al. Magnitude, Risk Factors, and Factors Associated With Adenoma Miss Rate of Tandem Colonoscopy: A Systematic Review and Meta-analysis. Gastroenterology 2019, 156, 1661–1674.e11. [Google Scholar] [CrossRef] [PubMed]
- Veettil, S.K.; Teerawattanapong, N.; Ching, S.M.; Lim, K.G.; Saokaew, S.; Phisalprapa, P.; Chaiyakunapruk, N. Effects of chemopreventive agents on the incidence of recurrent colorectal adenomas: A systematic review with network meta-analysis of randomized controlled trials. Onco Targets Ther. 2017, 10, 2689–2700. [Google Scholar] [CrossRef] [Green Version]
- Islam, B.N.; Browning, D.D. Phosphodiesterase-5 inhibitors for colon cancer chemoprevention. Aging 2018, 10, 2216–2217. [Google Scholar] [CrossRef]
- Forte, L.R., Jr. Uroguanylin and guanylin peptides: Pharmacology and experimental therapeutics. Pharmacol. Ther. 2004, 104, 137–162. [Google Scholar] [CrossRef]
- Li, P.; Schulz, S.; Bombonati, A.; Palazzo, J.P.; Hyslop, T.M.; Xu, Y.; Baran, A.A.; Siracusa, L.D.; Pitari, G.M.; Waldman, S.A. Guanylyl Cyclase C Suppresses Intestinal Tumorigenesis by Restricting Proliferation and Maintaining Genomic Integrity. Gastroenterology 2007, 133, 599–607. [Google Scholar] [CrossRef]
- Steinbrecher, K.A.; Wowk, S.A.; Rudolph, J.A.; Witte, D.P.; Cohen, M.B. Targeted inactivation of the mouse guanylin gene results in altered dynamics of colonic epithelial proliferation. Am. J. Pathol. 2002, 161, 2169–2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Kwon, I.K.; Thangaraju, M.; Singh, N.; Liu, K.; Jay, P.; Hofmann, F.; Ganapathy, V.; Browning, D.D. Type 2 cGMP-Dependent Protein Kinase Regulates Proliferation and Differentiation in the Colonic Mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G209–G219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.L.; Masih, S.; Thadi, A.; Patwa, V.; Joshi, A.; Cooper, H.S.; Palejwala, V.A.; Clapper, M.L.; Shailubhai, K. Plecanatide-mediated activation of guanylate cyclase-C suppresses inflammation-induced colorectal carcinogenesis in Apc+/Min-FCCC mice. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 47–59. [Google Scholar] [CrossRef]
- Shailubhai, K.; Yu, H.H.; Karunanandaa, K.; Wang, J.Y.; Eber, S.L.; Wang, Y.; Joo, N.S.; Kim, H.D.; Miedema, B.W.; Abbas, S.Z.; et al. Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res. 2000, 60, 5151–5157. [Google Scholar] [PubMed]
- Sharman, S.K.; Islam, B.N.; Hou, Y.; Singh, N.; Berger, F.G.; Sridhar, S.; Yoo, W.; Browning, D.D. Cyclic-GMP-Elevating Agents Suppress Polyposis in Apc(Min) mice by Targeting the Preneoplastic Epithelium. Cancer Prev. Res. 2018, 11, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Bakre, M.M.; Sopory, S.; Visweswariah, S.S. Expression and regulation of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5) in human colonic epithelial cells: Role in the induction of cellular refractoriness to the heat-stable enterotoxin peptide. J. Cell. Biochem. 2000, 77, 159–167. [Google Scholar] [CrossRef]
- Sharman, S.K.; Islam, B.N.; Hou, Y.; Usry, M.; Bridges, A.; Singh, N.; Sridhar, S.; Rao, S.; Browning, D.D. Sildenafil normalizes bowel transit in preclinical models of constipation. PLoS ONE 2017, 12, e0176673. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Kwon, I.K.; Singh, N.; Islam, B.; Liu, K.; Sridhar, S.; Hofmann, F.; Browning, D.D. Type 2 cGMP-dependent protein kinase regulates homeostasis by blocking c-Jun N-terminal kinase in the colon epithelium. Cell Death Differ. 2014, 21, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Islam, B.N.; Sharman, S.K.; Hou, Y.; Bridges, A.E.; Singh, N.; Kim, S.; Kolhe, R.; Trillo-Tinoco, J.; Rodriguez, P.C.; Berger, F.G.; et al. Sildenafil Suppresses Inflammation-Driven Colorectal Cancer in Mice. Cancer Prev. Res. 2017, 10, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Browning, D.D. The enduring promise of phosphodiesterase 5 inhibitors for colon cancer prevention. Transl. Gastroenterol. Hepatol. 2019, 4, 83. [Google Scholar] [CrossRef]
- Huang, W.; Sundquist, J.; Sundquist, K.; Ji, J. Use of Phosphodiesterase 5 Inhibitors Is Associated With Lower Risk of Colorectal Cancer in Men With Benign Colorectal Neoplasms. Gastroenterology 2019, 157, 672–681.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, S.S.; Magagnoli, J.; Cummings, T.H.; Hardin, J.W. The Association Between Phosphodiesterase-5 Inhibitors and Colorectal Cancer in a National Cohort of Patients. Clin. Transl. Gastroenterol. 2020, 11, e00173. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.L.; Nees, S.N.; Valencia, G.A.; Rosenzweig, E.B.; Krishnan, U.S. Sildenafil Use in Children with Pulmonary Hypertension. J. Pediatr. 2019, 205, 29–34.e1. [Google Scholar] [CrossRef]
- Hatzimouratidis, K. A review of the use of tadalafil in the treatment of benign prostatic hyperplasia in men with and without erectile dysfunction. Ther. Adv. Urol. 2014, 6, 135–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boden, W.E.; Padala, S.K.; Cabral, K.P.; Buschmann, I.R.; Sidhu, M.S. Role of short-acting nitroglycerin in the management of ischemic heart disease. Drug Des. Devel Ther. 2015, 9, 4793–4805. [Google Scholar] [PubMed] [Green Version]
- Kim, J.H.; Jo, J.H.; Seo, K.A.; Hwang, H.; Lee, H.S.; Lee, S. Non-targeted metabolomics-guided sildenafil metabolism study in human liver microsomes. J. Chromatogr B Analyt Technol. Biomed. Life Sci. 2018, 1072, 86–93. [Google Scholar] [CrossRef]
- Nichols, D.J.; Muirhead, G.J.; Harness, J.A. Pharmacokinetics of sildenafil after single oral doses in healthy male subjects: Absolute bioavailability, food effects and dose proportionality. Br. J. Clin. Pharmacol. 2002, 53 (Suppl. 1), 5S–12S. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.K.; Ackland, M.J.; James, G.C.; Muirhead, G.J.; Rance, D.J.; Wastall, P.; Wright, P.A. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica 1999, 29, 297–310. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Hong, J.H.; Kwon, Y.S.; Kim, I.Y. Pharmacodynamics, pharmacokinetics and clinical efficacy of phosphodiesterase-5 inhibitors. Expert. Opin. Drug Metab. Toxicol. 2017, 13, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Dunn, P.J. Synthesis of Commercial Phosphodiesterase (V) Inhibitors. Org. Process. Res. Dev. 2005, 9, 9. [Google Scholar] [CrossRef]
- Kim, D.K.; Ryu, D.H.; Lee, N.; Lee, J.Y.; Kim, J.S.; Lee, S.; Choi, J.Y.; Ryu, J.H.; Kim, N.H.; Im, G.J.; et al. Synthesis and phosphodiesterase 5 inhibitory activity of new 5-phenyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one derivatives containing an N-acylamido group phenyl ring. Bioorg. Med. Chem. 2001, 9, 1895–1899. [Google Scholar] [CrossRef]
- Kim, D.K.; Lee, N.; Lee, J.Y.; Ryu, D.H.; Kim, J.S.; Lee, S.H.; Choi, J.Y.; Chang, K.; Kim, Y.W.; Im, G.J.; et al. Synthesis and phosphodiesterase 5 inhibitory activity of novel phenyl ring modified sildenafil analogues. Bioorg. Med. Chem. 2001, 9, 1609–1616. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Thai, K.-M.; Kim, D.-K.; Lee, J.Y.; Park, H.-J. 3D-QSAR studies on sildenafil analogues, selective phosphodiesterase 5 inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 4271–4274. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Kovar, A.; Meibohm, B. The clinical pharmacokinetics of phosphodiesterase-5 inhibitors for erectile dysfunction. J. Clin. Pharmacol. 2005, 45, 987–1003. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ji, H.; Kim, S.J.; Lee, H.W.; Lee, S.S.; Kim, D.S.; Yoo, M.; Kim, W.B.; Lee, H.S. Simultaneous determination of sildenafil and its active metabolite UK-103,320 in human plasma using liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2003, 32, 317–322. [Google Scholar] [CrossRef]
- Kloner, R.A.; Goggin, P.; Goldstein, I.; Hackett, G.; Kirby, M.G.; Osterloh, I.; Parker, J.D.; Sadovsky, R. A New Perspective on the Nitrate-Phosphodiesterase Type 5 Inhibitor Interaction. J. Cardiovasc.Pharmacol. Ther. 2018, 23, 375–386. [Google Scholar] [CrossRef]
- Tomasetti, C.; Li, L.; Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017, 355, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Tomasetti, C.; Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015, 347, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Wren, A.; Mylarapu, N.; Browning, K.; Islam, B.N.; Wang, R.; Vega, K.J.; Browning, D.D. Inhibition of Colon Cancer Cell Growth by Phosphodiesterase Inhibitors Is Independent of cGMP Signaling. J. Pharmacol. Exp. Ther. 2022, 381, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Lilley, E.; Stanford, S.C.; Kendall, D.E.; Alexander, S.P.H.; Cirino, G.; Docherty, J.R.; George, C.H.; Insel, P.A.; Izzo, A.A.; Ji, Y.; et al. ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. Br. J. Pharmacol. 2020, 177, 3611–3616. [Google Scholar] [CrossRef] [PubMed]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.L.; Leite, R.; Fleming, C.; Pollock, J.S.; Webb, R.C.; Brands, M.W. Hypertensive response to acute stress is attenuated in interleukin-6 knockout mice. Hypertension 2004, 44, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Islam, B.N.; Sharman, S.K.; Hou, Y.; Wang, R.; Ashby, J.; Li, H.; Liu, K.; Vega, K.J.; Browning, D.D. Type-2 cGMP-dependent protein kinase suppresses proliferation and carcinogenesis in the colon epithelium. Carcinogenesis 2022, 43, 584–593. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, A.; Lebedyeva, I.; Zhi, W.; Senthil, V.; Cheema, H.; Brands, M.W.; Bush, W.; Lambert, N.A.; Snipes, M.; Browning, D.D. A Non-Systemic Phosphodiesterase-5 Inhibitor Suppresses Colon Proliferation in Mice. Int. J. Mol. Sci. 2023, 24, 9397. https://doi.org/10.3390/ijms24119397
Lee A, Lebedyeva I, Zhi W, Senthil V, Cheema H, Brands MW, Bush W, Lambert NA, Snipes M, Browning DD. A Non-Systemic Phosphodiesterase-5 Inhibitor Suppresses Colon Proliferation in Mice. International Journal of Molecular Sciences. 2023; 24(11):9397. https://doi.org/10.3390/ijms24119397
Chicago/Turabian StyleLee, Avelina, Iryna Lebedyeva, Wenbo Zhi, Vani Senthil, Herjot Cheema, Michael W. Brands, Weston Bush, Nevin A. Lambert, Madeline Snipes, and Darren D. Browning. 2023. "A Non-Systemic Phosphodiesterase-5 Inhibitor Suppresses Colon Proliferation in Mice" International Journal of Molecular Sciences 24, no. 11: 9397. https://doi.org/10.3390/ijms24119397
APA StyleLee, A., Lebedyeva, I., Zhi, W., Senthil, V., Cheema, H., Brands, M. W., Bush, W., Lambert, N. A., Snipes, M., & Browning, D. D. (2023). A Non-Systemic Phosphodiesterase-5 Inhibitor Suppresses Colon Proliferation in Mice. International Journal of Molecular Sciences, 24(11), 9397. https://doi.org/10.3390/ijms24119397