Value of the Lymphocyte Transformation Test for the Diagnosis of Drug-Induced Hypersensitivity Reactions in Hospitalized Patients with Severe COVID-19
Abstract
:1. Introduction
2. Results
2.1. Design and Setting
2.2. Lymphocyte Transformation Test (LTT)
2.3. Cytokine Secretion
3. Discussion
4. Materials and Methods
4.1. Lymphocyte Transformation Test (LTT)
4.2. Secreted Cytokine Measurement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riggioni, C.; Comberiati, P.; Giovannini, M.; Agache, I.; Akdis, M.; Alves-Correia, M.; Anto, J.M.; Arcolaci, A.; Azkur, A.K.; Azkur, D.; et al. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy 2020, 75, 2503–2541. [Google Scholar] [CrossRef] [PubMed]
- Galvan Casas, C.; Catala, A.; Carretero Hernandez, G.; Rodriguez-Jimenez, P.; Fernandez-Nieto, D.; Rodriguez-Villa Lario, A.; Navarro Fernandez, I.; Ruiz-Villaverde, R.; Falkenhain-Lopez, D.; Llamas Velasco, M.; et al. Classification of the cutaneous manifestations of COVID-19: A rapid prospective nationwide consensus study in Spain with 375 cases. Br. J. Dermatol. 2020, 183, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Sameni, F.; Hajikhani, B.; Yaslianifard, S.; Goudarzi, M.; Owlia, P.; Nasiri, M.J.; Shokouhi, S.; Bakhtiyari, M.; Dadashi, M. COVID-19 and Skin Manifestations: An Overview of Case Reports/Case Series and Meta-Analysis of Prevalence Studies. Front. Med. 2020, 7, 573188. [Google Scholar] [CrossRef]
- Recalcati, S.; Gianotti, R.; Fantini, F. COVID-19: The experience from Italy. Clin. Dermatol. 2021, 39, 12–22. [Google Scholar] [CrossRef]
- Cabrera-Hernandez, R.; Solano-Solares, E.; Chica-Guzman, V.; Fernandez-Guarino, M.; Fernandez-Nieto, D.; Ortega-Quijano, D.; de-Andres-Martin, A.; Moreno, C.; Carretero-Barrio, I.; Garcia-Abellas, P.; et al. SARS-CoV-2, skin lesions and the need of a multidisciplinary approach. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e659–e662. [Google Scholar] [CrossRef]
- Mitamura, Y.; Schulz, D.; Oro, S.; Li, N.; Kolm, I.; Lang, C.; Ziadlou, R.; Tan, G.; Bodenmiller, B.; Steiger, P.; et al. Cutaneous and systemic hyperinflammation drives maculopapular drug exanthema in severely ill COVID-19 patients. Allergy 2022, 77, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, G.A.; Ripa, M.; Burastero, S.; Benanti, G.; Bagnasco, D.; Nannipieri, S.; Monardo, R.; Ponta, G.; Asperti, C.; Cilona, M.B.; et al. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS): Focus on the Pathophysiological and Diagnostic Role of Viruses. Microorganisms 2023, 11, 346. [Google Scholar] [CrossRef]
- Karimi, A.; Pourbakhtiaran, E.; Fallahi, M.; Karbasian, F.; Armin, S.; Babaie, D. Is It Stevens-Johnson Syndrome or MIS-C with Mucocutaneous Involvement? Case Rep. Pediatr. 2021, 2021, 1812545. [Google Scholar] [CrossRef]
- Lootah, S.; Alshammari, E.; Alqanatish, J. Complete Remission in a Child with Multisystem Inflammatory Syndrome and Stevens-Johnson Syndrome Treated with Infliximab. Cureus 2023, 15, e37076. [Google Scholar] [CrossRef]
- Pichler, W.J. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 2003, 139, 683–693. [Google Scholar] [CrossRef]
- Porebski, G.; Gschwend-Zawodniak, A.; Pichler, W.J. In vitro diagnosis of T cell-mediated drug allergy. Clin. Exp. Allergy 2011, 41, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Sachs, B.; Fatangare, A.; Sickmann, A.; Glassner, A. Lymphocyte transformation test: History and current approaches. J. Immunol. Methods 2021, 493, 113036. [Google Scholar] [CrossRef] [PubMed]
- Lochmatter, P.; Beeler, A.; Kawabata, T.T.; Gerber, B.O.; Pichler, W.J. Drug-specific in vitro release of IL-2, IL-5, IL-13 and IFN-γ in patients with delayed-type drug hypersensitivity. Allergy 2009, 64, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Srinoulprasert, Y. Lymphocyte transformation test and cytokine detection assays: Determination of read out parameters for delayed-type drug hypersensitivity reactions. J. Immunol. Methods 2021, 496, 113098. [Google Scholar] [CrossRef]
- Solano-Solares, E.; Chica-Guzman, V.; Perez-Allegue, I.; Cabrera-Hernandez, R.; Fernandez-Guarino, M.; Fernandez-Nieto, D.; Moreno-Garcia-Del-Real, C.; de-Andres-Martin, A.; Garcia-Bermejo, L.; Gonzalez-de-Olano, D.; et al. Role of Drug Hypersensitivity in the Cutaneous Manifestations of SARS-CoV-2 Infection. J. Investig. Allergol. Clin. Immunol. 2022, 32, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Cabanas, R.; Ramirez, E.; Sendagorta, E.; Alamar, R.; Barranco, R.; Blanca-Lopez, N.; Dona, I.; Fernandez, J.; Garcia-Nunez, I.; Garcia-Samaniego, J.; et al. Spanish Guidelines for Diagnosis, Management, Treatment, and Prevention of DRESS Syndrome. J. Investig. Allergol. Clin. Immunol. 2020, 30, 229–253. [Google Scholar] [CrossRef] [Green Version]
- Mendez Maestro, I.; Pena Merino, L.; Udondo Gonzalez Del Tanago, B.; Aramburu Gonzalez, A.; Orbea Sopena, A.; Sanchez De Vicente, J.; Raton Nieto, J.A.; Acebo Marinas, E.; Gardeazabal Garcia, J. Skin manifestations in patients hospitalized with confirmed COVID-19 disease: A cross-sectional study in a tertiary hospital. Int. J. Dermatol. 2020, 59, 1353–1357. [Google Scholar] [CrossRef]
- Nakashima, C.; Kato, M.; Otsuka, A. Cutaneous manifestations of COVID-19 and COVID-19 vaccination. J. Dermatol. 2023, 50, 280–289. [Google Scholar] [CrossRef]
- Fernandez-Nieto, D.; Ortega-Quijano, D.; Suarez-Valle, A.; Jimenez-Cauhe, J.; Jaen-Olasolo, P.; Fernandez-Guarino, M. Lack of skin manifestations in COVID-19 hospitalized patients during the second epidemic wave in Spain: A possible association with a novel SARS-CoV-2 variant—A cross-sectional study. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e183–e185. [Google Scholar] [CrossRef]
- Suthumchai, N.; Srinoulprasert, Y.; Thantiworasit, P.; Rerknimitr, P.; Tuchinda, P.; Chularojanamontri, L.; Rerkpattanapipat, T.; Chanprapaph, K.; Disphanurat, W.; Chakkavittumrong, P.; et al. The measurement of drug-induced interferon γ-releasing cells and lymphocyte proliferation in severe cutaneous adverse reactions. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 992–998. [Google Scholar] [CrossRef]
- Yawalkar, N.; Shrikhande, M.; Hari, Y.; Nievergelt, H.; Braathen, L.R.; Pichler, W.J. Evidence for a role for IL-5 and eotaxin in activating and recruiting eosinophils in drug-induced cutaneous eruptions. J. Allergy Clin. Immunol. 2000, 106, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Sachs, B.; Erdmann, S.; Malte Baron, J.; Neis, M.; al Masaoudi, T.; Merk, H.F. Determination of interleukin-5 secretion from drug-specific activated ex vivo peripheral blood mononuclear cells as a test system for the in vitro detection of drug sensitization. Clin. Exp. Allergy 2002, 32, 736–744. [Google Scholar] [CrossRef]
- Merk, H.F. Diagnosis of drug hypersensitivity: Lymphocyte transformation test and cytokines. Toxicology 2005, 209, 217–220. [Google Scholar] [CrossRef]
- Glassner, A.; Wurpts, G.; Roseler, S.; Yazdi, A.S.; Sachs, B. In vitro detection of T cell sensitization by interferon-γ secretion in immediate-type drug allergy. Clin. Exp. Allergy 2023, 53, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Halevy, S.; Cohen, A.; Livni, E. Acute generalized exanthematous pustulosis associated with polysensitivity to paracetamol and bromhexine: The diagnostic role of in vitro interferon-γ release test. Clin. Exp. Dermatol. 2000, 25, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Gaspard, I.; Guinnepain, M.T.; Laurent, J.; Bachot, N.; Kerdine, S.; Bertoglio, J.; Pallardy, M.; Lebrec, H. Il-4 and IFN-γ mRNA induction in human peripheral lymphocytes specific for β-lactam antibiotics in immediate or delayed hypersensitivity reactions. J. Clin. Immunol. 2000, 20, 107–116. [Google Scholar] [CrossRef]
- Cabanas, R.; Calderon, O.; Ramirez, E.; Fiandor, A.; Caballero, T.; Heredia, R.; Herranz, P.; Madero, R.; Quirce, S.; Bellon, T. Sensitivity and specificity of the lymphocyte transformation test in drug reaction with eosinophilia and systemic symptoms causality assessment. Clin. Exp. Allergy 2018, 48, 325–333. [Google Scholar] [CrossRef]
- Glassner, A.; Dubrall, D.; Weinhold, L.; Schmid, M.; Sachs, B. Lymphocyte transformation test for drug allergy detection: When does it work? Ann. Allergy Asthma Immunol. 2022, 129, 497–506.e3. [Google Scholar] [CrossRef]
- Hayakawa, J.; Takakura, H.; Mizukawa, Y.; Shiohara, T. COVID-19-related cutaneous manifestations associated with multiple drug sensitization as shown by lymphocyte transformation test. J. Eur. Acad. Dermatol. Venereol. JEADV 2020, 34, e779–e781. [Google Scholar] [CrossRef]
- Giraldo-Tugores, M.; Sanmartin-Fernandez, M.; Fernandez-Lozano, C.; Martinez-Botas, J.; De-la-Hoz-Caballer, B.; Gonzalez-de-Olano, D. Kounis Syndrome and Vanadium allergy: Heed your hunch. J. Investig. Allergol. Clin. Immunol. 2023, 33. [Google Scholar] [CrossRef] [PubMed]
Epicutaneous Patch Test | Oral Challenges | LTT | |||||||
---|---|---|---|---|---|---|---|---|---|
Patient | Age (Years)/ Sex | COVID-19 Treatments | Reaction | Positive | Negative | Positive | Negative | Positive | Negative |
P1 | 60/F | AZT, DOL | MPE (1) | AZT, DOL | AZT, DOL | HCQ | AZT, AMOX, CLA, LOP, RIT | ||
P2 | 61/M | AZT, KAL, DOL, CEL | UEX (1) | AZT, DOL, KAL, CEL | AZT § | DOL, KAL | HCQ, AZT, AMOX, LOP, RIT | ||
P3 | 53/M | AZT, KAL, DOL, CEL, AMOX/CLA | MPE (1) | DOL, KAL, CEL, AMOX | AMOX/CLA | KAL, AZT, HCQ | CLA | HCQ, AZT, AMOX, LOP, RIT | |
P4 | 63/F | AZT, KAL, DOL, CEL | MPE (1), VEX (2) | AZT, DOL, KAL | AZT, HCQ, KAL | LOP, RIT | HCQ, AZT, AMOX | ||
P5 | 66/M | AZT, KAL, DOL, CEL | MPE (1), VEX (2) | AZT, DOL, KAL, CEL | AZT | KAL, CEL | AZT, HCQ | AMOX, LOP, RIT | |
P6 | 61/F | AZT, DOL | MPE (1) VEX (2) | AZT, DOL | DOL, AZT | AZT, LOP, RIT | HCQ, AMOX | ||
P7 | 77/F | KAL, DOL, CEL | MPE (1) | * | * | LOP, RIT | HCQ, AZT, AMOX | ||
P8 | 84/M | AZT, KAL, DOL, CEL | MPE (1), VEX (2) | AZT, DOL, KAL, CEL | AZT, DOL, KAL, CEL | LOP, RIT | HCQ, AZT, AMOX | ||
P9 | 76/M | AZT, DOL | VEX (2) | AZT, DOL | AZT, DOL | HCQ, RIT | AZT, AMOX, LOP | ||
P10 | 74/M | AZT, DOL, CEL | CVAS (3), CLL (4) | AZT, DOL, CEL | * | * | AZT, RIT | AZT, AMOX, LOP | |
P11 | 64/M | AZT, KAL, DOL | MPE (1) | AZT, KAL, DOL | AZT, KAL, DOL | LOP, RIT | HCQ, AZT, AMOX | ||
NAP1 | 58/M | AZT, KAL, DOL | HCQ, AZT, AMOX, LOP, RIT | ||||||
NAP2 | 52/M | AZT, KAL, DOL, CEL | HCQ, AZT, AMOX, LOP, RIT | ||||||
NAP3 | 59/M | AZT, KAL, DOL, CEL | HCQ, AZT, AMOX, LOP, RIT | ||||||
NAP4 | 49/M | AZT, DOL | HCQ, AZT, AMOX, LOP, RIT | ||||||
NAP5 | 70/M | AZT, KAL, DOL, CEL | HCQ, AZT, AMOX, LOP, RIT |
Azitromicin | Amoxicillin | Clavulanic Acid | Hidroxiloroquine | Lopinavir | Ritonavir | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Patient | (Dynabeads™ CD3/CD28) | 0.1 µg/µL | 1 µg/µL | 10 µg/µL | 100 µg/µL | 200 µg/µL | 500 µg/µL | 1 µg/µL | 10 µg/µL | 100 µg/µL | 1 µg/µL | 10 µg/µL | 100 µg/µL | 0.2 µg/mL | 1 µg/mL | 5 µg/mL | 0.2 µg/µL | 1 µg/µL | 5 µg/µL |
P1 | 10.2 | 0.8 | 1.5 | 1.5 | 1.4 | 1.4 | 1.2 | 1.4 | 1.6 | 1.6 | 1.4 | 3.2 | 0.3 | 1.7 | 2.1 | 2.2 | 1.4 | 1.2 | 1.2 |
P2 | 12.2 | 0.5 | 1.0 | 0.5 | 0.9 | 1.4 | 1.5 | 1.2 | 1.2 | 1.4 | 1.2 | 1.8 | 1.9 | 1.1 | 0.8 | 0.9 | 1.3 | 1.0 | 0.8 |
P3 | 15.0 | 1.3 | 1.5 | 1.9 | 1.7 | 1.7 | 1.4 | 1.9 | 3.2 | 3.4 | 1.4 | 1.8 | 0.3 | 2.0 | 1.8 | 0.9 | 2.0 | 1.8 | 1.8 |
P4 | 5.8 | 0.8 | 0.7 | 0.9 | 0.7 | 2.1 | 0.7 | 0.7 | 0.7 | 0.8 | 0.6 | 1.1 | 0.1 | 3.9 | 0.6 | 0.9 | 3.5 | 0.3 | 0.5 |
P5 | 9.0 | 1.7 | 1.4 | 3.1 | 1.6 | 1.4 | 2.8 | 1.9 | 1.7 | 1.6 | 3.4 | 0.8 | 0.7 | 1.3 | 1.0 | 0.8 | 1.1 | 1.2 | 0.6 |
P6 | 11.6 | 3.0 | 1.7 | 1.0 | 1.9 | 1.6 | 1.9 | 2.4 | 2.5 | 2.3 | 1.3 | 1.8 | 1.6 | 1.9 | 3.0 | 2.8 | 2.9 | 3.2 | 2.6 |
P7 | 9.4 | 1.4 | 0.9 | 1.4 | 1.8 | 1.1 | 1.5 | 1.8 | 1.5 | 1.4 | 1.7 | 2.0 | 1.8 | 1.9 | 2.3 | 3.4 | 2.3 | 1.0 | 3.2 |
P8 | 7.4 | 1.9 | 1.7 | 1.6 | 1.9 | 1.8 | 1.9 | 1.9 | 1.5 | 1.6 | 1.6 | 1.9 | 1.9 | 1.1 | 3.3 | 1.6 | 1.8 | 1.5 | 3.2 |
P9 | 6.7 | 1.5 | 1.3 | 1.2 | 1.3 | 1.2 | 1.2 | 1.4 | 1.3 | 1.2 | 1.6 | 3.2 | 1.5 | 1.2 | 2.7 | 1.8 | 1.6 | 3.0 | 3.4 |
P10 | 8.2 | 1.1 | 1.8 | 3.1 | 0.7 | 0.9 | 1.2 | 1.0 | 1.3 | 1.1 | 0.9 | 0.8 | 1.0 | 2.4 | 1.5 | 1.3 | 2.6 | 3.1 | 2.1 |
P11 | 8.4 | 1.6 | 1.4 | 1.2 | 1.4 | 1.2 | 1.2 | 1.5 | 1.8 | 1.4 | 1.5 | 1.3 | 1.3 | 1.7 | 2.1 | 3.2 | 1.9 | 2.7 | 3.3 |
NAP1 | 6.3 | 1.4 | 1.1 | 1.0 | 1.1 | 0.9 | 0.9 | 0.9 | 1.0 | 0.9 | 0.4 | 1.4 | 0.9 | 1.1 | 1.2 | 1.2 | 0.9 | 1.2 | 0.9 |
NAP2 | 5.5 | 1.9 | 1.0 | 1.5 | 1.3 | 0.9 | 0.7 | 1.6 | 1.0 | 0.8 | 0.4 | 1.7 | 0.9 | 1.8 | 1.4 | 1.2 | 1.8 | 1.5 | 1.2 |
NAP3 | 5.2 | 1.5 | 1.1 | 1.7 | 1.9 | 2.0 | 1.5 | 1.9 | 1.2 | 1.3 | 1.8 | 0.8 | 1.6 | 1.0 | 0.6 | 0.8 | 0.9 | 0.8 | 0.7 |
NAP4 | 9.9 | 1.8 | 1.6 | 2.0 | 2.0 | 1.9 | 1.8 | 1.9 | 1.4 | 1.8 | 1.9 | 1.3 | 1.1 | 1.5 | 2.0 | 1.8 | 1.9 | 1.9 | 1.8 |
NAP5 | 7.8 | 1.4 | 1.2 | 0.9 | 0.8 | 0.8 | 0.7 | 0.9 | 0.9 | 0.7 | 0.3 | 0.2 | 1.1 | 1.9 | 0.9 | 0.7 | 0.9 | 0.8 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Lozano, C.; Solano Solares, E.; Elías-Sáenz, I.; Pérez-Allegue, I.; Fernández-Guarino, M.; Fernández-Nieto, D.; Díaz Montalvo, L.; González-de-Olano, D.; de Andrés, A.; Martínez-Botas, J.; et al. Value of the Lymphocyte Transformation Test for the Diagnosis of Drug-Induced Hypersensitivity Reactions in Hospitalized Patients with Severe COVID-19. Int. J. Mol. Sci. 2023, 24, 11543. https://doi.org/10.3390/ijms241411543
Fernández-Lozano C, Solano Solares E, Elías-Sáenz I, Pérez-Allegue I, Fernández-Guarino M, Fernández-Nieto D, Díaz Montalvo L, González-de-Olano D, de Andrés A, Martínez-Botas J, et al. Value of the Lymphocyte Transformation Test for the Diagnosis of Drug-Induced Hypersensitivity Reactions in Hospitalized Patients with Severe COVID-19. International Journal of Molecular Sciences. 2023; 24(14):11543. https://doi.org/10.3390/ijms241411543
Chicago/Turabian StyleFernández-Lozano, Carlos, Emilio Solano Solares, Isabel Elías-Sáenz, Isabel Pérez-Allegue, Monserrat Fernández-Guarino, Diego Fernández-Nieto, Laura Díaz Montalvo, David González-de-Olano, Ana de Andrés, Javier Martínez-Botas, and et al. 2023. "Value of the Lymphocyte Transformation Test for the Diagnosis of Drug-Induced Hypersensitivity Reactions in Hospitalized Patients with Severe COVID-19" International Journal of Molecular Sciences 24, no. 14: 11543. https://doi.org/10.3390/ijms241411543
APA StyleFernández-Lozano, C., Solano Solares, E., Elías-Sáenz, I., Pérez-Allegue, I., Fernández-Guarino, M., Fernández-Nieto, D., Díaz Montalvo, L., González-de-Olano, D., de Andrés, A., Martínez-Botas, J., & de la Hoz Caballer, B. (2023). Value of the Lymphocyte Transformation Test for the Diagnosis of Drug-Induced Hypersensitivity Reactions in Hospitalized Patients with Severe COVID-19. International Journal of Molecular Sciences, 24(14), 11543. https://doi.org/10.3390/ijms241411543