Thermally Reduced Graphene Oxide Membranes Revealed Selective Adsorption of Gold Ions from Mixed Ionic Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Adsorption of rGO Membranes on Au3+ Ions
2.2. Excellent Selective Adsorption of rGO Membranes to Au3+ in Mixed Solutions
2.3. Adsorption Energy of Au3+ Ions on rGO Membrane by DFT Calculation
2.4. Characterization
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Reduced Graphene Oxides Membranes
3.3. Gold Adsorption Measurement
3.4. Preparation of Mixed Solutions Simulating PCB Leachate
3.5. Characterization
3.6. Computational Details Using Density Functional Theory
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, H.Y.; Schoenung, J.M. Electronic waste recycling: A review of U.S. infrastructure and technology options. Resour. Conserv. Recycl. 2005, 45, 368–400. [Google Scholar] [CrossRef]
- Islam, A.; Ahmed, T.; Awual, M. Advances in sustainable approaches to recover metals from e-waste-a review. J. Clean. Prod. 2020, 244, 118815. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Cao, H.; Xiao, Y. Toward Sustainability for Recovery of Critical Metals from Electronic Waste: The Hydrochemistry Processes. ACS Sustain. Chem. Eng. 2017, 5, 21–40. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Zeng, X.; Li, J. Integrated bioleaching of copper metal from waste printed circuit board—A comprehensive review of approaches and challenges. Environ. Sci. Pollut. Res. 2016, 23, 21141–21156. [Google Scholar] [CrossRef]
- Li, J.; Liang, C.; Ma, C. Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J. Mater. Cycles Waste Manag. 2015, 17, 529–539. [Google Scholar] [CrossRef]
- Liu, R.; Li, J.; Ge, Z. Review on Chromobacterium violaceum for gold bioleaching from e-waste. Procedia Environ. Sci. 2016, 31, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Habibi, A.; Kourdestani, S.S.; Hadadi, M. Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste: A review. Waste Manage. Res. 2020, 38, 232–244. [Google Scholar] [CrossRef]
- Ghosh, B.; Ghosh, M.K.; Parhi, P.P.; Mukherjee, S.; Mishra, B.K. Waste printed circuit boards recycling: An extensive assessment of current status. J. Clean. Prod. 2015, 94, 5–19. [Google Scholar] [CrossRef]
- Akcil, A.; Erust, C.; Gahan, C.S. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants—A review. Waste Manag. 2015, 45, 258–271. [Google Scholar] [CrossRef]
- Li, F.; Zhu, J.; Sun, P.; Zhang, M. Highly efficient and selective extraction of gold by reduced graphene oxide. Nat. Commun. 2022, 13, 4472. [Google Scholar] [CrossRef]
- Xue, T.; He, T.; Peng, L. A customized MOF-polymer composite for rapid gold extraction from water matrices. Sci. Adv. 2023, 9, 4923. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Tang, C. High-efficiency gold recovery by additive-induced supramolecular polymerization of beta-cyclodextrin. Nat. Commun. 2023, 14, 1284. [Google Scholar] [CrossRef]
- Qiu, J.; Xu, C.; Xu, X. Porous Covalent Organic Framework Based Hydrogen-Bond Nanotrap for the Precise Recognition and Separation of Gold. Angew. Chem. Int. Ed. 2023, 62, e202300459. [Google Scholar] [CrossRef]
- Kinsman, L.M.M.; Ngwenya, B.T.; Morrison, C.A. Tuneable separation of gold by selective precipitation using a simple and recyclable diamide. Nat. Commun. 2021, 12, 6258. [Google Scholar] [CrossRef]
- Hagelüken, C. Recycling of electronic scrap at umicore precious metals refining. Acta Metall Slovaca 2006, 12, 111–120. [Google Scholar]
- Nakbanpote, W.; Thiravetyan, P.; Kalambaheti, C. Comparison of gold adsorption by Chlorella vulgaris, rice husk and activated carbon. Miner. Eng. 2002, 15, 549–552. [Google Scholar] [CrossRef]
- Kim, E.; Kim, M.; Lee, J. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. J. Hazard. Mater. 2011, 198, 206–215. [Google Scholar] [CrossRef]
- Wang, Z.; Li, P.; Fang, Y. One-step recovery of noble metal ions from oil/water emulsions by chitin nanofibrous membrane for further recycling utilization. Carbohydr. Polym. 2019, 223, 115064. [Google Scholar] [CrossRef]
- Hong, Y.; Thirion, D.; Subramanian, S. Precious metal recovery from electronic waste by a porous porphyrin polymer. Proc. Natl. Acad. Sci. USA 2020, 117, 16174–16180. [Google Scholar] [CrossRef]
- He, S. Chemical-to-electricity carbon: Water device. Adv. Mat. 2018, 30, 1707635. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Liu, J.; Wang, C. Ion Enrichment on the Hydrophobic Carbon-based Surface in Aqueous Salt Solutions due to Cation-π Interactions. Sci. Rep. 2013, 3, 3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Sep. Purif. Technol. 2019, 224, 373–387. [Google Scholar] [CrossRef]
- Liu, J.; Shi, G.; Guo, P. Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 2015, 115, 164502. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Chen, L.; Yang, Y. Two-dimensional Na-Cl crystals of unconventional stoichiometries on graphene surface from dilutesolution at ambient conditions. Nat. Chem. 2018, 10, 776–779. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, S.; Wu, H. Revisit the Hydrated Cation−π Interaction at the Interface: A New View of Dynamics and Statistics. Langmuir 2022, 38, 2401–2408. [Google Scholar] [CrossRef]
- Novoselov, K.S. Graphene for gold extraction. Natl. Sci. Rev. 2022, 9, nwac160. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, Y.; Gao, S.; Zhang, Y.; Wang, S.; Chen, L.; Mu, L.; Fang, H.; Jiang, J.; Lei, X. Thermally Reduced Graphene Oxide Membranes Revealed Selective Adsorption of Gold Ions from Mixed Ionic Solutions. Int. J. Mol. Sci. 2023, 24, 12239. https://doi.org/10.3390/ijms241512239
Qiang Y, Gao S, Zhang Y, Wang S, Chen L, Mu L, Fang H, Jiang J, Lei X. Thermally Reduced Graphene Oxide Membranes Revealed Selective Adsorption of Gold Ions from Mixed Ionic Solutions. International Journal of Molecular Sciences. 2023; 24(15):12239. https://doi.org/10.3390/ijms241512239
Chicago/Turabian StyleQiang, Yu, Siyan Gao, Yueyu Zhang, Shuai Wang, Liang Chen, Liuhua Mu, Haiping Fang, Jie Jiang, and Xiaoling Lei. 2023. "Thermally Reduced Graphene Oxide Membranes Revealed Selective Adsorption of Gold Ions from Mixed Ionic Solutions" International Journal of Molecular Sciences 24, no. 15: 12239. https://doi.org/10.3390/ijms241512239
APA StyleQiang, Y., Gao, S., Zhang, Y., Wang, S., Chen, L., Mu, L., Fang, H., Jiang, J., & Lei, X. (2023). Thermally Reduced Graphene Oxide Membranes Revealed Selective Adsorption of Gold Ions from Mixed Ionic Solutions. International Journal of Molecular Sciences, 24(15), 12239. https://doi.org/10.3390/ijms241512239