Expression of Cytoskeletal Proteins (GFAP, Vimentin), Proapoptotic Protein (Caspase-3) and Protective Protein (S100) in the Epileptic Focus in Adults and Children with Drug-Resistant Temporal Lobe Epilepsy Associated with Focal Cortical Dysplasia
Abstract
:1. Introduction
2. Results
2.1. Histological Examination
2.2. Immunohistochemical (IHC) Study
2.2.1. GFAP
2.2.2. S100
2.2.3. Vimentin
2.2.4. Caspase-3
2.3. Morphometric Results and Comparative Statistical Analysis
2.4. Dependence on Gender
2.5. Protein Expression and the Duration of the Illness
2.6. Correlation Analysis Results
2.7. Results of Regression Analysis
- Protein expression: In all studied areas of the cortex and white matter, a significant increase in protein expression was observed across all age groups.
- Disease duration: Caspase-3 levels in the cortex positively correlate with disease duration, while vimentin levels negatively correlate. In the white matter, S100 shows a positive correlation with disease duration, while caspase-3, GFAP, and vimentin exhibit negative correlations.
- Dynamics: The peak expression of vimentin in the cortex occurs around 5 years from disease onset, while GFAP reaches its peak at 8 years, suggesting early and late stages of the disease. In the white matter, both vimentin and GFAP show peak expression at approximately 5 years from disease onset, followed by a decrease in all studied regions. Caspase-3 levels increase over time in the cortex but decrease in the white matter. S100 expression also increases as the disease progresses.
- Correlations: GFAP and S100 exhibit positive correlations with caspase-3, indicating a potential association between these proteins.
- Age differences: In children with DRE, the expression of caspase-3 and S100 is lower compared to adults in both the cortex and white matter. Vimentin expression shows age-dependent changes.
- Gender differences: Vimentin expression varies based on gender. S100 levels are higher in women, while no significant relationship with sex was observed for the other proteins.
3. Discussion
3.1. GFAP
3.2. S100
3.3. Vimentin
3.4. Caspase-3
4. Materials and Methods
4.1. Study Design and Patients
4.2. IHC
4.3. Statistical Analysis
5. Conclusions
Limitations of the Study
- Due to the small number of patients in the study, we were unable to evaluate the distribution of protein expression based on the type of FCD.
- Only isolated types of FCD (FCD I and II, and mMCD) were included in the study. The types of FCD associated with the underlying pathological substrate (such as hippocampal sclerosis, tumors, and vascular malformations) were not investigated.
- The pathology department’s archival materials were examined; however, data on the patient’s neurological status were not always presented in full in the medical history, which, among other things, makes it difficult to assess the outcomes according to the Engel classification and the duration of treatment.
- The study did not analyze the dependence of changes in protein expression on the type and number of seizures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roggenhofer, E.; Santarnecchi, E.; Muller, S.; Kherif, F.; Wiest, R.; Seeck, M.; Draganski, B. Trajectories of brain remodeling in temporal lobe epilepsy. J. Neurol. 2019, 266, 3150–3159. [Google Scholar] [CrossRef]
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, R. Epilepsy in children. Lancet 2006, 367, 499–524. [Google Scholar] [CrossRef] [PubMed]
- Beghi, E. The Epidemiology of Epilepsy. Neuroepidemiology 2020, 54, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Sone, D. Making the Invisible Visible: Advanced Neuroimaging Techniques in Focal Epilepsy. Front. Neurosci. 2021, 15, 699176. [Google Scholar] [CrossRef]
- Belousova, E.D.; Shkolnikova, M.A. Sudden unexpected death in genetic epileptic encephalopathies: A role of neurocardiac genes. Epilepsy Paroxysmal Cond. 2018, 10, 63–70. (In Russian) [Google Scholar] [CrossRef]
- Kwan, P.; Brodie, M.J. Early identification of refractory epilepsy. N. Engl. J. Med. 2000, 342, 314–319. [Google Scholar] [CrossRef]
- Engel, J., Jr.; International League Against Epilepsy (ILAE). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: Report of the ILAE Task Force on Classification and Terminology. Epilepsia 2001, 42, 796–803. [Google Scholar] [CrossRef]
- Lowenstein, D.H. Interview: The National Institute of Neurological Diseases and Stroke/American Epilepsy Society benchmarks and research priorities for epilepsy research. Biomark. Med. 2011, 5, 531–535. [Google Scholar] [CrossRef]
- Leventer, R.J.; Phelan, E.M.; Coleman, L.T.; Kean, M.J.; Jackson, G.D.; Harvey, A.S. Clinical and imaging features of cortical malformations in childhood. Neurology 1999, 53, 715–722. [Google Scholar] [CrossRef]
- Najm, I.; Lal, D.; Alonso Vanegas, M.; Cendes, F.; Lopes-Cendes, I.; Palmini, A.; Paglioli, E.; Sarnat, H.B.; Walsh, C.A.; Wiebe, S.; et al. The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 2022, 63, 1899–1919. [Google Scholar] [CrossRef] [PubMed]
- Crunelli, V.; Carmignoto, G.; Steinhäuser, C. Novel astrocyte targets: New avenues for the therapeutic treatment of epilepsy. Neurosci. A Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2015, 21, 62–83. [Google Scholar] [CrossRef] [PubMed]
- Zabrodskaya, Y.M.; Gaykova, O.N.; Alexandrov, M.V.; Paramonova, N.M.; Sitovskaya, D.A.; Litovchenko, A.V.; Sokolova, T.V.; Cherenkova, S.E.; Bazhanova, E.D. Epileptic Focus in Drug-Resistant Epilepsy: Structure, Organization, and Pathophysiology [Internet]. Epilepsy—Seizures without Triggers; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Sokolova, T.V.; Litovchenko, A.V.; Paramonova, N.M.; Kasumov, V.R.; Kravtsova, S.V.; Nezdorovina, V.G.; Sitovskaya, D.A.; Skiteva, E.N.; Bazhanova, E.D.; Zabrodskaya, Y.M. Glioneuronal apoptosis and neuroinflammation in drug resistant temporal lobe epilepsy. Nevrol. Neiropsikhiatriya Psikhosomatika = Neurol. Neuropsychiatry Psychosom. 2023, 15, 36–42. [Google Scholar] [CrossRef]
- Dossi, E.; Vasile, F.; Rouach, N. Human astrocytes in the diseased brain. Brain Res. Bull. 2018, 136, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Gaykova, O.N.; Paramonova, N.M.; Suvorov, A.V. The value of white matter damage in the brain in the pathogenesis of locally caused epilepsy. Russ. Neurosurg. J. 2011, 3, 19–24. (In Russian) [Google Scholar]
- Sokolova, T.V.; Zabrodskaya, Y.M.; Paramonova, N.M.; Dobrogorskaya, L.N.; Kuralbaev, A.K.; Kasumov, V.R.; Sitovskaya, D. Apoptosis of brain cells in epileptic focus at drug-resistant temporal lobe epilepsy. Translyatsionnaya Meditsina = Transl. Med. 2017, 4, 22–33. (In Russian) [Google Scholar] [CrossRef]
- Baulac, M.; de Boer, H.; Elger, C.; Glynn, M.; Kälviäinen, R.; Little, A.; Mifsud, J.; Perucca, E.; Pitkänen, A.; Ryvlin, P. Epilepsy priorities in Europe: A report of the ILAE-IBE Epilepsy Advocacy Europe Task Force. Epilepsia 2015, 56, 1687–1695. [Google Scholar] [CrossRef]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: From biomarker to active factor in neural injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, W.; Li, W.; Li, X. miR-15a inhibits cell apoptosis and inflammation in a temporal lobe epilepsy model by downregulating GFAP. Mol. Med. Rep. 2020, 22, 3504–3512. [Google Scholar] [CrossRef]
- O’Leary, L.A.; Davoli, M.A.; Belliveau, C.; Tanti, A.; Ma, J.C.; Farmer, W.T.; Turecki, G.; Murai, K.K.; Mechawar, N. Characterization of Vimentin-Immunoreactive Astrocytes in the Human Brain. Front. Neuroanat. 2020, 14, 31. [Google Scholar] [CrossRef]
- Sokolova, T.V.; Zabrodskaya, Y.M.; Litovchenko, A.V.; Paramonova, N.M.; Kasumov, V.R.; Kravtsova, S.V.; Skiteva, E.N.; Sitovskaya, D.A.; Bazhanova, E.D. Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy. Int. J. Mol. Sci. 2022, 23, 12561. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Walters, G.; Paulsen, A.R.; Scarisbrick, I.A. Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. PLoS ONE 2017, 12, e0180697. [Google Scholar] [CrossRef] [PubMed]
- Shandra, O.; Winemiller, A.R.; Heithoff, B.P.; Munoz-Ballester, C.; George, K.K.; Benko, M.J.; Zuidhoek, I.A.; Besser, M.N.; Curley, D.E.; Edwards, G.F.; et al. Repetitive Diffuse Mild Traumatic Brain Injury Causes an Atypical Astrocyte Response and Spontaneous Recurrent Seizures. J. Neurosci. Off. J. Soc. Neurosci. 2019, 39, 1944–1963. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Sun, Q.; Fan, J.; Jiang, Y.; Yang, W.; Cui, Y.; Yu, Z.; Jiang, H.; Li, B. Role of Astrocytes in Post-traumatic Epilepsy. Front. Neurol. 2019, 10, 1149. [Google Scholar] [CrossRef] [PubMed]
- Gadea, A.; Schinelli, S.; Gallo, V. Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 2394–2408. [Google Scholar] [CrossRef]
- Bass, N.H.; Hess, H.H.; Pope, A.; Thalheimer, C. Quantitative cytoarchitectonic distribution of neurons, glia, and DNa in rat cerebral cortex. J. Comp. Neurol. 1971, 143, 481–490. [Google Scholar] [CrossRef]
- Sherwood, C.C.; Stimpson, C.D.; Raghanti, M.A.; Wildman, D.E.; Uddin, M.; Grossman, L.I.; Goodman, M.; Redmond, J.C.; Bonar, C.J.; Erwin, J.M.; et al. Evolution of increased glia-neuron ratios in the human frontal cortex. Proc. Natl. Acad. Sci. USA 2006, 103, 13606–13611. [Google Scholar] [CrossRef]
- Peteri, U.K.; Niukkanen, M.; Castrén, M.L. Astrocytes in Neuropathologies Affecting the Frontal Cortex. Front. Cell. Neurosci. 2019, 13, 44. [Google Scholar] [CrossRef]
- Robel, S.; Buckingham, S.C.; Boni, J.L.; Campbell, S.L.; Danbolt, N.C.; Riedemann, T.; Sutor, B.; Sontheimer, H. Reactive astrogliosis causes the development of spontaneous seizures. J. Neurosci. Off. J. Soc. Neurosci. 2015, 35, 3330–3345. [Google Scholar] [CrossRef]
- Rossi, D.; Volterra, A. Astrocytic dysfunction: Insights on the role in neurodegeneration. Brain Res. Bull. 2009, 80, 224–232. [Google Scholar] [CrossRef]
- Donato, R. S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 2001, 33, 637–668. [Google Scholar] [CrossRef] [PubMed]
- Korfias, S.; Stranjalis, G.; Papadimitriou, A.; Psachoulia, C.; Daskalakis, G.; Antsaklis, A.; Sakas, D.E. Serum S-100B protein as a biochemical marker of brain injury: A review of current concepts. Curr. Med. Chem. 2006, 13, 3719–3731. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W.S.; Yeralan, O.; Sheng, J.G.; Boop, F.A.; Mrak, R.E.; Rovnaghi, C.R.; Burnett, B.A.; Feoktistova, A.; Van Eldik, L.J. Overexpression of the neurotrophic cytokine S100 beta in human temporal lobe epilepsy. J. Neurochem. 1995, 65, 228–233. [Google Scholar] [CrossRef]
- Streicher, W.W.; Lopez, M.M.; Makhatadze, G.I. Modulation of quaternary structure of S100 proteins by calcium ions. Biophys. Chem. 2010, 151, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Yardan, T.; Erenler, A.K.; Baydin, A.; Aydin, K.; Cokluk, C. Usefulness of S100B protein in neurological disorders. JPMA. J. Pak. Med. Assoc. 2011, 61, 276–281. [Google Scholar] [PubMed]
- Baudier, J.; Mochly-Rosen, D.; Newton, A.; Lee, S.H.; Koshland, D.E.; Cole, R.D. Comparison of S100b protein with calmodulin: Interactions with melittin and microtubule-associated tau proteins and inhibition of phosphorylation of tau proteins by protein kinase C. Biochemistry 1987, 26, 2886–2893. [Google Scholar] [CrossRef]
- Adami, C.; Sorci, G.; Blasi, E.; Agneletti, A.L.; Bistoni, F.; Donato, R. S100B expression in and effects on microglia. Glia 2001, 33, 131–142. [Google Scholar] [CrossRef]
- Somera-Molina, K.C.; Nair, S.; Van Eldik, L.J.; Watterson, D.M.; Wainwright, M.S. Enhanced microglial activation and proinflammatory cytokine upregulation are linked to increased susceptibility to seizures and neurologic injury in a ‘two-hit’ seizure model. Brain Res. 2009, 1282, 162–172. [Google Scholar] [CrossRef]
- Bannikova, V.D.; Samochernykh, K.A.; Dengina, N.O.; Odintsova, G.V. Personalised treatment for epilepsy: Gender-specific comorbid emotional disturbances in drug-resistant epilepsy in neurosurgical patients. Russ. J. Pers. Med. 2022, 2, 63–72. (In Russian) [Google Scholar] [CrossRef]
- Haque, A.; Polcyn, R.; Matzelle, D.; Banik, N.L. New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection. Brain Sci. 2018, 8, 33. [Google Scholar] [CrossRef]
- Tubaro, C.; Arcuri, C.; Giambanco, I.; Donato, R. S100B in myoblasts regulates the transition from activation to quiescence and from quiescence to activation and reduces apoptosis. Biochim. Biophys. Acta 2011, 1813, 1092–1104. [Google Scholar] [CrossRef] [PubMed]
- Crespel, A.; Rigau, V.; Coubes, P.; Rousset, M.C.; de Bock, F.; Okano, H.; Baldy-Moulinier, M.; Bockaert, J.; Lerner-Natoli, M. Increased number of neural progenitors in human temporal lobe epilepsy. Neurobiol. Dis. 2005, 19, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Kawamata, T.; Walker, D.G.; McGeer, P.L. Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol. 1992, 84, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Boyne, L.J.; Fischer, I.; Shea, T.B. Role of vimentin in early stages of neuritogenesis in cultured hippocampal neurons. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 1996, 14, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Potokar, M.; Stenovec, M.; Gabrijel, M.; Li, L.; Kreft, M.; Grilc, S.; Pekny, M.; Zorec, R. Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 2010, 58, 1208–1219. [Google Scholar] [CrossRef]
- Wilhelmsson, U.; Li, L.; Pekna, M.; Berthold, C.H.; Blom, S.; Eliasson, C.; Renner, O.; Bushong, E.; Ellisman, M.; Morgan, T.E.; et al. Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 5016–5021. [Google Scholar] [CrossRef]
- Jing, R.; Wilhelmsson, U.; Goodwill, W.; Li, L.; Pan, Y.; Pekny, M.; Skalli, O. Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks. J. Cell Sci. 2007, 120 Pt 7, 1267–1277. [Google Scholar] [CrossRef]
- Pekny, M.; Wilhelmsson, U.; Tatlisumak, T.; Pekna, M. Astrocyte activation and reactive gliosis-A new target in stroke? Neurosci. Lett. 2019, 689, 45–55. [Google Scholar] [CrossRef]
- Chen, K.Z.; Liu, S.X.; Li, Y.W.; He, T.; Zhao, J.; Wang, T.; Qiu, X.X.; Wu, H.F. Vimentin as a potential target for diverse nervous system diseases. Neural Regen. Res. 2023, 18, 969–975. [Google Scholar] [CrossRef]
- Paulin, D.; Lilienbaum, A.; Kardjian, S.; Agbulut, O.; Li, Z. Vimentin: Regulation and pathogenesis. Biochimie 2022, 197, 96–112. [Google Scholar] [CrossRef]
- Wilson, C.H.; Kumar, S. Caspases in metabolic disease and their therapeutic potential. Cell Death Differ. 2018, 25, 1010–1024. [Google Scholar] [CrossRef]
- Asadi, M.; Taghizadeh, S.; Kaviani, E.; Vakili, O.; Taheri-Anganeh, M.; Tahamtan, M.; Savardashtaki, A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol. Appl. Biochem. 2022, 69, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- Günther, A.; Luczak, V.; Abel, T.; Baumann, A. Caspase-3 and GFAP as early markers for apoptosis and astrogliosis in shRNA-induced hippocampal cytotoxicity. J. Exp. Biol. 2017, 220 (Pt 8), 1400–1404. [Google Scholar] [CrossRef]
- Akingbade, G.T.; Ijomone, O.M.; Imam, A.; Aschner, M.; Ajao, M.S. D-Ribose-L-Cysteine Improves Glutathione Levels, Neuronal and Mitochondrial Ultrastructural Damage, Caspase-3 and GFAP Expressions Following Manganese-Induced Neurotoxicity. Neurotox. Res. 2021, 39, 1846–1858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, H.; Wang, W.; Zhang, B.; Yu, L. Sevoflurane reduces ischemic brain injury in rats with diet and streptozotocin-induced diabetes. J. Recept. Signal Transduct. Res. 2018, 38, 448–454. [Google Scholar] [CrossRef]
- Henshall, D.C.; Simon, R.P. Epilepsy and apoptosis pathways. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2005, 25, 1557–1572. [Google Scholar] [CrossRef] [PubMed]
- Engel, T.; Henshall, D.C. Apoptosis, Bcl-2 family proteins and caspases: The ABCs of seizure-damage and epileptogenesis? Int. J. Physiol. Pathophysiol. Pharmacol. 2009, 1, 97–115. [Google Scholar] [PubMed]
- Narkilahti, S.; Pirttilä, T.J.; Lukasiuk, K.; Tuunanen, J.; Pitkänen, A. Expression and activation of caspase 3 following status epilepticus in the rat. Eur. J. Neurosci. 2003, 18, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, V.A.; Tikhonova, E.P.; Savchenko, A.A.; Kudryavtsev, I.V.; Andronova, N.V.; Anisimova, E.N.; Golovkin, A.S.; Demina, D.V.; Zdzitovetsky, D.E.; Kalinina, Y.S.; et al. Clinical Immunology. A Practical Guide for Infectious Disease Specialists; Krasnoyarsk: Polikor, Russia, 2021; 563p. (In Russian) [Google Scholar] [CrossRef]
- Shabanov, P.D.; Ganapolsky, V.P.; Zhumasheva, A.B.; Elistratov, A.A.; Mokeeva, E.G.; Kudlay, D.A. Trekrezan as a Metabolic Activator with the Properties of a Meteoadaptogen, Psychoenergizer and Immunomodulator; Bulletin of the Russian Military Medical Academy: Saint Petersburg, Russia, 2006; Volume 15, pp. 53–57. (In Russian) [Google Scholar]
- Vega-García, A.; Orozco-Suárez, S.; Villa, A.; Rocha, L.; Feria-Romero, I.; Alonso Vanegas, M.A.; Guevara-Guzmán, R. Cortical expression of IL1-β, Bcl-2, Caspase-3 and 9, SEMA-3a, NT-3 and P-glycoprotein as biological markers of intrinsic severity in drug-resistant temporal lobe epilepsy. Brain Res. 2021, 1758, 147303. [Google Scholar] [CrossRef]
Protein | Cortex | p-Value | White Matter | p-Value | ||
---|---|---|---|---|---|---|
FCD Adult | Control Adult | FCD Adult | Control Adult | |||
GFAP, s.u. | 0.042 ± 0.02 | 0.025 ± 0.006 | p < 0.05 | 0.06 ± 0.02 | 0.038 ± 0.006 | p < 0.05 |
S100, n. | 19.8 ± 4 | 11.9 ± 0.7 | p < 0.001 | 78.8 ± 16.5 | 44.8 ± 2.3 | p < 0.001 |
Vimentin, s.u. | 0.05 ± 0.012 | 0.2 ± 0.004 | p < 0.001 | 0.064 ± 0.016 | 0.017 ± 0.002 | p < 0.001 |
Caspase-3, n. | 24.2 ± 2.8 | 0.033 ± 0.05 | p < 0.001 | 5.94 ± 1.9 | 0 ± 0 | p < 0.001 |
Protein | Cortex | p-Value | White Matter | p-Value | ||
---|---|---|---|---|---|---|
FCD Children | Control Children | FCD Children | Control Children | |||
GFAP, s.u. | 0.046 ± 0.011 | 0.035 ± 0.013 | p < 0.05 | 0.091 ± 0.05 | 0.051 ± 0.012 | p < 0.05 |
S100, n. | 18 ± 5 | 14 ± 3 | p < 0.05 | 50 ± 22 | 16 ± 5 | p < 0.05 |
Vimentin, s.u. | 0.077 ± 0.05 | 0.03 ± 0.016 | p < 0.05 | 0.093 ± 0.04 | 0.058 ± 0.044 | p < 0.05 |
Caspase-3, n. | 11 ± 6 | 0 ± 0 | p < 0.001 | 12 ± 9 | 0 ± 0 | p < 0.001 |
Protein | Male | p-Value | Female | p-Value | ||
---|---|---|---|---|---|---|
FCD Adult | Control Adult | FCD Children | Control Children | |||
GFAP | 0.04 | 0.03 | p < 0.05 | 0.04 | 0.03 | p < 0.05 |
S100 | 19.26 | 12.82 | p < 0.05 | 18.53 | 12.56 | p < 0.05 |
Vimentin | 0.06 | 0.02 | p < 0.05 | 0.07 | 0.03 | p < 0.05 |
caspase-3 | 16.77 | 0.03 | p < 0.05 | 18.50 | 0.08 | p < 0.05 |
Protein | Correlation Cortex | p-Value | Correlation White Matter | p-Value |
---|---|---|---|---|
GFAP | −0.09 | 0.493 | −0.32 | 0.014 |
S100 | 0.19 | 0.142 | 0.42 | 0.001 |
Vimentin | −0.35 | 0.006 | −0.33 | 0.011 |
Caspase-3 | 0.56 | 0.000004 | −0.29 | 0.027 |
Protein | GFAP | Vimentin | S100 | Caspase-3 |
---|---|---|---|---|
GFAP | 1.0 | 0.3 | 0.3 | 0.2 |
Vimentin | 0.3 | 1.0 | 0.4 | 0.2 |
S100 | 0.3 | 0.4 | 1.0 | 0.5 |
Caspase-3 | 0.2 | 0.2 | 0.5 | 1.0 |
Dependent Variable: | ||||
---|---|---|---|---|
Cortex | ||||
GFAP | Vimentin | S100 | Caspase-3 | |
(1) | (2) | (3) | (4) | |
Epilepsy | 0.01 *** | 0.04 *** | 6.14 *** | 16.16 *** |
(0.003) | (0.01) | (0.95) | (1.10) | |
Age | 0.0000 | 0.0000 | −0.02 | −0.23 *** |
(0.0002) | (0.0004) | (0.05) | (0.06) | |
Female | −0.001 | 0.01 | −0.56 | 1.49 |
(0.003) | (0.01) | (0.86) | (1.00) | |
Child | 0.01 | 0.02 * | −1.12 | −15.09 *** |
(0.01) | (0.01) | (1.67) | (1.93) | |
Constant | 0.03 *** | 0.01 | 14.01 *** | 12.87 *** |
(0.01) | (0.02) | (2.25) | (2.60) | |
Observations | 90 | 90 | 90 | 90 |
R2 | 0.23 | 0.37 | 0.36 | 0.82 |
Adjusted R2 | 0.19 | 0.34 | 0.33 | 0.81 |
Residual std. error (df = 85) | 0.01 | 0.03 | 4.03 | 4.66 |
F statistic (df = 4; 85) | 6.24 *** | 12.31 *** | 12.09 *** | 95.17 *** |
Dependent Variable: | ||||
---|---|---|---|---|
Cortex | ||||
GFAP | Vimentin | S100 | Caspase-3 | |
(1) | (2) | (3) | (4) | |
Epilepsy | 0.02 *** | 0.02 * | 8.65 *** | 22.65 *** |
(0.01) | (0.01) | (1.67) | (1.63) | |
Female | −0.005 | 0.002 | −0.37 | 0.05 |
(0.01) | (0.01) | (1.51) | (1.47) | |
Child | 0.02 | −0.003 | 3.18 | −1.99 |
(0.01) | (0.02) | (2.72) | (2.65) | |
Age | 0.0001 | −0.0003 | 0.04 | −0.05 |
(0.0002) | (0.0004) | (0.06) | (0.06) | |
Epilepsy: female | 0.005 | 0.01 | −0.39 | 1.73 |
(0.01) | (0.01) | (1.83) | (1.78) | |
Epilepsy: child | −0.01 | 0.02 | −4.05 * | −12.43 *** |
(0.01) | (0.01) | (2.04) | (1.99) | |
Constant | 0.02 ** | 0.03 | 10.30 *** | 2.37 |
(0.01) | (0.02) | (2.91) | (2.84) | |
Observations | 90 | 90 | 90 | 90 |
R2 | 0.24 | 0.39 | 0.39 | 0.88 |
Adjusted R2 | 0.19 | 0.35 | 0.35 | 0.87 |
Residual std. error (df = 85) | 0.01 | 0.03 | 3.98 | 3.88 |
F statistic (df = 4; 85) | 4.45 *** | 8.83 *** | 8.91 *** | 98.22 *** |
Dependent Variable: | ||||
---|---|---|---|---|
White Matter | ||||
GFAP | Vimentin | S100 | Caspase-3 | |
(1) | (2) | (3) | (4) | |
Epilepsy | 0.03 *** | 0.04 *** | 33.21 *** | 9.24 *** |
(0.01) | (0.01) | (3.74) | (1.24) | |
Age | −0.0000 | −0.0000 | −0.01 | 0.09 |
(0.0004) | (0.0004) | (0.21) | (0.07) | |
Female | 0.01 | 0.001 | 7.83 ** | −0.22 |
(0.01) | (0.01) | (3.39) | (1.13) | |
Child | 0.02 * | 0.03 ** | −29.38 *** | 6.15 *** |
(0.01) | (0.01) | (6.58) | (2.19) | |
Constant | 0.03 | 0.02 | 42.50 *** | −5.16 * |
(0.02) | (0.02) | (8.86) | (2.94) | |
Observations | 90 | 90 | 90 | 90 |
R2 | 0.28 | 0.42 | 0.67 | 0.45 |
Adjusted R2 | 0.25 | 0.39 | 0.65 | 0.42 |
Residual std. error (df = 85) | 0.03 | 0.03 | 15.88 | 5.27 |
F statistic (df = 4; 85) | 8.47 *** | 15.09 *** | 42.96 *** | 17.13 *** |
Dependent variable: | ||||
---|---|---|---|---|
White Matter | ||||
GFAP | Vimentin | S100 | Caspase-3 | |
(1) | (2) | (3) | (4) | |
Epilepsy | 0.004 | 0.04 *** | 27.08 *** | 6.11 *** |
(0.01) | (0.01) | (6.61) | (2.18) | |
Female | −0.003 | −0.01 | −1.11 | 0.004 |
(0.01) | (0.01) | (5.98) | (1.98) | |
Child | −0.01 | 0.05 ** | −31.14 *** | 0.31 |
(0.02) | (0.02) | (10.76) | (3.55) | |
Age | −0.0005 | 0.0002 | −0.05 | 0.01 |
(0.0005) | (0.0005) | (0.23) | (0.08) | |
Epilepsy: female | 0.02 | 0.01 | 13.16 * | −0.16 |
(0.01) | (0.01) | (7.24) | (2.39) | |
Epilepsy: child | 0.03 * | −0.02 | 1.33 | 5.52 ** |
(0.02) | (0.02) | (8.08) | (2.67) | |
Constant | 0.06 ** | 0.01 | 47.66 *** | −0.31 |
(0.02) | (0.02) | (11.52) | (3.81) | |
Observations | 90 | 90 | 90 | 90 |
R2 | 0.32 | 0.43 | 0.68 | 0.47 |
Adjusted R2 | 0.28 | 0.39 | 0.66 | 0.44 |
Residual std. error (df = 85) | 0.03 | 0.03 | 15.75 | 5.20 |
F statistic (df = 4; 85) | 6.65 *** | 10.36 *** | 29.65 *** | 12.44 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitovskaya, D.; Zabrodskaya, Y.; Parshakov, P.; Sokolova, T.; Kudlay, D.; Starshinova, A.; Samochernykh, K. Expression of Cytoskeletal Proteins (GFAP, Vimentin), Proapoptotic Protein (Caspase-3) and Protective Protein (S100) in the Epileptic Focus in Adults and Children with Drug-Resistant Temporal Lobe Epilepsy Associated with Focal Cortical Dysplasia. Int. J. Mol. Sci. 2023, 24, 14490. https://doi.org/10.3390/ijms241914490
Sitovskaya D, Zabrodskaya Y, Parshakov P, Sokolova T, Kudlay D, Starshinova A, Samochernykh K. Expression of Cytoskeletal Proteins (GFAP, Vimentin), Proapoptotic Protein (Caspase-3) and Protective Protein (S100) in the Epileptic Focus in Adults and Children with Drug-Resistant Temporal Lobe Epilepsy Associated with Focal Cortical Dysplasia. International Journal of Molecular Sciences. 2023; 24(19):14490. https://doi.org/10.3390/ijms241914490
Chicago/Turabian StyleSitovskaya, Darya, Yulia Zabrodskaya, Petr Parshakov, Tatyana Sokolova, Dmitry Kudlay, Anna Starshinova, and Konstantin Samochernykh. 2023. "Expression of Cytoskeletal Proteins (GFAP, Vimentin), Proapoptotic Protein (Caspase-3) and Protective Protein (S100) in the Epileptic Focus in Adults and Children with Drug-Resistant Temporal Lobe Epilepsy Associated with Focal Cortical Dysplasia" International Journal of Molecular Sciences 24, no. 19: 14490. https://doi.org/10.3390/ijms241914490
APA StyleSitovskaya, D., Zabrodskaya, Y., Parshakov, P., Sokolova, T., Kudlay, D., Starshinova, A., & Samochernykh, K. (2023). Expression of Cytoskeletal Proteins (GFAP, Vimentin), Proapoptotic Protein (Caspase-3) and Protective Protein (S100) in the Epileptic Focus in Adults and Children with Drug-Resistant Temporal Lobe Epilepsy Associated with Focal Cortical Dysplasia. International Journal of Molecular Sciences, 24(19), 14490. https://doi.org/10.3390/ijms241914490